
1

DTrace

Christopher Beal
Senior Staff Engineer
Sun Microsystems
http://opensolaris.org

2

Agenda

• Why DTrace
• What is DTrace
• Providers Probes and Stuff
• Using Dtrace – Some examples
• Dtrace resources

3

Why DTrace?

• Transient problems are hard to debug.
• Example.
> Who sent a kill signal to my process
> Thread gets preempted when it should not
> In live production system my application does not scale

above 30,000 user
> Why are there so many threads in run queue when the

CPU is idle

4

Current Options

• Reproduce problem outside of production
> Not easy & Expensive

• Convert it into a fatal problem
> Causes more downtime than the transient problem
> Not easy to debug a transient problem with a snapshot

• Use tools like truss or pstack
> Per process tools – hard to debug systemic issues
> Too intrusive for production

5

Current Options

• Custom instrumented application or kernel
> Too intrusive for production
> Takes too many iteration to get to the root cause
> Huge QA cost
> Expensive production interruptions

6

A Much Better Solution

• A Dynamically Instrumentable System
> have enough instrumentation to permit collecting any

arbitrary data
> permit dynamically turning on/off instrumentation
> be performant to run in production
> ensures safety

7

Agenda

• Why DTrace
• What is DTrace
• Providers Probes and Stuff
• Using Dtrace – Some examples
• Dtrace resources

8

Dtrace – What is it?

• Over 30K probes built into Solaris 10
• Can create more probes on the fly
• New powerful, dynamically interpreted language (D)

to instantiate probes
• Probes are light weight and low overhead
• No overhead if probe not enabled
• Safe to use on “live” system

9

Dtrace Architecture

libDTrace(3LIB)

DTrace (7D)

DTrace

userland

kernel

DTrace (1M)
locks ta t (1M)

p locks ta t (1M)

scrip t .d

DTrace
consum ers

sys in fo vm in fo fas t t rap

sd tsysca ll fb tp roc
DTrace
p rovide rs

10

How it works

• Driven through the D Language
> dtrace command compiles the D language Script
> Intermediate code checked for safety (like java)
> The compiled code is executed in the kernel by DTrace
> DTrace instructs the provider to enable the probes

• As soon as the D program exits all instrumentation removed

• No limit (except system resources) on number of D scripts
that can be run simultaneously

• Different users can debug the system simultaneously
without causing data corruption or collision issues

11

D Language - Format.

probe description
/

predicate
/
{

action statements
}

• When a probe fires then action is executed if
predicate evaluates true

12

D Language - Example
• Example:
> “Print all the system calls executed by ksh”

sysca lls .d

#!/usr/sbin/dtrace -s
syscall:::entry
/

execname==”ksh”
/
{

printf(“%s called\n”,probefunc);
}

13

Agenda

• Why DTrace
• What is DTrace
• Providers Probes and Stuff
• Using Dtrace – Some examples
• Dtrace resources

14

Providers

• Providers make probes available to the DTrace
framework
• DTrace controls when a provider enables a probe
• Providers transfer control to DTrace when a probe is

fired

15

Some Available Providers

• syscall: provides probes in every system call
• fbt: provides probe into every function in the kernel
• pid: Provides fbt and instruction tracing for user

programs
• proc: probes relating to process lifecycle
• profile: probes that will fire at regular intervals
• sdt: static probe points for your programs
• lockstat: probes to look at lock contention events

16

Probe

• Probes are points of instrumentation
• Each probe has a name
• These four attributes define a tuple that uniquely

identifies each probe
> provider:module:function:name
> Example

syscall::open:entry

• Listed by dtrace -l
> eg. dtrace -l -P proc

17

Predicates

• A predicate is a D expression
> Like a D if statement

• Actions will only be executed if the predicate
expression evaluates to true
• Examples
> Print the pid of every “ls” process that is started

#!/usr/sbin/dtrace -s
proc:::exec-success
/execname == "ls"/
{
}

p red .d

18

Actions

• Actions are executed when a probe fires
• Most actions record some specified state in the

system
• Some actions change the state of the system in a

well-defined manner
> These are called destructive actions and are disabled by

default.

• Probes may provide parameters that can be used in
the actions.

19

Variables and Operators

• All standard 'C' types and operators available
• External variables are available using the ` symbol
> eg. `physmem – is the kernel physmem variable

• Many builtin variables for you to use
> eg. pid, arg0, errno

• Thread local data
> self->variable = expression;
> Essential for multi-threaded debugging

20

Aggregation

• Think of a case when you want to know the “total”
time the system spends in a function.
> We can save the amount of time spent by the function

every time it is called and then add the total.
> If the function was called 1000 times that is 1000 bits of info

stored in the buffer just for us to finally add to get the total.
> Instead if we just keep a running total then it is just one

piece of info that is stored in the buffer.
> We can use the same concept when we want averages,

count, min or max.

• Aggregation is a D construct for this purpose.

21

Aggregation - Format

• @name[keys] = aggfunc(args);
• '@' - key to show that name is an aggregation.
• keys – comma separated list of D expressions.
• aggfunc could be one of...
> sum(expr) – total value of specified expression
> count() – number of times called.
> avg(expr) – average of expression
> min(expr)/max(expr) – min and max of expressions
> quantize()/lquantize() - power of two & linear distribution

22

Aggregation Example
!/ u s r/ s b in / d tra ce - s
p id $ targ e t :lib c:m a llo c:e n try
{
 @["Ma llo c Dis trib u t io n "]=q u an t iz e (arg 0);
}

$ aggr.d -c who
dtrace: script './aggr.d' matched 1 probe
...
dtrace: pid 6906 has exited

 Malloc Distribution
 value ------------- Distribution --count
 1 | 0
 2 |@@@@@@@@@@@@@@@@@ 3
 4 | 0
 8 |@@@@@@ 1
 16 |@@@@@@ 1
 32 | 0
 64 | 0
 128 | 0
 256 | 0
 512 | 0
 1024 | 0
 2048 | 0
 4096 | 0
 8192 |@@@@@@@@@@@ 2
 16384 | 0

agg r.d

23

DTrace and User Process

• DTrace provides a lot of features to investigate
user processes
• We will look at features in DTrace that is useful to

examine user process
• Uses the PID provider

24

Granting privilege to run DTrace

• A system admin can grant any user privileges to run DTrace using the Solaris
Least Privilege facility privileges(5).

• DTrace provides for three types of privileges.
dtrace_proc - provides access to process level tracing no kernel level tracing

allowed. (pid provider is about all they can run)
dtrace_user – provides access to process level and kernel level probes but only

for process to which the user has access. (ie) they can use syscall provider
but only for syscalls made by process that they have access.

dtrace_kernel – provides all access except process access to user level procs
that they do not have access.

• Enable these priv by editing /etc/user_attr. Eg
> user::::defaultpriv=basic,privileges,dtrace_proc,dtrace_user,dtrace_kernel

25

Agenda

• Why DTrace
• What is DTrace
• Providers Probes and Stuff
• Using Dtrace – Some examples
• Dtrace resources

26

The pid Provider

• The pid Provider is extremely flexible and allows
you to instrument any instruction in user land
including entry and exit
• pid provider creates probes on the fly when they are

needed
• This is why they do not appear in the dtrace -l

listing
• We will see how to use the pid provider to trace
> Function Boundaries
> Any arbitrary instruction in a given function

27

pid – Function Boundary probes

• The probe is constructed using the following format
pid<processid>:<library or executable>:<function>:<entry or return>

• Examples:
pid1234:date:main:entry
pid1122:libc:open:return

• Following code counts all libc calls made by a
program
#!/usr/sbin/dtrace -s
pid$target:libc::entry
{
 @[probefunc]=count()
}

p id1 .d

28

pid – Function Offset probes

• The probe is constructed using the following format
pid<processid>:<library or executable>:<function>:<offset>

• Examples:
pid1234:date:main:16
pid1122:libc:open:4

• Following code prints all instructions executed in the
programs main
#!/usr/sbin/dtrace -s
pid$target:a.out:main:
{
}

offs .d

29

pid – Instruction Level Tracing

• The function offset tracing is a very powerful
mechanism.
• The following example prints code path followed

by a particular func.
pid$1::$2:entry
{

self->trace_code = 1;
 printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}
pid$1:::
/self->trace_code/
{ }

pid$1::$2:return
/self->trace_code/
{

exit(0);
}

Execute.

trace_code.d 1218 printf

t race_code .d

30

proc Provider

• The proc Provider has probes for process/lwp lifecycle
> create – fires when a proc is created using fork and its variants
> exec – fires when exec and its variants are called
> exec-failure & exec-success – when exec fails or succeeds
> lwp-create, lwp-start, lwp-exit – lwp life cycle probes
> signal-send, signal-handle, signal-clear – probes for various

signal states
> start – fires when a process starts before the first instruction is

executed.

31

Who killed the process?
#!/usr/sbin/dtrace -qs

proc:::signal-send
/args[1]->pr_fname == $$1/
{
 printf("%s(pid:%d) is sending signal %d to %s\n", execname, pid, args[2],args[1]->pr_fname);
}

$./sig1.d bc
sched(pid:0) is sending signal 24 to bc
sched(pid:0) is sending signal 24 to bc
bash(pid:3987) is sending signal 15 to bc
bash(pid:3987) is sending signal 15 to bc
bash(pid:3987) is sending signal 9 to bc

The above program prints out process that is sending the signal to the
program “bc”.
Note: $$1 is argument 1 as string
The signal-send probe has arg1 that has info on signal destination
The signal-send probe has args2 that has the signal number

s ig1 .d

32

Agenda

• Why DTrace
• What is DTrace
• Providers Probes and Stuff
• Using Dtrace – Some examples
• Dtrace resources

33

DTrace Resources

• Here are a few of the many DTrace resources available
for you
> “Solaris Dynamic Tracing Guide” is an excellent

resource. Many of the examples in this presentation
are from the Guide.
http://docs.sun.com/db/doc/817-6223

> The BigAdmin DTrace web page has a lot of good info
http://www.sun.com/bigadmin/content/dtrace/

> Open Solaris DTrace community page
http://www.opensolaris.org/os/community/dtrace/

> DTrace toolkit contains a lot of very useful scripts
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

34

More DTrace Resources

• Read the Blogs from Bryan Cantrill, Adam
Leventhal, Mike Shapiro
http://blogs.sun.com/roller/page/bmc
http://blogs.sun.com/roller/page/ahl
http://blogs.sun.com/mws
> They often speak about DTrace related issues.

• Of course you can google DTrace.
http://www.google.com/search?q=dtrace

35

Thank you!

Christopher Beal
Senior Staff Engineer
Sun Microsystems
http://opensolaris.org

