
M a k e r s o f B e r k e l e y D B

Getting Started
with Berkeley DB
for C++ .

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

To obtain a copy of this document's original source code, please write to <support@sleepycat.com>.

Published 9/22/2004

http://www.sleepycat.com/download/oslicense.html

Table of Contents
Preface .. iv

Conventions Used in this Book ... iv
1. Introduction to Berkeley DB .. 1

About This Manual ... 2
Berkeley DB Concepts ... 2
Access Methods ... 4

Selecting Access Methods .. 4
Choosing between BTree and Hash ... 5
Choosing between Queue and Recno ... 5

Database Limits and Portability .. 6
Environments ... 6
Exception Handling .. 7
Error Returns .. 8
Getting and Using DB ... 8

2. Databases ... 9
Opening Databases ... 9
Closing Databases ... 10
Database Open Flags ... 11
Administrative Methods .. 11
Error Reporting Functions ... 13
Managing Databases in Environments .. 15
Database Example .. 17

3. Database Records .. 20
Using Database Records .. 20
Reading and Writing Database Records ... 21

Writing Records to the Database .. 21
Getting Records from the Database ... 22
Deleting Records ... 23
Data Persistence ... 23

Database Usage Example .. 24
4. Using Cursors ... 33

Opening and Closing Cursors .. 33
Getting Records Using the Cursor .. 34

Searching for Records ... 35
Working with Duplicate Records ... 38

Putting Records Using Cursors .. 40
Deleting Records Using Cursors ... 42
Replacing Records Using Cursors ... 43
Cursor Example ... 44

5. Secondary Databases .. 49
Opening and Closing Secondary Databases ... 50
Implementing Key Extractors .. 51
Reading Secondary Databases .. 52
Deleting Secondary Database Records ... 53
Using Cursors with Secondary Databases ... 54
Database Joins .. 55

Page iiGetting Started with DB9/22/2004

Using Join Cursors .. 56
Secondary Database Example ... 58

Secondary Databases with excxx_example_database_load 58
Secondary Databases with excxx_example_database_read 63

6. Database Configuration ... 67
Setting the Page Size ... 67

Overflow Pages ... 67
Locking ... 68
IO Efficiency .. 69
Page Sizing Advice ... 69

Selecting the Cache Size .. 70
BTree Configuration .. 70

Allowing Duplicate Records ... 71
Sorted Duplicates .. 71
Unsorted Duplicates ... 71
Configuring a Database to Support Duplicates 72

Setting Comparison Functions .. 73
Creating Comparison Functions ... 74

Page iiiGetting Started with DB9/22/2004

Preface
Welcome to Berkeley DB (DB). This document introduces DB, version 4.3. It is intended
to provide a rapid introduction to the DB API set and related concepts. The goal of this
document is to provide you with an efficient mechanism with which you can evaluate DB
against your project's technical requirements. As such, this document is intended for C++
developers and senior software architects who are looking for an in-process data
management solution. No prior experience with Sleepycat technologies is expected or
required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"Db::open() is a Db class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
} VENDOR;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number

char sales_rep[MAXFIELD]; // Name of sales representative
 char sales_rep_phone[MAXFIELD]; // Sales rep's phone number
} VENDOR;

Finally, notes of interest are represented using a note block such as this.☞

Page ivGetting Started with DB9/22/2004

Chapter 1. Introduction to Berkeley DB
Welcome to Sleepycat's Berkeley DB (DB). DB is a general-purpose embedded database
engine that is capable of providing a wealth of data management services. It is designed
from the ground up for high-throughput applications requiring in-process, bullet-proof
management of mission-critical data. DB can gracefully scale from managing a few bytes
to terabytes of data. For the most part, DB is limited only by your system's available
physical resources.

Because DB is an embedded database engine, it is extremely fast. You compile and link
it into your application in the same way as you would any third-party library. This means
that DB runs in the same process space as does your application, allowing you to avoid
the high cost of interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent.
It requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways
of organizing your data in its databases. Known as access methods, each such data
organization mechanism provides different characteristics that are appropriate for different
data management profiles. (Note that this manual focuses almost entirely on the BTree
access method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which
can be used to extend DB's capabilities. For example, many applications require
write-protection of their data so as to ensure that data is never left in an inconsistent
state for any reason (such as software bugs or hardware failures). For those applications,
a transaction subsystem can be enabled and used to transactionally protect database
writes.

The list of operating systems on which DB is available is too long to detail here. Suffice
to say that it is available on all major commercial operating systems, as well as on many
embedded platforms.

Finally, DB is available in a wealth of programming languages. Sleepycat officially supports
DB in C, C++, and Java, but the library is also available in many other languages, especially
scripting languages such as Perl and Python.

Before going any further, it is important to mention that DB is not a relational database
(although you could use it to build a relational database). Out of the box, DB does not☞
provide higher-level features such as triggers, or a high-level query language such as SQL.
Instead, DB provides just those minimal APIs required to store and retrieve your data as
efficiently as possible.

Page 1Getting Started with DB9/22/2004

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual
provides a step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces DB environments, databases, database records, and
storage and retrieval of database records. This book also introduces cursors and their
usage, and it describes secondary databases.

For the most part, this manual focuses on the BTree access method. A chapter is given
at the end of this manual that describes some of the concepts involving BTree usage, such
as duplicate record management and comparison routines.

Examples are given throughout this book that are designed to illustrate API usage. At the
end of each chapter, a complete example is given that is designed to reinforce the concepts
covered in that chapter. In addition to being presented in this book, these final programs
are also available in the DB software distribution. You can find them in

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

This book uses the C++ programming languages for its examples. Note that versions of
this book exist for the C and Java languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the larger concepts that you will
encounter when building a DB application.

Conceptually, DB databases contain records. Logically each record represents a single
entry in the database. Each such record contains two pieces of information: a key and a
data. This manual will on occaison describe a a record's key or a record's data when it is
necessary to speak to one or the other portion of a database record.

Because of the key/data pairing used for DB databases, they are sometimes thought of
as a two-column table. However, data (and sometimes keys, depending on the access
method) can hold arbitrarily complex data. Frequently, C structures and other such
mechanisms are stored in the record. This effectively turns a 2-column table into a table
with n columns, where n-1 of those columns are provided by the structure's fields.

Note that a DB database is very much like a table in a relational database system in that
most DB applications use more than one database (just as most relational databases use
more than one table).

Unlike relational systems, however, a DB database contains a single collection of records
organized according to a given access method (BTree, Queue, Hash, and so forth). In a
relational database system, the underlying access method is generally hidden from you.

Page 2Getting Started with DB9/22/2004

About This Manual

In any case, frequently DB applications are designed so that a single database stores a
specific type of data (just as in a relational database system, a single table holds entries
containing a specific set of fields). Because most applications are required to manage
multiple kinds of data, a DB application will often use multiple databases.

For example, consider an accounting application. This kind of an application may manage
data based on bank accounts, checking accounts, stocks, bonds, loans, and so forth. An
accounting application will also have to manage information about people, banking
institutions, customer accounts, and so on. In a traditional relational database, all of
these different kinds of information would be stored and managed using a (probably very)
complex series of tables. In a DB application, all of this information would instead be
divided out and managed using multiple databases.

DB applications can efficiently use multiple databases using an optional mechanism called
an environment. For more information, see Environments (page 6).

You interact with most DB APIs using special structures that contain pointers to functions.
These callbacks are called methods because they look so much like a method on a C++
class. The variable that you use to access these methods is often referred to as a handle.
For example, to use a database you will obtain a handle to that database.

Retrieving a record from a database is sometimes called getting the record because the
method that you use to retrieve the records is called get(). Similarly, storing database
records is sometimes called putting the record because you use the put() method to do
this.

When you store, or put, a record to a database using its handle, the record is stored
according to whatever sort order is in use by the database. Sorting is mostly performed
based on the key, but sometimes the data is considered too. If you put a record using a
key that already exists in the database, then the existing record is replaced with the new
data. However, if the database supports duplicate records (that is, records with identical
keys but different data), then that new record is stored as a duplicate record and any
existing records are not overwritten.

If a database supports duplicate records, then you can use a database handle to retrieve
only the first record in a set of duplicate records.

In addition to using a database handle, you can also read and write data using a special
mechanism called a cursor. Cursors are essentially iterators that you can use to walk over
the records in a database. You can use cursors to iterate over a database from the first
record to the last, and from the last to the first. You can also use cursors to seek to a
record. In the event that a database supports duplicate records, cursors are the only way
you can access all the records in a set of duplicates.

Finally, DB provides a special kind of a database called a secondary database. Secondary
databases serve as an index into normal databases (called primary database to distinguish
them from secondaries). Secondary databases are interesting because DB records can
hold complex data types, but seeking to a given record is performed only based on that
record's key. If you wanted to be able to seek to a record based on some piece of

Page 3Getting Started with DB9/22/2004

Berkeley DB Concepts

information that is not the key, then you enable this through the use of secondary
databases.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to
briefly describe all of the access methods that DB makes available.

Note that an access method can be selected only when the database is created. Once
selected, actual API usage is generally identical across all access methods. That is, while
some exceptions exist, mechanically you interact with the library in the same way
regardless of which access method you have selected.

The access method that you should choose is gated first by what you want to use as a
key, and then secondly by the performance that you see for a given access method.

The following are the available access methods:

DescriptionAccess Method

Data is stored in a sorted, balanced tree structure. Both the
key and the data for BTree records can be arbitrarily complex.
That is, they can contain single values such as an integer or a
string, or complex types such as a structure. Also, although not
the default behavior, it is possible for two records to use keys
that compare as equals. When this occurs, the records are
considered to be duplicates of one another.

BTree

Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Hash

Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is
designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the
head of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements
in applications requiring concurrent access to the queue.

Queue

Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Recno

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for
you database records. If you want to use arbitrary data (even strings), then you should
use either BTree or Hash. If you want to use logical record numbers (essentially integers)
then you should use Queue or Recno.

Page 4Getting Started with DB9/22/2004

Access Methods

Once you have made this decision, you must choose between either BTree or Queue, or
Hash or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between
BTree and Hash. Both will perform just as well as the other. In this situation, you might
just as well use BTree, if for no other reason than the majority of DB applications use
BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that
you will routinely use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into
memory, then you need to take more care when choosing your access method. Specifically,
choose:

• BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of
its neighbors.

• Hash if your dataset is extremely large. For any given access method, DB must maintain
a certain amount of internal information. However, the amount of information that
DB must maintain for BTree is much greater than for Hash. The result is that as your
dataset grows, this internal information can dominate the cache to the point where
there is relatively little space left for application data. As a result, BTree can be forced
to perform disk I/O much more frequently than would Hash given the same amount
of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to
perform disk I/O to satisfy a random request, then Hash will definitely out perform
BTree because it has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for
the primary database key. Logical record numbers are essentially integers that uniquely
identify the database record. They can be either mutable or fixed, where a mutable
record number is one that might change as database records are stored or deleted. Fixed
logical record numbers never change regardless of what database operations are
performed.

When deciding between Queue and Recno, choose:

• Queue if your application requires high degrees of concurrency. Queue provides
record-level locking (as opposed to the page-level locking that the other access methods
use), and this can result in significantly faster throughput for highly concurrent
applications.

Page 5Getting Started with DB9/22/2004

Access Methods

Note, however, that Queue provides support only for fixed length records. So if the
size of the data that you want to store varies widely from record to record, you should
probably choose an access method other than Queue.

• Recno if you want mutable record numbers. Queue is only capable of providing fixed
record numbers. Also, Recno provides support for databases whose permanent storage
is a flat text file. This is useful for applications looking for fast, temporary storage
while the data is being read or modified.

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes
of data. DB databases can store up to 256 terabytes of data. Individual record keys or
record data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting
Comparison Functions (page 73) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are
thread-safe, and they share well across multiple processes. That said, in order to allow
multiple processes to share databases and the cache, DB makes use of mechanisms that
do not work well on network-shared drives (NFS or Windows networks shares, for example).
For this reason, you cannot place your DB databases and environments on network-mounted
drives.

Environments

This manual is meant as an introduction to the Berkeley DB library. Consequently, it
describes how to build a very simple, single-threaded application. Consequently, this
manual omits a great many powerful aspects of the DB database engine that are not
required by simple applications. One of these is important enough that it warrants a brief
overview here: environments.

While environments are frequently not used by applications running in embedded
environments where every byte counts, they will be used by virutally any other DB
application requiring anything other than the bare minimum functionality. An environment
is essentially an encapsulation of one or more databases. Essentially, you open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment's home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:

• Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This
is desireable for those application that open more than a few handful of databases.

Page 6Getting Started with DB9/22/2004

Database Limits and Portability

However, in order to have more than one database contained in a single physical file,
your application must use an environment.

• Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can
be shared by all of the databases opened in the environment. The environment allows
you to enable subsystems that are designed to allow multiple threads and/or processes
to access DB databases. For example, you use an environment to enable the concurrent
data store (CDS), the locking subsystem, and/or the shared memory buffer pool.

• Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then
subsequently to obtain transaction IDs.

• High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and
then manage this subsystem.

• Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal" and
"catastrophic") through the use of the information contained in the log files.

All of these topics are described in the Berkeley DB Programmer's Reference Guide.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with
the C++ API.

By default, most DB methods throw DbException in the event of a serious error. However,
be aware that DbException does not inherit from std::exception so your try blocks should
catch both types of exceptions. For example:

#include <db_cxx.h>
 ...
try
{
 // DB and other code goes here
}
catch(DbException &e)
{
 // DB error handling goes here
}

Page 7Getting Started with DB9/22/2004

Exception Handling

catch(std::exception &e)
{
 // All other error handling goes here
}

You can obtain the DB error number for a DbException by using DbException::get_errno().
You can also obtain the informational message associated with that error number using
DbException::what().

If for some reason you do not want to manage DbException objects in your try blocks,
you can configure DB to suppress them by setting DB_CXX_NO_EXCEPTIONS for your database
and environment handles. In this event, you must manage your DB error conditions using
the integer value returned by all DB methods. Be aware that this manual assumes that
you want to manage your error conditions using DbException objects. For information on
managing error conditions using the integer return values, see Getting Started with
Berkeley DB for C.

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access
a file was denied, or an illegal argument was specified to one of the interfaces), DB
returns an errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB
returns a special error value. For example, if you tried to retrieve data from the database
and the record for which you are searching does not exist, DB would return DB_NOTFOUND,
a special error value that means the requested key does not appear in the database. All
of the possible special error values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Sleepycat download page:
http://www.sleepycat.com/download/index.shtml.

To install DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see
DB_INSTALL/docs/index.html, where DB_INSTALL is the directory where you unpacked
DB. On that page, you will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer's Tutorial and Reference Guide as well as the API
reference documentation.

Page 8Getting Started with DB9/22/2004

Error Returns

http://www.sleepycat.com/download/index.shtml

Chapter 2. Databases
In Berkeley DB, a database is a collection of records. Records, in turn, consist of two
parts: key and data. That is, records consist of key/data pairings.

Conceptually, you can think of a database as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using Dbt class instances (see Database Records (page 20) for details on this class). So,
fundamentally, using a DB database involves putting, getting, and deleting database
records, which in turns involves efficiently managing information encapsulated by Dbt
objects. The next several chapters of this book are dedicated to those activities.

Opening Databases

You open a database by instantiating a Db object and then calling its open() method.

Note that by default, DB does not create databases if they do not already exist. To override
this behavior, specify the DB_CREATE flag on the open() method.

The following code fragment illustrates a database open:

#include <db_cxx.h>

...

Db db(NULL, 0); // Instantiate the Db object

u_int32_t oFlags = DB_CREATE; // Open flags;

try {
 // Open the database
 db.open(NULL, // Transaction pointer
 "my_db.db", // Database file name
 NULL, // Optional logical database name
 DB_BTREE, // Database access method
 oFlags, // Open flags
 0); // File mode (using defaults)
// DbException is not subclassed from std::exception, so
// need to catch both of these.
} catch(DbException &e) {
 // Error handling code goes here
} catch(std::exception &e) {
 // Error handling code goes here
}

Page 9Getting Started with DB9/22/2004

Closing Databases

Once you are done using the database, you must close it. You use the Db::close() method
to do this.

Closing a database causes it to become unusable until it is opened again. Note that you
should make sure that any open cursors are closed before closing your database. Active
cursors during a database close can cause unexpected results, especially if any of those
cursors are writing to the database. You should always make sure that all your database
accesses have completed before closing your database.

Cursors are described in Using Cursors (page 33) later in this manual.

Be aware that when you close the last open handle for a database, then by default its
cache is flushed to disk. This means that any information that has been modified in the
cache is guaranteed to be written to disk when the last handle is closed. You can manually
perform this operation using the Db::sync() method, but for normal shutdown operations
it is not necessary. For more information about syncing your cache, see Data
Persistence (page 23).

The following code fragment illustrates a database close:

#include <db_cxx.h>

...

Db db(NULL, 0);

 // Database open and access operations happen here.

try {
 // Close the database
 db.close(0);
// DbException is not subclassed from std::exception, so
// need to catch both of these.
} catch(DbException &e) {
 // Error handling code goes here
} catch(std::exception &e) {
 // Error handling code goes here
}

Page 10Getting Started with DB9/22/2004

Closing Databases

Database Open Flags

The following are the flags that you may want to use at database open time. Note that
this list is not exhaustive — it includes only those flags likely to be of interest for
introductory, single-threaded database applications. For a complete list of the flags
available to you, see the Berkeley DB C++ API Reference Guide.

To specify more than one flag on the call to Db::open(), you must bitwise inclusively OR
them together:☞
u_int32_t open_flags = DB_CREATE | DB_EXCL;

• DB_CREATE

If the database does not currently exist, create it. By default, the database open fails
if the database does not already exist.

• DB_EXCL

Exclusive database creation. Causes the database open to fail if the database already
exists. This flag is only meaningful when used with DB_CREATE.

• DB_RDONLY

Open the database for read operations only. Causes any subsequent database write
operations to fail.

• DB_TRUNCATE

Physically truncate (empty) the on-disk file that contains the database. Causes DB to
delete all databases physically contained in that file.

Administrative Methods

The following Db methods may be useful to you when managing DB databases:

• Db::get_open_flags()

Returns the current open flags. It is an error to use this method on an unopened
database.

#include <db_cxx.h>
...
Db db(NULL, 0);
u_int32_t open_flags;

// Database open and subsequent operations omitted for clarity

db.get_open_flags(&open_flags);

Page 11Getting Started with DB9/22/2004

Database Open Flags

• Db::remove()

Removes the specified database. If no value is given for the database parameter, then
the entire file referenced by this method is removed.

Never remove a database that has handles opened for it. Never remove a file that
contains databases with opened handles.

#include <db_cxx.h>
...
Db db(NULL, 0);

// Database open and subsequent operations omitted for clarity

db.remove("mydb.db", // Database file to remove
 NULL, // Database to remove. This is
 // NULL so the entire file is
 // removed.
 0); // Flags. None used.

• Db::rename()

Renames the specified database. If no value is given for the database parameter, then
the entire file referenced by this method is renamed.

Never rename a database that has handles opened for it. Never rename a file that
contains databases with opened handles.

#include <db_cxx.h>
...
Db db(NULL, 0);

// Database open and subsequent operations omitted for clarity

db.rename("mydb.db", // Database file to rename
 NULL, // Database to rename. This is
 // NULL so the entire file is
 // renamed.
 "newdb.db", // New database file name
 0); // Flags. None used.

Page 12Getting Started with DB9/22/2004

Administrative Methods

Error Reporting Functions

To simplify error reporting and handling, the Db class offers several useful methods.

• set_error_stream()

Sets the C++ ostream to be used for displaying error messages issued by the DB library.

• set_errcall()

Defines the function that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display
this information correctly.

• set_errfile()

Sets the C library FILE * to be used for displaying error messages issued by the DB
library.

• set_errpfx()

Sets the prefix used to for any error messages issued by the DB library.

• err()

Issues an error message. The error message is sent to the callback function as defined
by set_errcall. If that method has not been used, then the error message is sent to
the file defined by set_errfile() or set_error_stream(). If none of these methods
have been used, then the error message is sent to standard error.

The error message consists of the prefix string (as defined by set_errprefix()), an
optional printf-style formatted message, the error message, and a trailing newline.

• errx()

Behaves identically to err() except that the DB message text associated with the
supplied error value is not appended to the error string.

In addition, you can use the db_strerror() function to directly return the error string
that corresponds to a particular error number.

For example, to send all error messages for a given database handle to a callback for
handling, first create your callback. Do something like this:

/*
 * Function called to handle any database error messages
 * issued by DB.
 */
void
my_error_handler(const char *error_prefix, char *msg)
{

Page 13Getting Started with DB9/22/2004

Error Reporting Functions

 /*
 * Put your code to handle the error prefix and error
 * message here. Note that one or both of these parameters
 * may be NULL depending on how the error message is issued
 * and how the DB handle is configured.
 */
}

And then register the callback as follows:

#include <db_cxx.h>
...

Db db(NULL, 0);
std::string dbFileName("my_db.db");

try
{
 // Set up error handling for this database
 db.set_errcall(my_error_handler);
 db.set_errpfx("my_example_program");

And to issue an error message:

 // Open the database
 db.open(NULL, dbFileName.c_str(), NULL, DB_BTREE, DB_CREATE, 0);
}
 // Must catch both DbException and std::exception
 catch(DbException &e)
 {
 db.err(e.get_errno(), "Database open failed %s",
 dbFileName.c_str());
 throw e;
 }
 catch(std::exception &e)
 {
 // No DB error number available, so use errx
 db.errx("Error opening database: %s", e.what());
 throw e;
 }

Page 14Getting Started with DB9/22/2004

Error Reporting Functions

Managing Databases in Environments

In Environments (page 6), we introduced environments. While environments are not used
in the example built in this book, they are so commonly used for a wide class of DB
applications that it is necessary to show their basic usage, if only from a completeness
perspective.

To use an environment, you must first open it. At open time, you must identify the
directory in which it resides. This directory must exist prior to the open attempt. You
can also identify open properties, such as whether the environment can be created if it
does not already exist.

For example, to create an environment handle and open an environment:

#include <db_cxx.h>
...
u_int32_t env_flags = DB_CREATE; // If the environment does not
 // exist, create it.
std::string envHome("/export1/testEnv");
DbEnv myEnv(0);

try {
 myEnv.open(envHome.c_str(), env_flags, 0);
} catch(DbException &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
} catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
}

Once an environment is opened, you can open databases in it. Note that by default
databases are stored in the environment's home directory, or relative to that directory
if you provide any sort of a path in the database's file name:

#include <db_cxx.h>
...
u_int32_t env_flags = DB_CREATE; // If the environment does not
 // exist, create it.
u_int32_t db_flags = DB_CREATE; // If the database does not
 // exist, create it.
std::string envHome("/export1/testEnv");
std::string dbName("mydb.db");
DbEnv myEnv(0);
Db *myDb;

Page 15Getting Started with DB9/22/2004

Managing Databases in
Environments

try {
 myEnv.open(envHome.c_str(), env_flags, 0);

myDb = new Db(&myEnv, 0);
 myDb->open(NULL,
 dbName.c_str(),
 NULL,
 DB_BTREE,
 db_flags,
 0);
} catch(DbException &e) {
 std::cerr << "Error opening database environment: "
 << envHome
 << " and database "
 << dbName << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
} catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome
 << " and database "
 << dbName << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
}

When you are done with an environment, you must close it. Before you close an
environment, make sure you close any opened databases.

try {
 if (myDb != NULL) {
 myDb->close(0);
 }
 myEnv.close(0);

} catch(DbException &e) {
 std::cerr << "Error closing database environment: "
 << envHome
 << " or database "
 << dbName << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
} catch(std::exception &e) {
 std::cerr << "Error closing database environment: "
 << envHome
 << " or database "
 << dbName << std::endl;
 std::cerr << e.what() << std::endl;
 exit(-1);
}

Page 16Getting Started with DB9/22/2004

Managing Databases in
Environments

Database Example

Throughout this book we will build a couple of applications that load and retrieve inventory
data from DB databases. While we are not yet ready to begin reading from or writing to
our databases, we can at least create the class that we will use to manage our databases.

Note that subsequent examples in this book will build on this code to perform the more
interesting work of writing to and reading from the databases.

Note that you can find the complete implementation of these functions in:

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Example 2.1. MyDb Class

To manage our database open and close activities, we encapsulate them in the MyDb class.
There are several good reasons to do this, the mort important being that we can ensure
our databases are closed by putting that activity in the MyDb class destructor.

To begin, we create our class definition:

// File: MyDb.hpp
#include <db_cxx.h>

class MyDb
{
public:
 // Constructor requires a path to the database,
 // and a database name.
 MyDb(std::string &path, std::string &dbName);

 // Our destructor just calls our private close method.
 ~MyDb() { close(); }

 inline Db &getDb() {return db_;}

private:
 Db db_;
 std::string dbFileName_;
 u_int32_t cFlags_;

 // Make sure the default constructor is private
 // We don't want it used.
 MyDb() : db_(NULL, 0) {}

 // We put our database close activity here.
 // This is called from our destructor. In
 // a more complicated example, we might want

Page 17Getting Started with DB9/22/2004

Database Example

 // to make this method public, but a private
 // method is more appropriate for this example.
 void close();
};

Next we need the implementation for the constructor:

// File: MyDb.cpp
#include "MyDb.hpp"

// Class constructor. Requires a path to the location
// where the database is located, and a database name
MyDb::MyDb(std::string &path, std::string &dbName)
 : db_(NULL, 0), // Instantiate Db object
 dbFileName_(path + dbName), // Database file name
 cFlags_(DB_CREATE) // If the database doesn't yet exist,
 // allow it to be created.
{
 try
 {
 // Redirect debugging information to std::cerr
 db_.set_error_stream(&std::cerr);

 // Open the database
 db_.open(NULL, dbFileName_.c_str(), NULL, DB_BTREE, cFlags_, 0);
 }
 // DbException is not a subclass of std::exception, so we
 // need to catch them both.
 catch(DbException &e)
 {
 std::cerr << "Error opening database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
 catch(std::exception &e)
 {
 std::cerr << "Error opening database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
}

And then we need the implementation for the close() method:

Page 18Getting Started with DB9/22/2004

Database Example

// Private member used to close a database. Called from the class
// destructor.
void
MyDb::close()
{
 // Close the db
 try
 {
 db_.close(0);
 std::cout << "Database " << dbFileName_
 << " is closed." << std::endl;
 }
 catch(DbException &e)
 {
 std::cerr << "Error closing database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
 catch(std::exception &e)
 {
 std::cerr << "Error closing database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
}

Page 19Getting Started with DB9/22/2004

Database Example

Chapter 3. Database Records
DB records contain two parts — a key and some data. Both the key and its corresponding
data are encapsulated in Dbt class objects. Therefore, to access a DB record, you need
two such objects, one for the key and one for the data.

Dbt objects provide a void * data member that you use to point to your data, and another
member that identifies the data length. They can therefore be used to store anything
from simple primitive data to complex class objects so long as the information you want
to store resides in a single contiguous block of memory.

This chapter describes Dbt usage. It also introduces storing and retrieving key/value pairs
from a database.

Using Database Records

Each database record is comprised of two Dbt objects — one for the key and another for
the data.

#include <db_cxx.h>
#include <string.h>

...

float money = 122.45;
char *description = "Grocery bill.";

Dbt key(&money, sizeof(float));
Dbt data(description, strlen(description)+1);

Note that in the following example we do not allow DB to assign the memory for the
retrieval of the money value. The reason why is that some systems may require float
values to have a specific alignment, and the memory as returned by Db may not be properly
aligned (the same problem may exist for structures on some systems). We tell DB to use
our memory instead of its own by specifying the DB_DBT_USERMEM flag. Be aware that when
we do this, we must also identify how much user memory is available through the use of
the ulen field.

#include <db_cxx.h>
#include <string.h>

...

Dbt key, data;
float money;
char *description;

key.set_data(&money);
key.set_ulen(sizeof(float));

Page 20Getting Started with DB9/22/2004

key.set_flags(DB_DBT_USERMEM);

// Database retrieval code goes here

// Money is set into the memory that we supplied.
description = (char *)data.get_data();

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight
differences in behavior depending on whether your database supports duplicate records.
Two or more database records are considered to be duplicates of one another if they
share the same key. The collection of records sharing the same key are called a duplicates
set. In DB, a given key is stored only once for a single duplicates set.

By default, DB databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are typically used to access all of the records in the
duplicates set.

DB provides two basic mechanisms for the storage and retrieval of database key/data
pairs:

• The Db::put() and Db::get() methods provide the easiest access for all non-duplicate
records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records. Cursors and
their database access methods are described in Using Cursors (page 33).

Writing Records to the Database

Records are stored in the database using whatever organization is required by the access
method that you have selected. In some cases (such as BTree), records are stored in a
sort order that you may want to define (see Setting Comparison Functions (page 73) for
more information).

In any case, the mechanics of putting and getting database records do not change once
you have selected your access method, configured your sorting routines (if any), and
opened your database. From your code's perspective, a simple database put and get is
largely the same no matter what access method you are using.

You use Db::put() to put, or write, a database record. This method requires you to provide
the record's key and data in the form of a pair of Dbt objects. You can also provide one
or more flags that control DB's behavior for the database write.

Of the flags available to this method, DB_NOOVERWRITE may be interesting to you. This flag
disallows overwriting (replacing) an existing record in the database. If the provided key
already exists in the database, then this method returns DB_KEYEXIST even if the database
supports duplicates.

For example:

Page 21Getting Started with DB9/22/2004

Reading and Writing Database
Records

#include <db_cxx.h>
#include <string.h>

...

char *description = "Grocery bill.";
float money = 122.45;

Db my_database(NULL, 0);
// Database open omitted for clarity

Dbt key(&money, sizeof(float));
Dbt data(description, strlen(description) + 1);

int ret = my_database.put(NULL, &key, &data, DB_NOOVERWRITE);
if (ret == DB_KEYEXIST) {
 my_database.err(ret, "Put failed because key %f already exists", money);
}

Getting Records from the Database

You can use the Db::get() method to retrieve database records. Note that if your database
supports duplicate records, then by default this method will only return the first record
in a duplicate set. For this reason, if your database supports duplicates, the common
solution is to use a cursor to retrieve records from it. Cursors are described in Using
Cursors (page 33).

(You can also retrieve a set of duplicate records using a bulk get. To do this, you use the
DB_MULTIPLE flag on the call to Db::get(). For more information, see the DB Programmer's
Reference Guide).

By default, Db::get() returns the first record found whose key matches the key provide
on the call to this method. If your database supports duplicate records, you can change
this behavior slightly by supplying the DB_GET_BOTH flag. This flag causes DB::get() to
return the first record that matches the provided key and data.

If the specified key and/or data does not exist in the database, this method returns
DB_NOTFOUND.

#include <db_cxx.h>
#include <string.h>

...

float money;
char *description;

Db my_database(NULL, 0);
// Database open omitted for clarity

Page 22Getting Started with DB9/22/2004

Reading and Writing Database
Records

money = 122.45;

Dbt key, data;
// Use our own memory to retrieve the float.
// For data alignment purposes.
key.set_data(&money);
key.set_ulen(sizeof(float));
key.set_flags(DB_DBT_USERMEM);

my_database.get(NULL, &key, &data, 0);

// Money is set into the memory that we supplied.
description = (char *)data.get_data();

Note that in this example, the data.size field would be automatically set to the size of
the retrieved data.

Deleting Records

You can use the Db::del() method to delete a record from the database. If your database
supports duplicate records, then all records associated with the provided key are deleted.
To delete just one record from a list of duplicates, use a cursor. Cursors are described in
Using Cursors (page 33).

You can also delete every record in the database by using Db::truncate().

For example:

#include <db_cxx.h>

...

Db my_database(NULL, 0);
// Database open omitted for clarity

float money = 122.45;
Dbt key(&money, sizeof(float));

my_database.del(NULL, &key, 0);

Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily written to disk, and
so your data may not appear in the database after an application restart.

Note that as a normal part of closing a database, its cache is written to disk. However,
in the event of an application or system failure, there is no guarantee that your databases
will close cleanly. In this event, it is possible for you to lose data. Under extremely rare
circumstances, it is also possible for you to experience database corruption.

Page 23Getting Started with DB9/22/2004

Reading and Writing Database
Records

Therefore, if you care about whether your data persists across application runs, and to
guard against the rare possibility of database corruption, you should use transactions to
protect your database modifications. Every time you commit a transaction, DB ensures
that the data will not be lost due to application or system failure. For information on
transactions, see the Berkeley DB Programmer's Tutorial and Reference Guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for
example, you are using DB to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some
guarantee that your database modifications are persistent, then you should periodically
call Db::sync(). Syncs cause the entire contents of your in-memory cache to be written
to disk. As such, they are quite expensive and you should use them sparingly.

Remember that by default a sync is performed any time a non-transactional database is
closed cleanly. (You can override this behavior by specifying DB_NOSYNC on the call to
Db::close().) That said, you can manually run a sync by calling Db::sync().

If your application or system crashes and you are not using transactions, then you should
either discard and recreate your databases, or verify them. You can verify a database using☞
Db::verify(). If your databases do not verify cleanly, use the db_dump command to salvage
as much of the database as is possible. Use either the -R or -r command line options to
control how aggressive db_dump should be when salvaging your databases.

Database Usage Example

In Database Example (page 17) we created a class that opens and closes a database for
us. We now make use of that class to load inventory data into two databases that we will
use for our inventory system.

Again, remember that you can find the complete implementation for these functions in:

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Example 3.1. VENDOR Structure

We want to store data related to an inventory system. There are two types of information
that we want to manage: inventory data and related vendor contact information. To
manage this information, we could have created a structure for each type of data, but
to illustrate storing mixed data without a structure we refrain from creating one for the
inventory data.

We now show the definition of the VENDOR structure. Note that the VENDOR structure
uses fixed-length fields. This is not necessary and in fact could represent a waste of
resources if the number of vendors stored in our database scales to very large numbers.
However, for simplicity we use fixed-length fields anyway, especially given that our sample
data contains so few vendor records.

Page 24Getting Started with DB9/22/2004

Database Usage Example

// File: gettingStartedCommon.hpp
#define MAXFIELD 20
typedef struct vendor {
 char name[MAXFIELD]; // Vendor name
 char street[MAXFIELD]; // Street name and number
 char city[MAXFIELD]; // City
 char state[3]; // Two-digit US state code
 char zipcode[6]; // US zipcode
 char phone_number[13]; // Vendor phone number
 char sales_rep[MAXFIELD]; // Name of sales representative
 char sales_rep_phone[MAXFIELD]; // Sales rep's phone number
} VENDOR;

Example 3.2. InventoryData Class

In order to manage our actual inventory data, we create a class that encapsulates the
data that we want to store for each inventory record. Beyond simple data encapsulation,
this class is also capable of marshalling the inventory data into a single contiguous buffer
for the purposes of storing in that data in a DB database.

We also provide two constructors for this class. The default constructor simply initializes
all our data members for us. A second constructor is also provided that is capable of
populating our data members from a void *. This second constructor is not really needed
until the next chapter where we show how to read data from the databases, but we
include it here for the purpose of completeness anyway.

To simplify things a bit, we include the entire implementation for this class in
gettingStartedCommon.hpp along with our VENDOR structure definition.

To begin, we create the public getter and setter methods that we use with our class'
private members. We also show the implementation of the method that we use to initialize
all our private members.

class InventoryData
{
public:
 inline void setPrice(double price) {price_ = price;}
 inline void setQuantity(long quantity) {quantity_ = quantity;}
 inline void setCategory(std::string &category) {category_ = category;}
 inline void setName(std::string &name) {name_ = name;}
 inline void setVendor(std::string &vendor) {vendor_ = vendor;}
 inline void setSKU(std::string &sku) {sku_ = sku;}

 inline double& getPrice() {return(price_);}
 inline long& getQuantity() {return(quantity_);}
 inline std::string& getCategory() {return(category_);}
 inline std::string& getName() {return(name_);}
 inline std::string& getVendor() {return(vendor_);}
 inline std::string& getSKU() {return(sku_);}

Page 25Getting Started with DB9/22/2004

Database Usage Example

 // Initialize our data members
 void clear()
 {
 price_ = 0.0;
 quantity_ = 0;
 category_.clear();
 name_.clear();
 vendor_.clear();
 sku_.clear();
 }

Next we implement our constructors. The default constructor simply calls the clear().
The second constructor takes a void * as an argument, which it then uses to initialize
the data members. Note, again, that we will not actually use this second constructor in
this chapter, but we show it here just to be complete anyway.

 // Default constructor
 InventoryData() { clear(); }

 // Constructor from a void *
 // For use with the data returned from a bdb get
 InventoryData(void *buffer)
 {
 char *buf = (char *)buffer;

 price_ = *((double *)buf);
 bufLen_ = sizeof(double);

 quantity_ = *((long *)(buf + bufLen_));
 bufLen_ += sizeof(long);

 name_ = buf + bufLen_;
 bufLen_ += name_.size() + 1;

 sku_ = buf + bufLen_;
 bufLen_ += sku_.size() + 1;

 category_ = buf + bufLen_;
 bufLen_ += category_.size() + 1;

 vendor_ = buf + bufLen_;
 bufLen_ += vendor_.size() + 1;
 }

Page 26Getting Started with DB9/22/2004

Database Usage Example

Next we provide a couple of methods for returning the class' buffer and the size of the
buffer. These are used for actually storing the class' data in a DB database.

 // Marshalls this classes data members into a single
 // contiguous memory location for the purpose of storing
 // the data in a database.
 char *
 getBuffer()
 {
 // Zero out the buffer
 memset(databuf_, 0, 500);
 // Now pack the data into a single contiguous memory location for
 // storage.
 bufLen_ = 0;
 int dataLen = 0;

 dataLen = sizeof(double);
 memcpy(databuf_, &price_, dataLen);
 bufLen_ += dataLen;

 dataLen = sizeof(long);
 memcpy(databuf_ + bufLen_, &quantity_, dataLen);
 bufLen_ += dataLen;

 packString(databuf_, name_);
 packString(databuf_, sku_);
 packString(databuf_, category_);
 packString(databuf_, vendor_);

 return (databuf_);
 }

 // Returns the size of the buffer. Used for storing
 // the buffer in a database.
 inline int getBufferSize() { return (bufLen_); }

Our last public method is a utility method that we use to get the class to show itself.

 // Utility function used to show the contents of this class
 void
 show() {
 std::cout << "\nName: " << name_ << std::endl;
 std::cout << " SKU: " << sku_ << std::endl;
 std::cout << " Price: " << price_ << std::endl;
 std::cout << " Quantity: " << quantity_ << std::endl;
 std::cout << " Category: " << category_ << std::endl;
 std::cout << " Vendor: " << vendor_ << std::endl;
 }

Page 27Getting Started with DB9/22/2004

Database Usage Example

Finally, we provide a private method that is used to help us pack data into our buffer,
and we declare our private data members.

private:

 // Utility function that appends a char * to the end of
 // the buffer.
 void
 packString(char *buffer, std::string &theString)
 {
 int string_size = theString.size() + 1;
 memcpy(buffer+bufLen_, theString.c_str(), string_size);
 bufLen_ += string_size;
 }

 // Data members
 std::string category_, name_, vendor_, sku_;
 double price_;
 long quantity_;
 int bufLen_;
 char databuf_[500];
};

Example 3.3. excxx_example_database_load

Our initial sample application loads database information from several flat files. To save
space, we won't show all the details of this example program. However, as always you
can find the complete implementation for this program here:

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

We begin with the normal include directives and forward declarations:

// File: excxx_example_database_load.cpp
#include <iostream>
#include <fstream>
#include <cstdlib>

#include "MyDb.hpp"
#include "gettingStartedCommon.hpp"

// Forward declarations
void loadVendorDB(MyDb&, std::string&);
void loadInventoryDB(MyDb&, std::string&);

Next we begin our main() function with the variable declarations and command line
parsing that is normal for most command line applications:

Page 28Getting Started with DB9/22/2004

Database Usage Example

// Loads the contents of vendors.txt and inventory.txt into
// Berkeley DB databases.
int
main(int argc, char *argv[])
{
 // Initialize the path to the database files
 std::string basename("./");
 std::string databaseHome("./");

 // Database names
 std::string vDbName("vendordb.db");
 std::string iDbName("inventorydb.db");

 // Parse the command line arguments here and determine
 // the location of the flat text files containing the
 // inventory data here. This step is omitted for clarity.

 // Identify the full name for our input files, which should
 // also include some path information.
 std::string inventoryFile = basename + "inventory.txt";
 std::string vendorFile = basename + "vendors.txt";

 try
 {
 // Open all databases.
 MyDb inventoryDB(databaseHome, iDbName);
 MyDb vendorDB(databaseHome, vDbName);

 // Load the vendor database
 loadVendorDB(vendorDB, vendorFile);

 // Load the inventory database
 loadInventoryDB(inventoryDB, inventoryFile);
 } catch(DbException &e) {
 std::cerr << "Error loading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(e.get_errno());
 } catch(std::exception &e) {
 std::cerr << "Error loading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(-1);
 }

 return(0);
} // End main

Note that we do not explicitly close our databases here. This is because the databases
are encapsulated in MyDb class objects, and those objects are on the stack. When they go
out of scope, their destructors will cause the database close to occur.

Page 29Getting Started with DB9/22/2004

Database Usage Example

Notice that there is not a lot to this function because we have pushed off all the database
activity to other places.

Next we show the implementation of loadVendorDB(). We load this data by scanning (line
by line) the contents of the vendors.txt file into a VENDOR structure. Once we have a
line scanned into the structure, we can store that structure into our vendors database.

Note that we use the vendor's name as the key here. In doing so, we assume that the
vendor's name is unique in our database. If it was not, we would either have to select a
different key, or architect our application such that it could cope with multiple vendor
records with the same name.

// Loads the contents of the vendors.txt file into a database
void
loadVendorDB(MyDb &vendorDB, std::string &vendorFile)
{
 std::ifstream inFile(vendorFile.c_str(), std::ios::in);
 if (!inFile)
 {
 std::cerr << "Could not open file '" << vendorFile
 << "'. Giving up." << std::endl;
 throw std::exception();
 }

 VENDOR my_vendor;
 while (!inFile.eof())
 {
 std::string stringBuf;
 std::getline(inFile, stringBuf);
 memset(&my_vendor, 0, sizeof(VENDOR));

 // Scan the line into the structure.
 // Convenient, but not particularly safe.
 // In a real program, there would be a lot more
 // defensive code here.
 sscanf(stringBuf.c_str(),
 "%20[^#]#%20[^#]#%20[^#]#%3[^#]#%6[^#]#%13[^#]#%20[^#]#%20[^\n]",
 my_vendor.name, my_vendor.street,
 my_vendor.city, my_vendor.state,
 my_vendor.zipcode, my_vendor.phone_number,
 my_vendor.sales_rep, my_vendor.sales_rep_phone);

 Dbt key(my_vendor.name, strlen(my_vendor.name) + 1);
 Dbt data(&my_vendor, sizeof(VENDOR));

 vendorDB.getDb().put(NULL, &key, &data, 0);
 }
 inFile.close();
}

Page 30Getting Started with DB9/22/2004

Database Usage Example

Finally, we need to write the loadInventoryDB() function. To load the inventory
information, we read in each line of the inventory.txt file, obtain each field from it, then
we load this data into an InventoryData instance.

To help us obtain the various fields from each line of input, we also create a simple helper
function that locates the position of the first a field delimiter (a pound (#) sign) from a
line of input.

Note that we could have simply decided to store our inventory data in a structure very
much like the VENDOR structure that we use above. However, by storing this data in the
InventoryData class, which identifies the size of the data that it contains, we can use
the smallest amount of space possible for the data that we are storing. The result is that
our cache can be smaller than it might otherwise be and our database will take less space
on disk than if we used a structure with fixed-length fields.

For a trivial dataset such as what we use for these examples, these resource savings are
negligible. But if we were storing hundreds of millions of records, then the cost savings
may become significant.

// Used to locate the first pound sign (a field delimiter)
// in the input string.
int
getNextPound(std::string &theString, std::string &substring)
{
 int pos = theString.find("#");
 substring.assign(theString, 0, pos);
 theString.assign(theString, pos + 1, theString.size());
 return (pos);
}

// Loads the contents of the inventory.txt file into a database
void
loadInventoryDB(MyDb &inventoryDB, std::string &inventoryFile)
{
 InventoryData inventoryData;
 std::string substring;
 int nextPound;

 std::ifstream inFile(inventoryFile.c_str(), std::ios::in);
 if (!inFile)
 {
 std::cerr << "Could not open file '" << inventoryFile
 << "'. Giving up." << std::endl;
 throw std::exception();
 }

 while (!inFile.eof())
 {
 inventoryData.clear();

Page 31Getting Started with DB9/22/2004

Database Usage Example

 std::string stringBuf;
 std::getline(inFile, stringBuf);

 // Now parse the line
 if (!stringBuf.empty())
 {
 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setName(substring);

 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setSKU(substring);

 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setPrice(strtod(substring.c_str(), 0));

 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setQuantity(strtol(substring.c_str(), 0, 10));

 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setCategory(substring);

 nextPound = getNextPound(stringBuf, substring);
 inventoryData.setVendor(substring);

 void *buff = (void *)inventoryData.getSKU().c_str();
 int size = inventoryData.getSKU().size()+1;
 Dbt key(buff, size);

 buff = inventoryData.getBuffer();
 size = inventoryData.getBufferSize();
 Dbt data(buff, size);

 inventoryDB.getDb().put(NULL, &key, &data, 0);
 }
 }
 inFile.close();
}

In the next chapter we provide an example that shows how to read the inventory and
vendor databases.

Page 32Getting Started with DB9/22/2004

Database Usage Example

Chapter 4. Using Cursors
Cursors provide a mechanism by which you can iterate over the records in a database.
Using cursors, you can get, put, and delete database records. If a database allows duplicate
records, then cursors are the easiest way that you can access anything other than the
first record for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them
to modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

Cursors are managed using the Dbc class. To use a cursor, you must open it using the
Db::cursor() method.

For example:

#include <db_cxx.h>

...

Dbc *cursorp;
Db my_database(NULL, 0);

// Database open omitted for clarity

// Get a cursor
my_database.cursor(NULL, &cursorp, 0);

When you are done with the cursor, you should close it. To close a cursor, call the
Dbc::close() method. Note that closing your database while cursors are still opened
within the scope of the DB handle, especially if those cursors are writing to the database,
can have unpredictable results. Always close your cursors before closing your database.

#include <db_cxx.h>

...

Dbc *cursorp;
Db my_database(NULL, 0);

// Database and cursor open omitted for clarity

if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Page 33Getting Started with DB9/22/2004

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the Dbc::get() method. Note that you need to supply the DB_NEXT flag to
this method. For example:

#include <db_cxx.h>

...

Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // Database open omitted for clarity

 // Get a cursor
 my_database.cursor(NULL, &cursorp, 0);

 Dbt key, data;
 int ret;

 // Iterate over the database, retrieving each record in turn.
 while ((ret = cursorp->get(&key, &data, DB_NEXT)) == 0) {
 // Do interesting things with the Dbts here.
 }
 if (ret != DB_NOTFOUND) {
 // ret should be DB_NOTFOUND upon exiting the loop.
 // Dbc::get() will by default throw an exception if any
 // significant errors occur, so by default this if block
 // can never be reached.
 }
} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Page 34Getting Started with DB9/22/2004

Getting Records Using the Cursor

To iterate over the database from the last record to the first, use DB_PREV instead of
DB_NEXT:

#include <db_cxx.h>

...

Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // Database open omitted for clarity

 // Get a cursor
 my_database.cursor(NULL, &cursorp, 0);

 Dbt key, data;
 int ret;
 // Iterate over the database, retrieving each record in turn.
 while ((ret = cursorp->get(&key, &data, DB_PREV)) == 0) {
 // Do interesting things with the Dbts here.
 }
 if (ret != DB_NOTFOUND) {
 // ret should be DB_NOTFOUND upon exiting the loop.
 // Dbc::get() will by default throw an exception if any
 // significant errors occur, so by default this if block
 // can never be reached.
 }
} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Searching for Records

You can use cursors to search for database records. You can search based on just a key,
or you can search based on both the key and the data. You can also perform partial
matches if your database supports sorted duplicate sets. In all cases, the key and data
parameters of these methods are filled with the key and data values of the database
record to which the cursor is positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and DB_NOTFOUND is returned.

Page 35Getting Started with DB9/22/2004

Getting Records Using the Cursor

To use a cursor to search for a record, use Dbt::get(). When you use this method, you
can provide the following flags:

Notice in the following list that the cursor flags use the keyword SET when the cursor
examines just the key portion of the records (in this case, the cursor is set to the record☞
whose key matches the value provided to the cursor). Moreover, when the cursor uses the
keyword GET, then the cursor is positioned to both the key and the data values provided to
the cursor.

Regardless of the keyword you use to get a record with a cursor, the cursor's key and data
Dbts are filled with the data retrieved from the record to which the cursor is positioned.

• DB_SET

Moves the cursor to the first record in the database with the specified key.

• DB_SET_RANGE

Identical to DB_SET Cursor.getSearchKey() unless you are using the BTree access. In
this case, the cursor moves to the first record in the database whose key is greater
than or equal to the specified key. This comparison is determined by the comparison
function that you provide for the database. If no comparison function is provided,
then the default lexicographical sorting is used.

For example, suppose you have database records that use the following Strings as
keys:

Alabama
Alaska
Arizona

Then providing a search key of Alaska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Alabama), providing a search
key of Alas moves the cursor to the second key (Alaska), and providing a key of Ar
moves the cursor to the last key (Arizona).

• DB_GET_BOTH

Moves the cursor to the first record in the database that uses the specified key and
data.

• DB_GET_BOTH_RANGE

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. If the database supports duplicate records, then on matching
the key, the cursor is moved to the duplicate record with the smallest data that is
greater than or equal to the specified data.

For example, suppose your database uses BTree and it has database records that use
the following key/data pairs:

Page 36Getting Started with DB9/22/2004

Getting Records Using the Cursor

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

then providing:

moves the cursor to ...and a search data of ...a search key of ...

Alabama/FlorenceFlAl

Arizona/FlorenceFlAr

Alaska/FairbanksFaAl

Alabama/AthensAAl

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as Strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

#include <db_cxx.h>
#include <string.h>

...

Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // database open omitted for clarity

 // Get a cursor
 my_database.cursor(NULL, &cursorp, 0);

 // Search criteria
 char *search_key = "Al";
 char *search_data = "Fa";

 // Set up our DBTs
 Dbt key(search_key, strlen(search_key) + 1);
 Dbt data(search_data, strlen(search_data) + 1);

 // Position the cursor to the first record in the database whose
 // key and data begin with the correct strings.
 int ret = cursorp->get(&key, &data, DB_GET_BOTH_RANGE);
 if (!ret) {
 // Do something with the data
 }

Page 37Getting Started with DB9/22/2004

Getting Records Using the Cursor

} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Close the cursor
if (cursorp != NULL)
 cursorp->close();

// Close the database
my_database.close(0);

Working with Duplicate Records

A record is a duplicate of another record if the two records share the same key. For
duplicate records, only the data portion of the record is unique.

Duplicate records are supported only for the BTree or Hash access methods. For information
on configuring your database to use duplicate records, see Allowing Duplicate
Records (page 71).

If your database supports duplicate records, then it can potentially contain multiple
records that share the same key. By default, normal database get operations will only
return the first such record in a set of duplicate records. Typically, subsequent duplicate
records are accessed using a cursor. The following Dbc::get() flags are interesting when
working with databases that support duplicate records:

• DB_NEXT, DB_PREV

Shows the next/previous record in the database, regardless of whether it is a duplicate
of the current record. For an example of using these methods, see Getting Records
Using the Cursor (page 34).

• DB_GET_BOTH_RANGE

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 35) for more information.

• DB_NEXT_NODUP, DB_PREV_NODUP

Gets the next/previous non-duplicate record in the database. This allows you to skip
over all the duplicates in a set of duplicate records. If you call Dbc::get() with
DB_PREV_NODUP, then the cursor is positioned to the last record for the previous key
in the database. For example, if you have the following records in your database:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks

Page 38Getting Started with DB9/22/2004

Getting Records Using the Cursor

Arizona/Avondale
Arizona/Florence

and your cursor is positioned to Alaska/Fairbanks, and you then call Dbc::get() with
DB_PREV_NODUP, then the cursor is positioned to Alabama/Florence. Similarly, if you
call Dbc::get() with DB_NEXT_NODUP, then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then DB_NOTFOUND is returned, and
the cursor is left unchanged.

• DB_NEXT_DUP

Gets the next record that shares the current key. If the cursor is positioned at the last
record in the duplicate set and you call Dbc::get() with DB_NEXT_DUP, then DB_NOTFOUND
is returned and the cursor is left unchanged.

For example, the following code fragment positions a cursor to a key and displays it and
all its duplicates.

#include <db_cxx.h>
#include <string.h>

...

char *search_key = "Al";

Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // database open omitted for clarity

 // Get a cursor
 my_database.cursor(NULL, &cursorp, 0);

 // Set up our DBTs
 Dbt key(search_key, strlen(search_key) + 1);
 Dbt data;

 // Position the cursor to the first record in the database whose
 // key and data begin with the correct strings.
 int ret = cursorp->get(&key, &data, DB_SET);
 while (ret != DB_NOTFOUND) {
 std::cout << "key: " << (char *)key.get_data()
 << "data: " << (char *)data.get_data()<< std::endl;
 ret = cursorp->get(&key, &data, DB_NEXT_DUP);
 }
} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");

Page 39Getting Started with DB9/22/2004

Getting Records Using the Cursor

} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Close the cursor
if (cursorp != NULL)
 cursorp->close();

// Close the database
my_database.close(0);

Putting Records Using Cursors

You can use cursors to put records into the database. DB's behavior when putting records
into the database differs depending on the flags that you use when writing the record,
on the access method that you are using, and on whether your database supports sorted
duplicates.

Note that when putting records to the database using a cursor, the cursor is positioned
at the record you inserted. Also, you can not transactionally protect a put that is performed
using a cursor; if you want to transactionall protect your database writes, put recrods
using the database handle directly.

You use Dbc::put() to put (write) records to the database. You can use the following
flags with this method:

• DB_NODUPDATA

If the provided key already exists in the database, then this method returns
DB_KEYEXIST.

If the key does not exist, then the order that the record is put into the database is
determined by the insertion order in use by the database. If a comparison function
has been provided to the database, the record is inserted in its sorted location.
Otherwise (assuming BTree), lexicographical sorting is used, with shorter items collating
before longer items.

This flag can only be used for the BTree and Hash access methods, and only if the
database has been configured to support sorted duplicate data items (DB_DUPSORT was
specified at database creation time).

This flag cannot be used with the Queue or Recno access methods.

For more information on duplicate records, see Allowing Duplicate Records (page 71).

• DB_KEYFIRST

For databases that do not support duplicates, this method behaves exactly the same
as if a default insertion was performed. If the database supports duplicate records,
and a duplicate sort function has been specified, the inserted data item is added in

Page 40Getting Started with DB9/22/2004

Putting Records Using Cursors

its sorted location. If the key already exists in the database and no duplicate sort
function has been specified, the inserted data item is added as the first of the data
items for that key.

• DB_KEYLAST

Behaves exactly as if DB_KEYFIRST was used, except that if the key already exists in
the database and no duplicate sort function has been specified, the inserted data item
is added as the last of the data items for that key.

For example:

#include <db_cxx.h>
#include <string.h>

...

char *key1str = "My first string";
char *data1str = "My first data";
char *key2str = "A second string";
char *data2str = "My second data";
char *data3str = "My third data";

Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // Set up our DBTs
 Dbt key1(key1str, strlen(key1str) + 1);
 Dbt data1(data1str, strlen(data1str) + 1);

 Dbt key2(key2str, strlen(key2str) + 1);
 Dbt data2(data2str, strlen(data2str) + 1);
 Dbt data3(data3str, strlen(data3str) + 1);

 // Database open omitted

 // Get the cursor
 my_database.cursor(NULL, &cursorp, 0);

 // Assuming an empty database, this first put places
 // "My first string"/"My first data" in the first
 // position in the database
 int ret = cursorp->put(&key1, &data1, DB_KEYFIRST);

 // This put places "A second string"/"My second data" in the
 // the database according to its key sorts against the key
 // used for the currently existing database record. Most likely
 // this record would appear first in the database.

Page 41Getting Started with DB9/22/2004

Putting Records Using Cursors

 ret = cursorp->put(&key2, &data2,
 DB_KEYFIRST); /* Added according to sort order */

 // If duplicates are not allowed, the currently existing record that
 // uses "key2" is overwritten with the data provided on this put.
 // That is, the record "A second string"/"My second data" becomes
 // "A second string"/"My third data"
 //
 // If duplicates are allowed, then "My third data" is placed in the
 // duplicates list according to how it sorts against "My second data".
 ret = cursorp->put(&key2, &data3,
 DB_KEYFIRST); // If duplicates are not allowed, record
 // is overwritten with new data. Otherwise,
 // the record is added to the beginning of
 // the duplicates list.
} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want
to delete and then call Dbc::del().

For example:

#include <db_cxx.h>
#include <string.h>

...

char *key1str = "My first string";
Db my_database(NULL, 0);
Dbc *cursorp;

try {
 // Database open omitted

 // Get the cursor
 my_database.cursor(NULL, &cursorp, 0);

Page 42Getting Started with DB9/22/2004

Deleting Records Using Cursors

 // Set up our DBTs
 Dbt key(key1str, strlen(key1str) + 1);
 Dbt data;

 // Iterate over the database, deleting each record in turn.
 int ret;
 while ((ret = cursorp->get(&key, &data,
 DB_SET)) == 0) {
 cursorp->del(0);
 }

} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Replacing Records Using Cursors

You replace the data for a database record by using Dbc::put() with the DB_CURRENT flag.

#include <db_cxx.h>
#include <string.h>

...

Db my_database(NULL, 0);
Dbc *cursorp;

int ret;
char *key1str = "My first string";
char *replacement_data = "replace me";

try {
 // Database open omitted

 // Get the cursor
 my_database.cursor(NULL, &cursorp, 0);

 // Set up our DBTs
 Dbt key(key1str, strlen(key1str) + 1);
 Dbt data;

Page 43Getting Started with DB9/22/2004

Replacing Records Using Cursors

 // Position the cursor */
 ret = cursorp->get(&key, &data, DB_SET);
 if (ret == 0) {
 data.set_data(replacement_data);
 data.set_size(strlen(replacement_data) + 1);
 cursorp->put(&key, &data, DB_CURRENT);
 }
} catch(DbException &e) {
 my_database.err(e.get_errno(), "Error!");
} catch(std::exception &e) {
 my_database.errx("Error! %s", e.what());
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close();

my_database.close(0);

Note that you cannot change a record's key using this method; the key parameter is always
ignored when you replace a record.

When replacing the data portion of a record, if you are replacing a record that is a member
of a sorted duplicates set, then the replacement will be successful only if the new record
sorts identically to the old record. This means that if you are replacing a record that is
a member of a sorted duplicates set, and if you are using the default lexicographic sort,
then the replacement will fail due to violating the sort order. However, if you provide a
custom sort routine that, for example, sorts based on just a few bytes out of the data
item, then potentially you can perform a direct replacement and still not violate the
restrictions described here.

Under these circumstances, if you want to replace the data contained by a duplicate
record, and you are not using a custom sort routine, then delete the record and create
a new record with the desired key and data.

Cursor Example

In Database Usage Example (page 24) we wrote an application that loaded two databases
with vendor and inventory information. In this example, we will write an application to
display all of the items in the inventory database. As a part of showing any given inventory
item, we will look up the vendor who can provide the item and show the vendor's contact
information.

Specifically, the excxx_example_database_read application does the following:

1. Opens the the inventory and vendor databases that were created by our
excxx_example_database_load application. See
excxx_example_database_load (page 28) for information on how that application
creates the databases and writes data to them.

Page 44Getting Started with DB9/22/2004

Cursor Example

2. Obtains a cursor from the inventory database.

3. Steps through the inventory database, displaying each record as it goes.

4. Gets the name of the vendor for that inventory item from the inventory record.

5. Uses the vendor name to look up the vendor record in the vendor database.

6. Displays the vendor record.

Remember that you can find the complete implementation of this application in:

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Example 4.1. excxx_example_database_read

To begin, we include the necessary header files and perform our forward declarations.
We also write our usage() function.

// File: excxx_example_database_read.cpp
#include <iostream>
#include <fstream>
#include <cstdlib>

#include "MyDb.hpp"
#include "gettingStartedCommon.hpp"

// Forward declarations
int show_all_records(MyDb &inventoryDB, MyDb &vendorDB);
int show_vendor(MyDb &vendorDB, const char *vendor);

Next we write our main() function. Note that it is somewhat unnecessarily complicated
here because we will be extending it in the next chapter to perform inventory item
lookups.

// Displays all inventory items and the associated vendor record.
int
main (int argc, char *argv[])
{
 // Initialize the path to the database files
 std::string databaseHome("./");

 // Database names
 std::string vDbName("vendordb.db");
 std::string iDbName("inventorydb.db");

 // Parse the command line arguments
 // Omitted for brevity

Page 45Getting Started with DB9/22/2004

Cursor Example

 try
 {
 // Open all databases.
 MyDb inventoryDB(databaseHome, iDbName);
 MyDb vendorDB(databaseHome, vDbName);

 show_all_records(inventoryDB, vendorDB);
 } catch(DbException &e) {
 std::cerr << "Error reading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(e.get_errno());
 } catch(std::exception &e) {
 std::cerr << "Error reading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(-1);
 }

 return(0);
} // End main

Next we need to write the show_all_records() function. This function displays all of the
inventory records found in the inventory database. Once it shows the inventory record,
it retrieves the vendor's name from that record and uses it to look up and display the
appropriate vendor record:

// Shows all the records in the inventory database.
// For each inventory record shown, the appropriate
// vendor record is also displayed.
int
show_all_records(MyDb &inventoryDB, MyDb &vendorDB)
{
 // Get a cursor to the inventory db
 Dbc *cursorp;
 try {
 inventoryDB.getDb().cursor(NULL, &cursorp, 0);

 // Iterate over the inventory database, from the first record
 // to the last, displaying each in turn
 Dbt key, data;
 int ret;
 while ((ret = cursorp->get(&key, &data, DB_NEXT)) == 0)
 {
 InventoryData inventoryItem(data.get_data());
 inventoryItem.show();

 show_vendor(vendorDB, inventoryItem.getVendor().c_str());
 }
 } catch(DbException &e) {
 inventoryDB.getDb().err(e.get_errno(), "Error in show_all_records");

Page 46Getting Started with DB9/22/2004

Cursor Example

 cursorp->close();
 throw e;
 } catch(std::exception &e) {
 cursorp->close();
 throw e;
 }

 cursorp->close();
 return (0);
}

Note that the InventoryData class that we use here is described in InventoryData
Class (page 25).

Having displayed the inventory record, we now want to display the vendor record
corresponding to this record. In this case we do not need to use a cursor to display the
vendor record. Using a cursor here complicates our code slightly for no good gain. Instead,
we simply perform a get() directly against the vendor database.

// Shows a vendor record. Each vendor record is an instance of
// a vendor structure. See loadVendorDB() in
// excxx_example_database_load for how this structure was originally
// put into the database.
int
show_vendor(MyDb &vendorDB, const char *vendor)
{
 Dbt data;
 VENDOR my_vendor;

 try {
 // Set the search key to the vendor's name
 // vendor is explicitly cast to char * to stop a compiler
 // complaint.
 Dbt key((char *)vendor, strlen(vendor) + 1);

 // Make sure we use the memory we set aside for the VENDOR
 // structure rather than the memory that DB allocates.
 // Some systems may require structures to be aligned in memory
 // in a specific way, and DB may not get it right.

 data.set_data(&my_vendor);
 data.set_ulen(sizeof(VENDOR));
 data.set_flags(DB_DBT_USERMEM);

 // Get the record
 vendorDB.getDb().get(NULL, &key, &data, 0);
 std::cout << " " << my_vendor.street << "\n"
 << " " << my_vendor.city << ", "
 << my_vendor.state << "\n"

Page 47Getting Started with DB9/22/2004

Cursor Example

 << " " << my_vendor.zipcode << "\n"
 << " " << my_vendor.phone_number << "\n"
 << " Contact: " << my_vendor.sales_rep << "\n"
 << " " << my_vendor.sales_rep_phone
 << std::endl;

 } catch(DbException &e) {
 vendorDB.getDb().err(e.get_errno(), "Error in show_vendor");
 throw e;
 } catch(std::exception &e) {
 throw e;
 }
 return (0);
}

That completes the implementation of excxx_example_database_read(). In the next
chapter, we will extend this application to make use of a secondary database so that we
can query the inventory database for a specific inventory item.

Page 48Getting Started with DB9/22/2004

Cursor Example

Chapter 5. Secondary Databases
Usually you find database records by means of the record's key. However, the key that
you use for your record will not always contain the information required to provide you
with rapid access to the data that you want to retrieve. For example, suppose your
database contains records related to users. The key might be a string that is some unique
identifier for the person, such as a user ID. Each record's data, however, would likely
contain a complex object containing details about people such as names, addresses, phone
numbers, and so forth. While your application may frequently want to query a person by
user ID (that is, by the information stored in the key), it may also on occasion want to
location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn
for a given person's name, you create indexes based on names and then just search that
index for the name that you want. You can do this using secondary databases. In DB, the
database that contains your data is called a primary database. A database that provides
an alternative set of keys to access that data is called a secondary database. In a secondary
database, the keys are your alternative (or secondary) index, and the data corresponds
to a primary record's key.

You create a secondary database by creating the database, opening it, and then associating
the database with the primary database (that is, the database for which you are creating
the index). As a part of associating the secondary database to the primary, you must
provide a callback that is used to create the secondary database keys. Typically this
callback creates a key based on data found in the primary database record's key or data.

Once opened, DB manages secondary databases for you. Adding or deleting records in
your primary database causes DB to update the secondary as necessary. Further, changing
a record's data in the primary database may cause DB to modify a record in the secondary,
depending on whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. Any attempt to write to a
secondary database results in a non-zero status return. To change the data referenced
by a secondary record, modify the primary database instead. The exception to this rule
is that delete operations are allowed on the secondary database. See Deleting Secondary
Database Records (page 53) for more information.

Secondary database records are updated/created by DB only if the key creator callback
function returns 0. If a value other than 0 is returned, then DB will not add the key to the☞
secondary database, and in the event of a record update it will remove any existing key.
Note that the callback can use either DB_DONOTINDEX or some error code outside of DB's
name space to indicate that the entry should not be indexed.

See Implementing Key Extractors (page 51) for more information.

When you read a record from a secondary database, DB automatically returns the data
and optionally the key from the corresponding record in the primary database.

Page 49Getting Started with DB9/22/2004

Opening and Closing Secondary Databases

You manage secondary database opens and closes in the same way as you would any
normal database. The only difference is that:

• You must associate the secondary to a primary database using Db::associate().

• When closing your databases, it is a good idea to make sure you close your secondaries
before closing your primaries. This is particularly true if your database closes are not
single threaded.

When you associate a secondary to a primary database, you must provide a callback that
is used to generate the secondary's keys. These callbacks are described in the next section.

For example, to open a secondary database and associate it to a primary database:

#include <db_cxx.h>

...

Db my_database(NULL, 0); // Primary
Db my_index(NULL, 0); // Secondary

// Open the primary
my_database.open(NULL, // Transaction pointer
 "my_db.db", // On-disk file that holds the database.
 NULL, // Optional logical database name
 DB_BTREE, // Database access method
 DB_CREATE, // Open flags
 0); // File mode (using defaults)

// Setup the secondary to use sorted duplicates.
// This is often desireable for secondary databases.
my_index.set_flags(DB_DUPSORT);

// Open the secondary
my_index.open(NULL, // Transaction pointer
 "my_secondary.db", // On-disk file that holds the database.
 NULL, // Optional logical database name
 DB_BTREE, // Database access method
 DB_CREATE, // Open flags.
 0); // File mode (using defaults)

// Now associate the primary and the secondary
my_database.associate(NULL, // Txn id
 &my_index, // Associated secondary database
 get_sales_rep, // Callback used for key extraction.
 // This is described in the next

Page 50Getting Started with DB9/22/2004

Opening and Closing Secondary
Databases

 // section.
 0); // Flags

Closing the primary and secondary databases is accomplished exactly as you would for
any database:

// Close the secondary before the primary
my_index.close(0);
my_database.close(0);

Implementing Key Extractors

You must provide every secondary database with a class that creates keys from primary
records. You identify this class when you associate your secondary database to your
primary.

You can create keys using whatever data you want. Typically you will base your key on
some information found in a record's data, but you can also use information found in the
primary record's key. How you build your keys is entirely dependent upon the nature of
the index that you want to maintain.

You implement a key extractor by writing a function that extracts the necessary
information from a primary record's key or data. This function must conform to a specific
prototype, and it must be provided as a callback to the associate() method.

For example, suppose your primary database records contain data that uses the following
structure:

typedef struct vendor {
 char name[MAXFIELD]; /* Vendor name */
 char street[MAXFIELD]; /* Street name and number */
 char city[MAXFIELD]; /* City */
 char state[3]; /* Two-digit US state code */
 char zipcode[6]; /* US zipcode */
 char phone_number[13]; /* Vendor phone number */
 char sales_rep[MAXFIELD]; /* Name of sales representative */
 char sales_rep_phone[MAXFIELD]; /* Sales rep's phone number */
} VENDOR;

Further suppose that you want to be able to query your primary database based on the
name of a sales representative. Then you would write a function that looks like this:

#include <db_cxx.h>

...

int
get_sales_rep(Db *sdbp, // secondary db handle
 const Dbt *pkey, // primary db record's key
 const Dbt *pdata, // primary db record's data
 Dbt *skey) // secondary db record's key

Page 51Getting Started with DB9/22/2004

Implementing Key Extractors

{
 VENDOR *vendor;

 // First, extract the structure contained in the primary's data
 vendor = (VENDOR *)pdata->get_data();

 // Now set the secondary key's data to be the representative's name
 skey->set_data(vendor->sales_rep);
 skey->set_size(strlen(vendor->sales_rep) + 1);

 // Return 0 to indicate that the record can be created/updated.
 return (0);
}

In order to use this function, you provide it on the associate() method after the primary
and secondary databases have been created and opened:

db.associate(NULL, // TXN id
 &sdb, // Secondary database
 get_sales_rep, // Callback used for key creation.
 0); // Flags

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by
using the Db::get() or Db::pget() methods, or by using a cursor on the secondary
database. The main difference between reading secondary and primary databases is that
when you read a secondary database record, the secondary record's data is not returned
to you. Instead, the primary key and data corresponding to the secondary key are returned
to you.

For example, assuming your secondary database contains keys related to a person's full
name:

#include <db_cxx.h>
#include <string.h>

...

// The string to search for
char *search_name = "John Doe";

// Instantiate our Dbt's
Dbt key(search_name, strlen(search_name) + 1);
Dbt pkey, pdata; // Primary key and data

Db my_secondary_database(NULL, 0);
// Primary and secondary database opens omitted for brevity

Page 52Getting Started with DB9/22/2004

Reading Secondary Databases

// Returns the key from the secondary database, and the data from the
// associated primary database entry.
my_secondary_database.get(NULL, &key, &pdata, 0);

// Returns the key from the secondary database, and the key and data
// from the associated primary database entry.
my_secondary_database.pget(NULL, &key, &pkey, &pdata, 0);

Note that, just like a primary database, if your secondary database supports duplicate
records then Db::get() and Db::pget() only return the first record found in a matching
duplicates set. If you want to see all the records related to a specific secondary key, then
use a cursor opened on the secondary database. Cursors are described in Using
Cursors (page 33).

Deleting Secondary Database Records

In general, you will not modify a secondary database directly. In order to modify a
secondary database, you should modify the primary database and simply allow DB to
manage the secondary modifications for you.

However, as a convenience, you can delete a secondary database record directly. Doing
so causes the associated primary key/data pair to be deleted. This in turn causes DB to
delete all secondary database records that reference the primary record.

You can use the Db::del() method to delete a secondary database record. Note that if
your secondary database contains duplicate records, then deleting a record from the set
of duplicates causes all of the duplicates to be deleted as well.

You can delete a secondary database record using the previously described mechanism only
if:☞
• the secondary key extractor function returns 0 (see Implementing Key Extractors

(page 51) for information on this callback).

• the primary database is opened for write access.

If either of these conditions are not met, then no delete operations can be performed on
the secondary database.

For example:

#include <db_cxx.h>
#include <string.h>

...

Db my_database(NULL, 0); // Primary
Db my_index(NULL, 0); // Secondary

// Open the primary

Page 53Getting Started with DB9/22/2004

Deleting Secondary Database
Records

my_database.open(NULL, // Transaction pointer
 "my_db.db", // On-disk file that holds the database.
 NULL, // Optional logical database name
 DB_BTREE, // Database access method
 DB_CREATE, // Open flags
 0); // File mode (using defaults)

// Setup the secondary to use sorted duplicates.
// This is often desireable for secondary databases.
my_index.set_flags(DB_DUPSORT);

// Open the secondary
my_index.open(NULL, // Transaction pointer
 "my_secondary.db", // On-disk file that holds the database.
 NULL, // Optional logical database name
 DB_BTREE, // Database access method
 DB_CREATE, // Open flags.
 0); // File mode (using defaults)

// Now associate the primary and the secondary
my_database.associate(NULL, // Txn id
 &my_index, // Associated secondary database
 get_sales_rep, // Callback used for key extraction.
 0); // Flags

// Name to delete
char *search_name = "John Doe";

// Get a search key
Dbt key(search_name, strlen(search_name) + 1);

// Now delete the secondary record. This causes the associated primary
// record to be deleted. If any other secondary databases have secondary
// records referring to the deleted primary record, then those secondary
// records are also deleted.
my_index.del(NULL, &key, 0);

Using Cursors with Secondary Databases

Just like cursors on a primary database, you can use cursors on secondary databases to
iterate over the records in a secondary database. Like cursors used with primary databases,
you can also use cursors with secondary databases to search for specific records in a
database, to seek to the first or last record in the database, to get the next duplicate
record, and so forth. For a complete description on cursors and their capabilities, see
Using Cursors (page 33).

However, when you use cursors with secondary databases:

Page 54Getting Started with DB9/22/2004

Using Cursors with Secondary
Databases

• Any data returned is the data contained on the primary database record referenced
by the secondary record.

• You cannot use DB_GET_BOTH and related flags with DB::c_get() and a secondary
database. Instead, you must use DB::c_pget(). Also, in that case the primary and
secondary key given on the call to DB::c_pget() must match the secondary key and
associated primary record key in order for that primary record to be returned as a
result of the call.

For example, suppose you are using the databases, classes, and key extractors described
in Implementing Key Extractors (page 51). Then the following searches for a person's
name in the secondary database, and deletes all secondary and primary records that use
that name.

#include <db_cxx.h>

...

Db my_database(NULL, 0);
Db my_index(NULL, 0);

// Get a cursor on the secondary database
Dbc *cursorp;
my_index.cursor(NULL, &cursorp, 0);

// Name to delete
char *search_name = "John Doe";

// Instantiate Dbts as normal
Dbt key(search_name, strlen(search_name) + 1);
Dbt data;

// Position the cursor
while (cursorp->get(&key, &data, DB_SET) == 0)
 cursorp->del(0);

Database Joins

If you have two or more secondary databases associated with a primary database, then
you can retrieve primary records based on the union of multiple secondary entries. You
do this using a join cursor.

Throughout this document we have presented a structure that stores information on
grocery vendors. That structure is fairly simple with a limited number of data members,
few of which would be interesting from a query perspective. But suppose, instead, that
we were storing information on something with many more queryable characteristics,
such as an automobile. In that case, you may be storing information such as color, number

Page 55Getting Started with DB9/22/2004

Database Joins

of doors, fuel mileage, automobile type, number of passengers, make, model, and year,
to name just a few.

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile's VIN would be ideal for this purpose). You would
then create a structure that identifies all the characteristics of the automobiles in your
inventory.

To query this data, you might then create multiple secondary databases, one for each of
the characteristics that you want to query. For example, you might create a secondary
for color, another for number of doors, another for number of passengers, and so forth.
Of course, you will need a unique key extractor function for each such secondary database.
You do all of this using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you
have is the ability to retrieve automobile records based on a single characteristic. You
can, for example, find all the automobiles that are red. Or you can find all the automobiles
that have four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example,
you might want to find all the automobiles that are red, and that were built by Toyota,
and that are minivans. You can do this using a join cursor.

Using Join Cursors

To use a join cursor:

• Open two or more cursors for secondary databases that are associated with the same
primary database.

• Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned
to the minivan records, and the cursor for the make database is positioned to Toyota.

• Create an array of cursors, and place in it each of the cursors that are participating
in your join query.

• Obtain a join cursor. You do this using the Db::join() method. You must pass this
method the array of secondary cursors that you opened and positioned in the previous
steps.

• Iterate over the set of matching records until the return code is not 0.

• Close your cursor.

• If you are done with them, close all your cursors.

For example:

Page 56Getting Started with DB9/22/2004

Database Joins

#include <db_cxx.h>
#include <string.h>

...

// Exception handling omitted

int ret;

Db automotiveDB(NULL, 0);
Db automotiveColorDB(NULL, 0);
Db automotiveMakeDB(NULL, 0);
Db automotiveTypeDB(NULL, 0);

// Database and secondary database opens omitted for brevity.
// Assume a primary database:
// automotiveDB
// Assume 3 secondary databases:
// automotiveColorDB -- secondary database based on automobile color
// automotiveMakeDB -- secondary database based on the manufacturer
// automotiveTypeDB -- secondary database based on automobile type

// Position the cursors
Dbc *color_curs;
automotiveColorDB.cursor(NULL, &color_curs, 0);
char *the_color = "red";
Dbt key(the_color, strlen(the_color) + 1);
Dbt data;
if ((ret = color_curs->get(&key, &data, DB_SET)) != 0) {
 // Error handling goes here
}

Dbc *make_curs;
automotiveMakeDB.cursor(NULL, &make_curs, 0);
char *the_make = "Toyota";
key.set_data(the_make);
key.set_size(strlen(the_make) + 1);
if ((ret = make_curs->get(&key, &data, DB_SET)) != 0) {
 // Error handling goes here
}

Dbc *type_curs;
automotiveTypeDB.cursor(NULL, &type_curs, 0);
char *the_type = "minivan";
key.set_data(the_type);
key.set_size(strlen(the_type) + 1);
if ((ret = type_curs->get(&key, &data, DB_SET)) != 0) {
 // Error handling goes here
}

Page 57Getting Started with DB9/22/2004

Database Joins

// Set up the cursor array
Dbc *carray[3];
carray[0] = color_curs;
carray[1] = make_curs;
carray[2] = type_curs;

// Create the join
Dbc *join_curs;
if ((ret = automotiveDB.join(carray, &join_curs, 0)) != 0) {
 // Error handling goes here
}

// Iterate using the join cursor
while ((ret = join_curs->get(&key, &data, 0)) == 0) {
 // Do interesting things with the key and data
}

// If we exited the loop because we ran out of records,
// then it has completed successfully.
if (ret == DB_NOTFOUND) {
 // Close all our cursors and databases as is appropriate, and
 // then exit with a normal exit status (0).
}

Secondary Database Example

In previous chapters in this book, we built applications that load and display several DB
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

• In Database Usage Example (page 24) we built an application that can open and load
data into several databases. In Secondary Databases with excxx_example_database_load
(page 58) we will extend that application to also open a secondary database for the
purpose of indexing inventory item names.

• In Cursor Example (page 44) we built an application to display our inventory database
(and related vendor information). In Secondary Databases with
excxx_example_database_read (page 63) we will extend that application to show
inventory records based on the index we cause to be loaded using
excxx_example_database_load.

Secondary Databases with excxx_example_database_load

In order to update excxx_example_database_load to maintain an index of inventory item
names, all we really need to do is:

1. Create a new database to be used as a secondary database.

Page 58Getting Started with DB9/22/2004

Secondary Database Example

2. Associate our new database to the inventory primary database.

We also need a function that can create our secondary keys for us.

Because DB maintains secondary databases for us; once this work is done we need not
make any other changes to excxx_example_database_load.

Remember that you can find the complete implementation of these functions in:

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

To begin, we go to gettingStartedCommon.hpp and we write our secondary key extractor
function. This is a fairly trivial function to write because we have already done most of
the work when we wrote the InventoryData class. Recall that when we wrote that class,
we provided a constructor that accepts a pointer to a buffer and unpacks the contents
of the buffer for us (see InventoryData Class (page 25) for the implementation). We now
make use of that constructor.

// File: gettingStartedCommon.hpp
// Forward declarations
class Db;
class Dbt;

// Used to extract an inventory item's name from an
// inventory database record. This function is used to create
// keys for secondary database records.
int
get_item_name(Db *dbp, const Dbt *pkey, const Dbt *pdata, Dbt *skey)
{
 InventoryData id(pdata->get_data());
 const char *itemname = id.getName().c_str();

 // If these don't match, then there was a problem with
 // the buffer contained in pdata, or there's a programming
 // error in how the buffer is marshalled/unmarshalled.
 // This should never happen!
 if ((u_int32_t)id.getBufferSize() != pdata->get_size()) {
 dbp->errx("get_item_name: buffer sizes do not match!");
 // When we return non-zero, the index record is not
 // added/updated.
 return (-1);
 }
 // Now set the secondary key's data to be the item name

 skey->set_data((void *)itemname);
 skey->set_size(strlen(itemname) + 1);

Page 59Getting Started with DB9/22/2004

Secondary Database Example

 return (0);
};

Having written our key extractor callback, we now need to make a trivial update to our
MyDb implementation. Because an item name is used by multiple inventory records, we
need our secondary database to support sorted duplicates. We therefore must update
MyDb to handle this detail.

The MyDb class definition changes to add a boolean to the constructor (remember that
new code is in bold):

// File: MyDb.hpp
#include <db_cxx.h>

class MyDb
{
public:
 // Constructor requires a path to the database,
 // and a database name.
 MyDb(std::string &path, std::string &dbName,

bool isSecondary = false);

 // Our destructor just calls our private close method.
 ~MyDb() { close(); }

 inline Db &getDb() {return db_;}

private:
 Db db_;
 std::string dbFileName_;
 u_int32_t cFlags_;

 // Make sure the default constructor is private
 // We don't want it used.
 MyDb() : db_(0, 0) {}

 // We put our database close activity here.
 // This is called from our destructor. In
 // a more complicated example, we might want
 // to make this method public, but a private
 // method is more appropriate for this example.
 void close();
};

And the implementation changes slightly to take advantage of the new boolean. Note
that to save space, we just show the constructor where the code actually changes:

// File: MyDb.cpp
#include "MyDb.hpp"

Page 60Getting Started with DB9/22/2004

Secondary Database Example

// Class constructor. Requires a path to the location
// where the database is located, and a database name
MyDb::MyDb(std::string &path, std::string &dbName,

bool isSecondary)
 : db_(NULL, 0), // Instantiate Db object
 dbFileName_(path + dbName), // Database file name
 cFlags_(DB_CREATE) // If the database doesn't yet exist,
 // allow it to be created.
{
 try
 {
 // Redirect debugging information to std::cerr
 db_.set_error_stream(&std::cerr);

// If this is a secondary database, support
 // sorted duplicates
 if (isSecondary)
 db_.set_flags(DB_DUPSORT);

 // Open the database
 db_.open(NULL, dbFileName_.c_str(), NULL, DB_BTREE, cFlags_, 0);
 }
 // DbException is not a subclass of std::exception, so we
 // need to catch them both.
 catch(DbException &e)
 {
 std::cerr << "Error opening database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
 catch(std::exception &e)
 {
 std::cerr << "Error opening database: " << dbFileName_ << "\n";
 std::cerr << e.what() << std::endl;
 }
}

That done, we can now update excxx_example_database_load to open our new secondary
database and associate it to the inventory database.

To save space, we do not show the entire implementation for this program here. Instead,
we show just the main() function, which is where all our modifications occur. To see the
rest of the implementation for this command, see excxx_example_database_load (page 28).

// Loads the contents of vendors.txt and inventory.txt into
// Berkeley DB databases.
int
main(int argc, char *argv[])
{
 // Initialize the path to the database files

Page 61Getting Started with DB9/22/2004

Secondary Database Example

 std::string basename("./");
 std::string databaseHome("./");

 // Database names
 std::string vDbName("vendordb.db");
 std::string iDbName("inventorydb.db");

std::string itemSDbName("itemname.sdb");

 // Parse the command line arguments here and determine
 // the location of the flat text files containing the
 // inventory data here. This step is omitted for clarity.

 // Identify the full name for our input files, which should
 // also include some path information.
 std::string inventoryFile = basename + "inventory.txt";
 std::string vendorFile = basename + "vendors.txt";

 try
 {
 // Open all databases.
 MyDb inventoryDB(databaseHome, iDbName);
 MyDb vendorDB(databaseHome, vDbName);

MyDb itemnameSDB(databaseHome, itemSDbName, true);

 // Associate the primary and the secondary
 inventoryDB.getDb().associate(NULL,
 &(itemnameSDB.getDb()),
 get_item_name,
 0);

 // Load the vendor database
 loadVendorDB(vendorDB, vendorFile);

 // Load the inventory database
 loadInventoryDB(inventoryDB, inventoryFile);
 } catch(DbException &e) {
 std::cerr << "Error loading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(e.get_errno());
 } catch(std::exception &e) {
 std::cerr << "Error loading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(-1);
 }

 return(0);
} // End main

Page 62Getting Started with DB9/22/2004

Secondary Database Example

Note that the order in which we instantiate our MyDb class instances is important. In
general you want to close a secondary database before closing the primary with which it
is associated. This is particularly true for multi-threaded or multi-processed applications
where the database closes are not single threaded. Even so, it is a good habit to adopt,
even for simple applications such as this one. Here, we ensure that the databases are
closed in the desired order by opening the secondary database last. This works because
our MyDb objects are on the stack, and therefore the last one opened is the first one
closed.

That completes our update to excxx_example_database_load. Now when this program is
called, it will automatically index inventory items based on their names. We can then
query for those items using the new index. We show how to do that in the next section.

Secondary Databases with excxx_example_database_read

In Cursor Example (page 44) we wrote an application that displays every inventory item
in the Inventory database. In this section, we will update that example to allow us to
search for and display an inventory item given a specific name. To do this, we will make
use of the secondary database that excxx_example_database_load now creates.

The update to excxx_example_database_read is relatively modest. We need to open the
new secondary database in exactly the same way was we do for
excxx_example_database_load. We also need to add a command line parameter on which
we can specify the item name, and we will need a new function in which we will perform
the query and display the results.

To begin, we add a single forward declaration to the application, and update our usage
function slightly:

// File: excxx_example_database_read.cpp
#include <iostream>
#include <fstream>
#include <cstdlib>

#include "MyDb.hpp"
#include "gettingStartedCommon.hpp"

// Forward declarations
int show_all_records(MyDb &inventoryDB, MyDb &vendorDB);
int show_item(MyDb &itemnameSDB, MyDb &vendorDB, std::string &itemName);
int show_vendor(MyDb &vendorDB, const char *vendor);

Next, we update main() to open the new secondary database and accept the new command
line switch. We also need a new variable to contain the item's name.

The final update to the main() entails a little bit of logic to determine whether we want
to display all available inventory items, or just the ones that match a name provided on
the -i command line parameter.

Page 63Getting Started with DB9/22/2004

Secondary Database Example

// Displays all inventory items and the associated vendor record.
int
main (int argc, char *argv[])
{
 // Initialize the path to the database files
 std::string databaseHome("./");

std::string itemName;

 // Database names
 std::string vDbName("vendordb.db");
 std::string iDbName("inventorydb.db");

std::string itemSDbName("itemname.sdb");

 // Parse the command line arguments
 // Omitted for brevity

 try
 {
 // Open all databases.
 MyDb inventoryDB(databaseHome, iDbName);
 MyDb vendorDB(databaseHome, vDbName);

MyDb itemnameSDB(databaseHome, itemSDbName, true);

 // Associate the secondary to the primary
 inventoryDB.getDb().associate(NULL,
 &(itemnameSDB.getDb()),
 get_item_name,
 0);

 if (itemName.empty())
 {
 show_all_records(inventoryDB, vendorDB);

} else {
 show_item(itemnameSDB, vendorDB, itemName);
 }
 } catch(DbException &e) {
 std::cerr << "Error reading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(e.get_errno());
 } catch(std::exception &e) {
 std::cerr << "Error reading databases. " << std::endl;
 std::cerr << e.what() << std::endl;
 return(-1);
 }

 return(0);
} // End main

Page 64Getting Started with DB9/22/2004

Secondary Database Example

The only other thing that we need to add to the application is the implementation of the
show_item() function.

In the interest of space, we refrain from showing the other functions used by this application.
For their implementation, please see Cursor Example (page 44). Alternatively, you can see
the entire implementation of this application in:

☞

DB_INSTALL/examples_cxx/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

// Shows the records in the inventory database that
// have a specific item name. For each inventory record
// shown, the appropriate vendor record is also displayed.
int
show_item(MyDb &itemnameSDB, MyDb &vendorDB, std::string &itemName)
{
 // Get a cursor to the itemname secondary db
 Dbc *cursorp;

 try {
 itemnameSDB.getDb().cursor(NULL, &cursorp, 0);

 // Get the search key. This is the name on the inventory
 // record that we want to examine.
 std::cout << "Looking for " << itemName << std::endl;
 Dbt key((void *)itemName.c_str(), itemName.length() + 1);
 Dbt data;

 // Position the cursor to the first record in the secondary
 // database that has the appropriate key.
 int ret = cursorp->get(&key, &data, DB_SET);
 if (!ret) {
 do {
 InventoryData inventoryItem(data.get_data());
 inventoryItem.show();

 show_vendor(vendorDB, inventoryItem.getVendor().c_str());

 } while(cursorp->get(&key, &data, DB_NEXT_DUP) == 0);
 } else {
 std::cerr << "No records found for '" << itemName
 << "'" << std::endl;
 }
 } catch(DbException &e) {
 itemnameSDB.getDb().err(e.get_errno(), "Error in show_item");
 cursorp->close();
 throw e;
 } catch(std::exception &e) {
 itemnameSDB.getDb().errx("Error in show_item: %s", e.what());
 cursorp->close();

Page 65Getting Started with DB9/22/2004

Secondary Database Example

 throw e;
 }

 cursorp->close();
 return (0);
}

This completes our update to excxx_example_database_read. Using this update, you can
now search for and show all inventory items that match a particular name. For example:

 example_database_read -i "Zulu Nut"

Page 66Getting Started with DB9/22/2004

Secondary Database Example

Chapter 6. Database Configuration
This chapter describes some of the database and cache configuration issues that you need
to consider when building your DB database. In most cases, there is very little that you
need to do in terms of managing your databases. However, there are configuration issues
that you need to be concerned with, and these are largely dependent on the access
method that you are choosing for your database.

The examples and descriptions throughout this document have mostly focused on the
BTree access method. This is because the majority of DB applications use BTree. For this
reason, where configuration issues are dependent on the type of access method in use,
this chapter will focus on BTree only. For configuration descriptions surrounding the other
access methods, see the Berkeley DB Programmer's Tutorial and Reference Guide.

Setting the Page Size

Internally, DB stores database entries on pages. Page sizes are important because they
can affect your application's performance.

DB pages can be between 512 bytes and 64K bytes in size. The size that you select must
be a power of 2. You set your database's page size using Db::set_pagesize().

Note that a database's page size can only be selected at database creation time.

When selecting a page size, you should consider the following issues:

• Overflow pages.

• Locking

• Disk I/O.

These topics are discussed next.

Overflow Pages

Overflow pages are used to hold a key or data item that cannot fit on a single page. You
do not have to do anything to cause overflow pages to be created, other than to store
data that is too large for your database's page size. Also, the only way you can prevent
overflow pages from being created is to be sure to select a page size that is large enough
to hold your database entries.

Because overflow pages exist outside of the normal database structure, their use is
expensive from a performance perspective. If you select too small of a page size, then
your database will be forced to use an excessive number of overflow pages. This will
significantly harm your application's performance.

For this reason, you want to select a page size that is at least large enough to hold multiple
entries given the expected average size of your database entries. In BTree's case, for best
results select a page size that can hold at least 4 such entries.

Page 67Getting Started with DB9/22/2004

You can see how many overflow pages your database is using by using the Db::stat()
method, or by examining your database using the db_stat command line utility.

Locking

Locking and multi-threaded access to DB databases is built into the product. However,
in order to enable the locking subsystem and in order to provide efficient sharing of the
cache between databases, you must use an environment. Environments and multi-threaded
access are not fully described in this manual (see the Berkeley DB Programmer's Reference
Manual for information), however, we provide some information on sizing your pages in
a multi-threaded/multi-process environment in the interest of providing a complete
discussion on the topic.

If your application is multi-threaded, or if your databases are accessed by more than one
process at a time, then page size can influence your application's performance. The reason
why is that for most access methods (Queue is the exception), DB implements page-level
locking. This means that the finest locking granularity is at the page, not at the record.

In most cases, database pages contain multiple database records. Further, in order to
provide safe access to multiple threads or processes, DB performs locking on pages as
entries on those pages are read or written.

As the size of your page increases relative to the size of your database entries, the number
of entries that are held on any given page also increase. The result is that the chances
of two or more readers and/or writers wanting to access entries on any given page also
increases.

When two or more threads and/or processes want to manage data on a page, lock
contention occurs. Lock contention is resolved by one thread (or process) waiting for
another thread to give up its lock. It is this waiting activity that is harmful to your
application's performance.

It is possible to select a page size that is so large that your application will spend excessive,
and noticeable, amounts of time resolving lock contention. Note that this scenario is
particularly likely to occur as the amount of concurrency built into your application
increases.

Oh the other hand, if you select too small of a page size, then that that will only make
your tree deeper, which can also cause performance penalties. The trick, therefore, is
to select a reasonable page size (one that will hold a sizeable number of records) and
then reduce the page size if you notice lock contention.

You can examine the number of lock conflicts and deadlocks occurring in your application
by examining your database environment lock statistics. Either use the DbEnv::lock_stat()
Environment.getLockStats() method, or use the db_stat command line utility. The
number of locks that could not be obtained due to conflicts is held in the lock statistic's
st_nconflicts field.

Page 68Getting Started with DB9/22/2004

Setting the Page Size

IO Efficiency

Page size can affect how efficient DB is at moving data to and from disk. For some
applications, especially those for which the in-memory cache can not be large enough to
hold the entire working dataset, IO efficiency can significantly impact application
performance.

Most operating systems use an internal block size to determine how much data to move
to and from disk for a single I/O operation. This block size is usually equal to the
filesystem's block size. For optimal disk I/O efficiency, you should select a database page
size that is equal to the operating system's I/O block size.

Essentially, DB performs data transfers based on the database page size. That is, it moves
data to and from disk a page at a time. For this reason, if the page size does not match
the I/O block size, then the operating system can introduce inefficiencies in how it
responds to DB's I/O requests.

For example, suppose your page size is smaller than your operating system block size. In
this case, when DB writes a page to disk it is writing just a portion of a logical filesystem
page. Any time any application writes just a portion of a logical filesystem page, the
operating system brings in the real filesystem page, over writes the portion of the page
not written by the application, then writes the filesystem page back to disk. The net
result is significantly more disk I/O than if the application had simply selected a page
size that was equal to the underlying filesystem block size.

Alternatively, if you select a page size that is larger than the underlying filesystem block
size, then the operating system may have to read more data than is necessary to fulfill
a read request. Further, on some operating systems, requesting a single database page
may result in the operating system reading enough filesystem blocks to satisfy the operating
system's criteria for read-ahead. In this case, the operating system will be reading
significantly more data from disk than is actually required to fulfill DB's read request.

While transactions are not discussed in this manual, a page size other than your filesystem's
block size can affect transactional guarantees. The reason why is that page sizes larger than☞
the filesystem's block size causes DB to write pages in block size increments. As a result, it
is possible for a partial page to be written as the result of a transactional commit. For more
information, see http://www.sleepycat.com/docs/ref/transapp/reclimit.html.

Page Sizing Advice

Page sizing can be confusing at first, so here are some general guidelines that you can
use to select your page size.

In general, and given no other considerations, a page size that is equal to your filesystem
block size is the ideal situation.

If your data is designed such that 4 database entries cannot fit on a single page (assuming
BTree), then grow your page size to accommodate your data. Once you've abandoned
matching your filesystem's block size, the general rule is that larger page sizes are better.

Page 69Getting Started with DB9/22/2004

Setting the Page Size

http://www.sleepycat.com/docs/ref/transapp/reclimit.html

The exception to this rule is if you have a great deal of concurrency occurring in your
application. In this case, the closer you can match your page size to the ideal size needed
for your application's data, the better. Doing so will allow you to avoid unnecessary
contention for page locks.

Selecting the Cache Size

Cache size is important to your application because if it is set to too small of a value,
your application's performance will suffer from too much disk I/O. On the other hand, if
your cache is too large, then your application will use more memory than it actually
needs. Moreover, if your application uses too much memory, then on most operating
systems this can result in your application being swapped out of memory, resulting in
extremely poor performance.

You select your cache size using either Db::set_cachesize(), or DbEnv::set_cachesize(),
depending on whether you are using a database environment or not. You cache size must
be a power of 2, but it is otherwise limited only by available memory and performance
considerations.

Selecting a cache size is something of an art, but fortunately it is selected at database
(or environment) open time, so it can be easily tuned to your application's data
requirements as they change over time. The best way to determine how large your cache
needs to be is to put your application into a production environment and watch to see
how much disk I/O is occurring. If your application is going to disk quite a lot to retrieve
database records, then you should increase the size of your cache (provided that you have
enough memory to do so).

You can use the db_stat command line utility with the -m option to gauge the effectiveness
of your cache. In particular, the number of pages found in the cache is shown, along with
a percentage value. The closer to 100% that you can get, the better. If this value drops
too low, and you are experiencing performance problems, then you should consider
increasing the size of your cache, assuming you have memory to support it.

BTree Configuration

In going through the previous chapters in this book, you may notice that we touch on
some topics that are specific to BTree, but we do not cover those topics in any real detail.
In this section, we will discuss configuration issues that are unique to BTree.

Specifically, in this section we describe:

• Allowing duplicate records.

• Setting comparator callbacks.

Page 70Getting Started with DB9/22/2004

Selecting the Cache Size

Allowing Duplicate Records

BTree databases can contain duplicate records. One record is considered to be a duplicate
of another when both records use keys that compare as equal to one another.

By default, keys are compared using a lexicographical comparison, with shorter keys
collating higher than longer keys. You can override this default using the
Db::set_bt_compare() method. See the next section for details.

By default, DB databases do not allow duplicate records. As a result, any attempt to write
a record that uses a key equal to a previously existing record results in the previously
existing record being overwritten by the new record.

Allowing duplicate records is useful if you have a database that contains records keyed
by a commonly occurring piece of information. It is frequently necessary to allow duplicate
records for secondary databases.

For example, suppose your primary database contained records related to automobiles.
You might in this case want to be able to find all the automobiles in the database that
are of a particular color, so you would index on the color of the automobile. However,
for any given color there will probably be multiple automobiles. Since the index is the
secondary key, this means that multiple secondary database records will share the same
key, and so the secondary database must support duplicate records.

Sorted Duplicates

Duplicate records can be stored in sorted or unsorted order. You can cause DB to
automatically sort your duplicate records by specifying the DB_DUPSORT flag at database
creation time.

If sorted duplicates are supported, then the sorting function specified on
Db::set_dup_compare() is used to determine the location of the duplicate record in its
duplicate set. If no such function is provided, then the default lexicographical comparison
is used.

Unsorted Duplicates

For performance reasons, BTrees should always contain sorted records. (BTrees containing
unsorted entries must potentially spend a great deal more time locating an entry than
does a BTree that contains sorted entries). That said, DB provides support for suppressing
automatic sorting of duplicate records because it may be that your application is inserting
records that are already in a sorted order.

That is, if the database is configured to support unsorted duplicates, then the assumption
is that your application will manually perform the sorting. In this event, expect to pay a
significant performance penalty. Any time you place records into the database in a sort
order not know to DB, you will pay a performance penalty

That said, this is how DB behaves when inserting records into a database that supports
non-sorted duplicates:

Page 71Getting Started with DB9/22/2004

BTree Configuration

• If your application simply adds a duplicate record using Db::put(), then the record is
inserted at the end of its sorted duplicate set.

• If a cursor is used to put the duplicate record to the database, then the new record
is placed in the duplicate set according to the flags that are provided on the Dbc::put()
method. The relevant flags are:

• DB_AFTER

The data provided on the call to Dbc::put() is placed into the database as a
duplicate record. The key used for this operation is the key used for the record to
which the cursor currently refers. Any key provided on the call to Dbc::put() is
therefore ignored.

The duplicate record is inserted into the database immediately after the cursor's
current position in the database.

This flag is ignored if sorted duplicates are supported for the database.

• DB_BEFORE

Behaves the same as DB_AFTER except that the new record is inserted immediately
before the cursor's current location in the database.

• DB_KEYFIRST

If the key provided on the call to Dbc::put() already exists in the database, and
the database is configured to use duplicates without sorting, then the new record
is inserted as the first entry in the appropriate duplicates list.

• DB_KEYLAST

Behaves identically to DB_KEYFIRST except that the new duplicate record is inserted
as the last record in the duplicates list.

Configuring a Database to Support Duplicates

Duplicates support can only be configured at database creation time. You do this by
specifying the appropriate flags to Db::set_flags() before the database is opened for
the first time.

The flags that you can use are:

• DB_DUP

The database supports non-sorted duplicate records.

• DB_DUPSORT

The database supports sorted duplicate records.

Page 72Getting Started with DB9/22/2004

BTree Configuration

The following code fragment illustrates how to configure a database to support sorted
duplicate records:

#include <db_cxx.h>
...

Db db(NULL, 0);
const char *file_name = "myd.db";

try {
 // Configure the database for sorted duplicates
 db.set_flags(DB_DUPSORT);

 // Now open the database
 db.open(NULL, // Txn pointer
 file_name, // File name
 NULL, // Logical db name (unneeded)
 DB_BTREE, // Database type (using btree)
 DB_CREATE, // Open flags
 0); // File mode. Using defaults
} catch(DbException &e) {
 db.err(e.get_errno(), "Database '%s' open failed.", file_name);
} catch(std::exception &e) {
 db.errx("Error opening database: %s : %s\n", file_name, e.what());
}

...

try {
 db.close(0);
} catch(DbException &e) {
 db.err(e.get_errno(), "Database '%s' close failed.", file_name);
} catch(std::exception &e) {
 db.errx("Error closing database: %s : %s\n", file_name, e.what());
}

Setting Comparison Functions

By default, DB uses a lexicographical comparison function where shorter records collate
before longer records. For the majority of cases, this comparison works well and you do
not need to manage it in any way.

However, in some situations your application's performance can benefit from setting a
custom comparison routine. You can do this either for database keys, or for the data if
your database supports sorted duplicate records.

Some of the reasons why you may want to provide a custom sorting function are:

Page 73Getting Started with DB9/22/2004

BTree Configuration

• Your database is keyed using strings and you want to provide some sort of
language-sensitive ordering to that data. Doing so can help increase the locality of
reference that allows your database to perform at its best.

• You are using a little-endian system (such as x86) and you are using integers as your
database's keys. Berkeley DB stores keys as byte strings and little-endian integers do
not sort well when viewed as byte strings. There are several solutions to this problem,
one being to provide a custom comparison function. See
http://www.sleepycat.com/docs/ref/am_misc/faq.html for more information.

• You you do not want the entire key to participate in the comparison, for whatever
reason. In this case, you may want to provide a custom comparison function so that
only the relevant bytes are examined.

Creating Comparison Functions

You set a BTree's key comparison function using Db::set_bt_compare(). You can also set
a BTree's duplicate data comparison function using Db::set_dup_compare().

You cannot use these methods after the database has been opened. Also, if the database
already exists when it is opened, the function provided to these methods must be the
same as that historically used to create the database or corruption can occur.

The value that you provide to the set_bt_compare() method is a pointer to a function
that has the following signature:

int (*function)(Db *db, const Dbt *key1, const Dbt *key2)

This function must return an integer value less than, equal to, or greater than 0. If key1
is considered to be greater than key2, then the function must return a value that is greater
than 0. If the two are equal, then the function must return 0, and if the first key is less
than the second then the function must return a negative value.

The function that you provide to set_dup_compare() works in exactly the same way,
except that the Dbt parameters hold record data items instead of keys.

For example, an example routine that is used to sort integer keys in the database is:

int
compare_int(Db *dbp, const Dbt *a, const Dbt *b)
{
 int ai, bi;

 // Returns:
 // < 0 if a < b
 // = 0 if a = b
 // > 0 if a > b
 memcpy(&ai, a->get_data(), sizeof(int));
 memcpy(&bi, b->get_data(), sizeof(int));
 return (ai - bi);
}

Page 74Getting Started with DB9/22/2004

BTree Configuration

http://www.sleepycat.com/docs/ref/am_misc/faq.html

Note that the data must first be copied into memory that is appropriately aligned, as
Berkeley DB does not guarantee any kind of alignment of the underlying data, including
for comparison routines. When writing comparison routines, remember that databases
created on machines of different architectures may have different integer byte orders,
for which your code may need to compensate.

To cause DB to use this comparison function:

#include <db_cxx.h>
#include <string.h>

...

Db db(NULL, 0);

// Set up the btree comparison function for this database
db.set_bt_compare(compare_int);

// Database open call follows sometime after this.

Page 75Getting Started with DB9/22/2004

BTree Configuration

	Getting Started with Berkeley DB
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction to Berkeley DB
	About This Manual
	Berkeley DB Concepts
	Access Methods
	Selecting Access Methods
	Choosing between BTree and Hash
	Choosing between Queue and Recno

	Database Limits and Portability
	Environments
	Exception Handling
	Error Returns
	Getting and Using DB

	Chapter 2. Databases
	Opening Databases
	Closing Databases
	Database Open Flags
	Administrative Methods
	Error Reporting Functions
	Managing Databases in Environments
	Database Example

	Chapter 3. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Database Usage Example

	Chapter 4. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 5. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Extractors
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Cursors with Secondary Databases
	Database Joins
	Using Join Cursors

	Secondary Database Example
	Secondary Databases with excxx_example_database_load
	Secondary Databases with excxx_example_database_read

	Chapter 6. Database Configuration
	Setting the Page Size
	Overflow Pages
	Locking
	IO Efficiency
	Page Sizing Advice

	Selecting the Cache Size
	BTree Configuration
	Allowing Duplicate Records
	Sorted Duplicates
	Unsorted Duplicates
	Configuring a Database to Support Duplicates

	Setting Comparison Functions
	Creating Comparison Functions

