
On one source of latency in NFSv4 client
Dmitry Irtegov
Novosibirsk State University
630090 Pirogova 1, Novosibirsk,
Russia
fat@nsu.ru

Pavel Belousov
Novosibirsk State University
630090 Pirogova 1, Novosibirsk,
Russia
firix-pavel@yandex.ru

Alexander Fal
Novosibirsk State University
630090 Pirogova 1, Novosibirsk,
Russia
falalexandr007@gmail.com

 Alexey Fedosenko
Novosibirsk State University
630090 Pirogova 1, Novosibirsk,
Russia
fedos-alexey@yandex.ru

ABSTRACT
Due to VFS architecture limitation, Linux NFSv4 and 4.1 client
cannot join RPC requests into compounds even in cases when it is
allowed by protocol specification. This leads to the high
sensitivity to the network latency and loss of performance on
metadata-intensive operations, especially on workloads when
many small files are opened. Similar issue exists in other Unix-
like kernels. We propose a modification to VFS API that resolves
this issue. We have a demo implementation of modified VFS and
NFS client that shows measurable improvement of latency and
general throughput on synthetic metadata-intensive tests, even
with standard NFS servers.

CCS CONCEPTS
• Networks → Network performance evaluation → Network
performance analysis • Networks → Network protocols →
Network File System (NFS) protocol

KEYWORDS
shared storage, latency, compound RPC, Linux, VFS

ACM Reference format
D.Irtegov, P.Belousov, A.Fal, A.Fedosenko. 2017. On one source
of latency in NFSv4 client. In Proceedings of CEE-SEC(R)’2017,
St.Petersburg, Russia, 9 pages.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
CEE-SECR '17, October 20–21, 2017, Saint-Petersburg, Russian
Federation
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6396-9/17/10�$15.00
https://doi.org/10.1145/3166094.3166101

1 INTRODUCTION
File system performance cannot be adequately described by the single

parameter. For some applications, most important parameter might be the
sustained throughput when writing to a single file, for other applications a
read throughput or random access speed can be more important, etc. For
some applications, like web servers, most important performance
parameter is the latency when working with large number of small files.
This is one of the reasons why there are so many different file systems and
so many technologies and approaches for network file storage.

When choosing a storage for load-balanced web cluster [1] we found
that SAN technologies like iSCSI have the best latency on most types of
workload, but do not provide shared storage (no concurrent read-write
access to a single LUN). NFS provides shared storage but has relatively
high latency and other popular network file systems, like CIFS, have even
higher latency. There also exists a class of solutions known as cluster file
systems [2, 3], but they also have their own limitations.

The fact that NFS has high latency compared to SAN on same
hardware is confirmed by many researchers [4, 5]. But there is no
generally accepted explanation of this. Authors of [4] state than NFS is
slow on metadata-intensive operations but do not try to find a root cause
of this. Authors of [5] assume that this is probably connected to POSIX
semantics.

We identified one source of latency in Linux NFSv4 client associated
with file lookup operation. Most operations that are called metadata-
intensive in paper [4] actually do a file lookup, so this is probably the
important part of general latency.

It is possible to improve a latency of the file lookup, but it requires a
change not only in NFS client kernel module, but also in kernel VFS
framework. We did this change and have an experimental implementation
of improved NFS that demonstrates measurable better latency on
metadata-intensive workloads. We also found that similar issue exists in
other Unix-like kernels (Solaris and FreeBSD), so our approach can be
useful for improving NFS performance in these kernels too.

CEE SECR 2017 D.Irtegov et al.

2

2 NFS PROTOCOL

2.1 Brief history of NFS
Network File System protocol was originally developed by Sun

Microsystems in 1980s. A decade later, Sun Microsystems handled the
development of the protocol to IETF. NFSv4 and current NFSv4.1
protocol specifications have status of IETF standards [6, 7].

NFS is supported by practically all popular general-purpose operating
systems, including Unix-like systems (Unix System V, *BSD, MacOS,
Linux), Microsoft Windows, IBM z/OS. It is also widely supported by
SAN/NAS vendors.

NFS is a RPC (Remote Procedure Call) protocol, more or less directly
mappable to the POSIX file operations. Actually it maps to RPC not the
POSIX system calls (open(2), read(2), write(2), etc), but internal calls
made by kernel VFS (Virtual File System) framework. Historically, VFS
framework in SunOS and early versions of NFS were developed
concurrently and had some convergent evolution. VFS framework in
Linux is not directly related to SunOS (different licenses explicitly forbid
sharing the code between these kernels), but its architecture shows the
signs of a significant indirect influence.

NFSv4 offered significant changes compared to previous version 3.
These changes are related mostly to performance and security. List of
performance-related changes includes (but is not limited to):

1. Stateful operation, contrasting to previous attempts to make the
protocol stateless

2. Mandatory use of the TCP transport protocol
3. Cache-coherence capabilities known as “Delegation”
4. Compound RPC – a feature allowing to send several RPC

requests in one batch.
Implementing these features offered real performance benefits over

NFSv3 under most benchmarks and real-world workloads, so all vendors
who support NFSv4 recommend using this version when possible.
However, many research works [4, 5, 8] demonstrated a complex picture
of NFSv4 performance, showing unexplained delays and low throughput
under many types of workload.

Probably most interesting is comparison of NFS to SAN technologies,
especially iSCSI. iSCSI can be run on the same hardware as NFS, so
head-to-head comparison is possible.

2.2 iSCSI and cluster file systems
 iSCSI [9] is a standard protocol for storage access networks,

supported by most operating systems and SAN/NAS vendors. It can be
described as RPC, but these RPC correspond not to filesystem API, but to
block device driver calls. Historically, SCSI was a protocol used in
peripheral bus interconnects, and some parts of this protocol were
standardized long before the term RPC was invented. iSCSI uses TCP
connection for transporting SCSI commands. It allows to use Ethernet
network hardware so it is generally considered as a cheaper alternative to
FiberChannel SANs.

iSCSI is used to provide a disk image (so called SCSI LUN), not a file
system. On the server this image might actually be a file. Many
implementations of iSCSI servers also can provide raw block devices, disk
partitions or LVM volumes as LUNs. After attaching to the LUN, client
sees it as a [virtual] block device and can use it as any other type of block
device, for placing file systems, LVM physical volumes, swap partitions,
etc.

Modern operating systems assume that they have exclusive access to
block devices, so most uses of iSCSI LUNs do not allow to use it as
shared resource. For example, a typical filesystem driver heavily depends
on consistency of on-disk data, but has no locks and semaphores to ensure
this consistency during concurrent access to the disk.

Many benchmarks and real-world experience show that iSCSI offers
better performance than any known network file system on the same
hardware. So iSCSI is displacing network file systems in cases when
sharing is not necessary or read-only sharing is OK. It is used for diskless
computers, for extension of disk space on servers with limited local disk
space, for disk images of virtual machines, etc.

There are numerous attempts to overcome a main limitation of all
SAN technologies, inability to work as shared storage. These attempts
have no generally accepted common name; we will call them cluster file
systems. Examples are Lustre [3], OCFS2 [10], Ceph [2]. These file
systems use shared or replicated SAN device and build a distributed
locking protocol on top of the device itself or using out-of-band network
connections. These filesystems have to deal with distributed lock problem
which has no known universal solution [11]. For the purpose of our
comparison, we must note, that all these systems are built on top of SAN,
and, therefore, cannot work faster than SAN.

Head-to-head comparison of NFS and iSCSI shows that read and write
operation of these protocols have similar performance characteristics [4,
5]. It is interesting to note that in the field there is widely used solution to
store virtual machine disks and other virtual block storage on NAS
servers. All modern Unix-like systems have a feature that allows
converting a file to a virtual block device, called loopback device.
Loopback devices situated on NFS NAS have high throughput and low
latency, similar to SAN on same hardware. However, loopback device
images cannot be shared, for same reasons SAN devices cannot.

Where NFS starts to lose is opening the files. Most significant
difference can be noticed on workloads that involve opening and reading
many small files. The general verdict, repeated in many research works, is
that NFS is slow on metadata-intensive operation. Metadata in this
context mean system data: file attributes, file allocation on disk, free
space, etc.

These tests also show that NFS is much “chattier” protocol, using
much more RPC calls than iSCSI for doing similar operations. Again, this
is most noticeable when working with small files

This is very strange, because NFS uses high-level operations to work
with the metadata. Let’s consider an NFS and iSCSI client looking up a
file in a directory. Let’s consider that parent directory is in the cache, but
target directory is not, so we know a directory inode number and file
name, but have no directory data and metadata in memory.

On iSCSI, filesystem driver must, in worst case:
1. read and parse inode table metadata to find a relevant extent of

inode table
2. read and parse directory inode record
3. read and parse significant part of directory data to find a file

directory entry and file inode number
4. again read and parse inode table metadata, because file inode

most likely is located in other extent of inode table
5. read file inode record
Note that we need to parse every piece of data to find location of the

next piece of data, so read-ahead and command queuing probably will not
really help. So, every request must be handled by separate SCSI
command.

In comparison, NFS client must:
1. Do a LOOKUP RPC with parent directory handle and target

directory name. If successful, this RPC returns a handle to target
directory.

2. Do a LOOKUP RPC with target directory handle and file
name. This RPC returns a handle to a file.

So, we can do a file lookup in just two RPC calls. All inode table
metadata and directory data lookups are local to the server. In practice,
NFS clients also read directory and file attributes, but this can be done in a
single compound request with a LOOKUP itself, and modern NFSv4

On one source of latency in NFSv4 client CEE SECR 2017

 3

clients actually use compounds for this. Also, NFSv4 protocol
specification allows to join all requests related to operations 1 and 2 in
single compound RPC.

So, in theory, NFS must do 1 compound RPC calls when iSCSI must
do 5 or more separate SCSI commands. This theory obviously contradicts
the practice.

2.3 Compound RPC
In modern networks, time of executing a single or compound RPC

request by the server usually is small, compared to network RTT (Round
Trip Time, see Fig. 1). Our measurement show that even on low end
hardware, time of server processing of most RPC requests is smaller than
RTT. Measurements on Fig.1 were taken on a single switch 1Gb/s
Ethernet network (full specs of hardware used in our tests is presented in
section 3).

Figure 1: Time of NFS RPC requests compared to ping time.
Ping time is used as RTT estimation.

Network RTT consists of time of signal propagation along the cable,
and delays in active network equipment (routers, switches, etc). From the
protocol standpoint, it is pure waste of time. It is not the same as a
network latency, but closely related to it.

Many modern network protocols, including HTTP 2.0, iSCSI, SMB2
and NFSv4 provide command queuing, compound requests and similar
means to send requests in batches, to reduce the influence of latency and
RTT.

However, if we look on actual RPC requests made by real NFS client
when opening the file, we see the sequences of calls, presented in
Appendix 1 for Linux, Appendix 2 for Solaris and Appendix 3 for
FreeBSD. All these request sequences were produced when an userland
process issued a request to open a file
file_tests/nfscc/tests/multi_test/multi_test.py on the NFS share.

It is easy to note that all tested clients use rather complex compound
sequences (Linux and FreeBSD send 5 RPC in single compound, Solaris
sends 9 RPC) for every path component. But all clients send requests for
every path component as a separate compound. They do not attempt to
join them into a single compound.

Also, it is interesting to note that all these clients send two compound
requests per pathname component, one to verify the parent directory and
second to actually do a lookup. When doing a compound lookup first step
would be redundant.

Simple test shows that this can be the source of the significant latency.
We measured the time of open(2) system call with long hierarchical
pathnames on NFS and iSCSI on the same hardware, and found than NFS
has linear dependency between number of hierarchy levels and open time
(see Fig. 2). Similar results were reported by other authors [4, 5].

Figure 2: Time of open(2) syscall relative to pathname depth.
Measurements were taken on CentOS 7 client and server with

CentOS 3.10 kernel build.

There is no requirement in the NFS protocol specification to do
lookups in separate compounds. Section 8.7.1 of RFC 7530 even has an
example of multilevel compound lookup RPC and description how it must
be processed.

Other researchers also noticed this. Authors of the work [5] assume
that this is somehow connected with the POSIX semantics. As we will
see, this cannot be the case. Indeed, POSIX system call to open a file,
open(2), accepts hierarchical pathname as a parameter [12]. So, the
POSIX-compliant kernel has all information needed to form a compound
lookup request.

To understand why Linux and other modern Unix-like kernels do not
use compound lookups, we must discuss internal structure of the kernel,
specifically VFS layer.

2.4 Linux Virtual File System framework
The Virtual File System (also known as the Virtual Filesystem Switch)

is the software layer in the kernel that provides the filesystem interface to
userspace programs. It also provides an abstraction within the kernel
which allows different filesystem implementations to coexist [13].The
VFS handles all userland file-related system calls and file requests from
other kernel modules. It translates these requests into the calls to a
specific filesystem driver. It calls functions of the driver, so from the
filesystem driver perspective it is a framework.

When processing open(2) and other system calls that take a pathname
as a parameter, VFS parses the name to components (directory names and
file name). Then it tries to lookup every component. First, it consults a
dentry cache. In a case of cache miss, it calls a lookup() function provided
by a filesystem driver. The driver must consult on-disk metadata and fill
two structures, dentry and inode.

Dentry structure describes a directory entry. Dentry can be positive
(for names corresponding to existing files, directories and other filesystem
objects) or negative (for names that do NOT correspond to existing
objects). Negative dentries are cached because many Unix programs do
searches in lists of directories. For example, execvp(2) syscall does a
search of executable file in PATH environment variable.

Positive dentry has a pointer to inode structure. Inode contains
metadata describing the filesystem object. It has standard attributes
returned by stat(2), attributes required by VFS layer and, probably, other
information that the FS driver considers worth keeping in memory. Most
important, inode structure contains pointers to functions that must be
called when VFS performs an operation on the filesystem object.
Nomenclature of these functions is different for different types of objects.

CEE SECR 2017 D.Irtegov et al.

4

Regular files and character special files (device drivers) have read() and
write() functions, directories have lookup() function, etc. For directories
and regular files, these functions are provided by the filesystem driver.

It is important to note that to do a file or directory lookup, VFS must
have in memory the inode of the parent directory. Having the inode, VFS
just calls its lookup() function.

Tree of kernel function calls made during open(2) syscall is presented
in Fig. 3.

Inodes and dentries are cached, i.e. they are not deleted after the use.
While the file is opened, the kernel must keep its inode in memory. When
the file is closed, the inode is kept in the cache until cache manager reaps
it. Cache manager uses heuristic strategies to determine which structures
to reap, depending on amount of available memory, nature of the object,
statistic of the requests to this object and other parameters.

Linux NFS client is a VFS filesystem driver, and follows the VFS
semantics. We see one important difference between POSIX and Linux
VFS semantics. POSIX standard does not specify how hierarchical file
lookups should be made, and does not forbid compound lookups, at least
not explicitly. VFS specifies that hierarchical pathname must be split to
components and every component must be handled separately.

We did our measurements on Linux 3.10 kernel. In newer kernels,
numerous enhancements in VFS and NFS client were made, including
support for NFSv4.1 and directory delegations, but this aspect of the VFS
API and architecture did not change.

VFS implicitly forbids joining NFS LOOKUP RPC to compounds by
two reasons. First, to make a next lookup() call, VFS must have an inode
structure from the previous call. So it cannot wait while NFS driver
collects several lookup requests and sends them to the server. Second,
NFS driver does not know the context of the lookup() call. It does not
even know is it the last lookup in the chain. So even if it could collect
delayed lookup requests, it could not know when to stop.

We can only speculate why this was overlooked. Indeed, doing all
lookups separately simplifies an FS driver, which is generally good.
Second, it simplifies handling of some situations, like symlinks and
pathnames that cross filesystem boundaries. Third, VFS API mostly

stabilized in 1990s, when NFS was at version 3 and compound requests
were not available. Fourth, when VFS stabilized, latency to bandwidth
ratio in local networks was different, so the advantage of the compound
requests was not so significant.

3 PROPOSED CHANGE TO VFS
FRAMEWORK

3.1 Chain_lookup
We propose to add a new operation to Linux VFS framework API for

directory inodes. We call it chain_lookup(). VFS has concept of optional
operations in inode structure. If some operations are not available in the
specific driver, VFS can use some generic procedure to implement the
required operation. In our case, if the driver does not provide
chain_lookup() function, VFS will use standard walk_component()
function and lookup() driver call. So our change does not require
modification of other filesystem drivers.

It is important to note that Linux VFS already has some NFS-specific
modifications and driver functions that implemented only in NFS. Оur
modification can be useful not only for NFSv4, but for other network file
systems that support compound requests (like SMBv2) and for local and
virtual file systems that have global directory index, like Reiserfs.

As the name suggests, chain_lookup() accepts the list of dentry
structures corresponding to components of parsed pathname. In the case
of NFSv4, this function forms compound request, sends it to the server,
receives the answer and fills inodes for valid filesystem objects. If some
of the pathname components do not exist, corresponding dentry structures
are converted to negative dentries.

The general logic of the modified VFS framework remains similar to
the original one. The VFS parses the pathname to components, links them
to a chain and consults the dentry cache. If the cache record is valid, it
removes the corresponding component from the chain and continues until
it finds obsolete or nonexistent cache record. Then it passes the rest of the
chain to chain_lookup() function.

Figure 3: VFS call tree for open(2) syscall (Linux 3.10 kernel)

On one source of latency in NFSv4 client CEE SECR 2017

 5

The modified call tree for open(2) is presented in Fig. 4.
According to NFS specification, individual RPCs of the compound

request are processed according to their order until some of the calls fails.
Then the server returns results of all successful requests and an error code
for the failed request. This is exactly the behavior we need for a pathname
lookup. If the path component does not exist, its child components cannot
exist too.

There are several cases that must be handled to make this work in real-
world scenarios. These are: mount points, symlinks, ‘.’ and ‘..’ directories
and obsolete cached dentries.

3.1.1 Mount points
In Unix-like systems, filesystems are connected to directory tree by

issuing a mount(1M) command or corresponding system call. This
command logically attaches the root directory of the target filesystem to
some directory of the previously mounted file system. This directory is
called a ‘mount point’. There is a dedicated “Root” filesystem which is
mounted at system boot in unusual way. It has mount point with name ‘/’.

For all active mount points, VFS creates dentry and inode structures
with special attributes. These structures are locked in the cache and never
reaped by cache manager. So we must consult the cache, and, if the
dentry corresponds to the mount point, we must check for this and return
the control to VFS.

It is interesting to note that mount point can be not empty before
mounting. The files and subdirectories of the mount point remain on disk
but become inaccessible. So it is possible to imagine a scenario when we
form a compound lookup and it returns valid inodes for all components,
but we must rejects some of these inodes because they are below a mount
point. For the driver it means only that it must check every pathname
component for being a mount point, not just first and last one.

3.1.2 Symlinks
Symlinks or symbolic links are the files of the special type. Instead of

the data blocks, these files contain a text string. This string is interpreted
as a (relative or absolute) name of another filesystem object. It is said that
symlink points to this object. Symlinks can point to files, directories, any
other named filesystem objects and also to names that do not exist.
Pointed objects can be placed in the same filesystem as the symlink or in
other filesystems.

Because symlinks can point to other filesystems, they cannot be
handled on the FS driver level. When finding a symlink, the driver must
stop pathname processing and return control to VFS. It is easy to
implement, because NFS LOOKUP RPC returns the error when applied to
a name relative to the symlink. We just need to properly handle this error.

3.1.3 ‘.’ and ‘..’ directory entries
In POSIX-compliant file systems, every directory must contain two

special entries, ‘.’ and ‘..’. Entry ‘.’ points to the directory itself, and ‘..’
points on its parent directory. On-disc structure of directories in common
Unix file systems, such as UFS or ext3/ext4. actually do contain these
entries. NFS servers also return valid metadata for these names. On other
filesystems, the FS driver must somehow imitate their existence.

The ‘.’ entries in most cases can be removed from the pathname, and
this is what we do.

The ‘..’ directory cannot be handled on the filesystem driver level,
because it can point above the mount point, to the other filesystem. If it is
placed after a symlink, it can point to completely unrelated filesystem, and
we cannot know this until we find that this pathname component is a
symlink. In current implementation, we never include ‘..’ directories in
compound lookups. Instead, we split a pathname to parts before and after

Figure 4: VFS call tree for open(2) syscall, proposed modification

CEE SECR 2017 D.Irtegov et al.

6

a ‘..’ component, and handle them separately. This probably not the best
solution from the latency perspective, but this allowed us to implement a
correct filesystem behavior.

3.1.4 Obsolete cached dentries
Network file system clients must consider a situation when the

filesystem is changed by other client or a process running on the server.
This cannot happen with local file systems, because all changes to a local
FS come through the same VFS layer and the same cache. For example, a
directory corresponding to cached dentry and inode can be renamed or
removed.

 To deal with this situation, VFS has NFS-specific logic that calls
d_revalidate() driver function on dentry cache hits (this call is visible on
Fig. 3). This result in validation RPC requests before every LOOKUP
RPC. These RPC sequences are noticeable in Appendices 1-3.

For NFSv4 and 4.1, this is redundant, because this protocol version has
NFS4ERR_STALE error code signaling that given entity does not exist on
the server.

So, instead of validating a cache entry before any access we can try the
operation and do a revalidation only after receiving an NFS4ERR_STALE
result. In worst case (when we need revalidation), this produces same
number or RPC requests as current implementation. In best case, when
the revalidation is not necessary, we avoid one RPC compound.

This approach does not work with negative dentries. The VFS never
does any file operations on cached negative dentries, so it never can get
NFS4ERR_STALE message. But negative dentry can become obsolete.

Consider the following scenario. The web server on a client node
checks for existence of the file .htaccess in a directory. VFS gets negative
dentry and caches it. Then the other client node creates .htaccess file.
Until VFS revalidates negative dentry, the web server will think the file
still does not exist.

This sound like the reason for doing negative dentry revalidation on
every request. We tried to do this and got a significant performance hit,
because real web servers do many failed file lookups per every successful
one.

In current implementation, we mark negative dentry with timestamps
and revalidate them on a first hit after a given timeout. This approach has
obvious drawbacks. Hopefully, directory delegation in NFSv4.1 would
allow us to better handle this situation.

3.1.5 Other possible issues
We tested our implementation only against Linux CentOS 7 (kernel

version 3.10) server. It is possible that other NFS servers will reject
compound lookups, or, worse, compound lookup would trigger previously
unknown bugs in the server code. Production-ready implementation must
take this to consideration. It must have a mount option that disables new
behavior for a specific server or share and reverts to old behavior.

Our implementation currently does not properly handle a situation
when the server rejects too long compound. According to the protocol
specification, in this case a server could either process part of the
compound and return the error on the rest of it (we found that Linux NFS
kernel server does this) or reject all compound. First case can be handled
by current implementation, we just need to add a proper handling to
NFS4ERR_RESOURCE (Error Code 10018) error that must be returned.
The second case is more complicated. Probably, the best solution would
be to add a mount option setting a limit on compound length for a given
mount point.

3.1 Results
Times of open(2) syscall on the modified VFS/NFSv4 show

significant improvement relative to stock kernel (see Fig. 5). It can be
said that the Fig. 5 graph shows unrealistically deep directory hierarchies

that never occur in real life. However, even on 2-5 levels of hierarchy the
performance gain is still significant.

Figure 5: Time of open(2) syscall relative to pathname depth,
including data for modified NFS client.

Impact of this change for real-world applications heavily depends on a
type of the workload. For applications accessing large files, like virtual
machine images or multimedia files, the performance gain might be
insignificant. We did the measurement on a web server application that
works with small files and takes a significant performance hit on stock
NFS client.

For historical reasons, because at the beginning of our research we
assumed that NFS is slow because of inefficient caching, we set up a test
configuration where we measured performance of a single dynamic web
page loaded repeatedly. This workload is not very realistic but provides
best conditions for any caching strategy.

The tests were performed on identical machines with the following
hardware:

1. Intel Pentium(R) Dual Core CPU E5200@2.50GHz
2. Intel 82566 DC Gigabit NIC
3. Segate Barracuda 7200.10 ST3160815AS
4. 2x1 GB RAM DDR2 800 MHz, swap 2 GB
5. CentoOS 7 (Linux 3.10 kernel)
6. NETGEAR prosafe 16 port Gigabit Switch model JGS516 IEEE

1000BaseT
The workload was Apache2 web server with mod_php, serving

Joomla! CMS application. SQL server for Joomla! was installed on the
same machine as Apache, and the database was placed on local HDD.
PHP, static files and data files of Joomla! were placed on different types of
NAS/SAN storage on an identical computer connected to the web server
by a single switch. The Apache Jmeter tool running on a third computer
was used to repeatedly open a Joomla! start page.

This type of workload is more complex than it seems, because start
page of Joomla! is a dynamic web page generated by server-side PHP
script. Opening of this page involves opening or checking existence of
~200 files, including PHP libraries, .css, JavaScript and picture files,
.htaccess files, etc. Latencies when opening or calling stat(2) on these
files have cumulative impact on the page open time.

In table 1 hot-cache sustained speed measurements for different types
of storage are presented (first sample taken on cold cache was discarded in
all datasets). It can be seen than stock NFS has ~20% performahce hit
compared to block storages, and modified version of the NFS is similar to
block storage.

On one source of latency in NFSv4 client CEE SECR 2017

 7

Table 1: Joomla! hot-cache page open time on different
storage types

Storage Average
time, ms

80% line, ms

iSCSI 111 100
NFS 130 142
NFS loop 115 108
NFS mod 108 117

Another way to produce filesystem workload are filesystem
benchmarks. Postmark is a filesystem benchmark developed by NetApp.
Unfortunately, original project page on the NetApp website is not
available, we used the version downloaded from site [14]. We choose this
benchmark because it was used in work [4] and because it could run tests
on small (1000 bytes to 20 kb) files, which is one of the worst cases for
NFS.

Below are presented the postmark config and the test results for stock
and modified NFS client. For both types of the client, the best dataset
from three runs was selected.

Config.txt:
The base number of files is 10000
Transactions: 100000
Files range between 1000 bytes and 24.41 kilobytes in size
Working directory: /root/postmark-1.51/mnt/postmark
Block sizes are: read=10.00 kilobytes, write=10.00 kilobytes
Biases are: read/append=9, create/delete=-1
Not using Unix buffered file I/O
Random number generator seed is 42
Report format is verbose.

NFS stock:
Time:

 48 seconds total
 33 seconds of transactions (3030 per second)
Files:
 10000 created (208 per second)
 Creation alone: 10000 files (1000 per second)
 Mixed with transactions: 0 files (0 per second)
 89906 read (2724 per second)
 10089 appended (305 per second)
 10000 deleted (208 per second)
 Deletion alone: 10000 files (2000 per second)
 Mixed with transactions: 0 files (0 per second)

Data:
 1332.15 megabytes read (27.75 megabytes per second)
 169.57 megabytes written (3.53 megabytes per second)

NFS mod:
Time:
 40 seconds total
 25 seconds of transactions (4000 per second)
Files:
 10000 created (250 per second)
 Creation alone: 10000 files (1000 per second)
 Mixed with transactions: 0 files (0 per second)
 89906 read (3596 per second)
 10089 appended (403 per second)
 10000 deleted (250 per second)
 Deletion alone: 10000 files (2000 per second)
 Mixed with transactions: 0 files (0 per second)
Data:
 1332.15 megabytes read (33.30 megabytes per second)

 169.57 megabytes written (4.24 megabytes per second)

4 CONCLUSIONS
We identified a source of latency in popular types of NFSv4 clients.

Then we proposed a method of removing it by modifying (extending) a
VFS API and implemented this modification. The modified version of
NFSv4 kernel client for Linux shows significant improvement in the
execution time of open(2) system call and in other system calls that work
with hierarchical pathnames (stat(2), access(2), etc). Modified version of
the client shows measurable improvement on system and application-level
benchmarks, especially on workloads using small files.

Our approach can be applied to other Unix-like NFS clients and to
other network file system clients for protocols supporting compound
requests, such as SMBv2.

Our approach (modifying kernel framework API) has obvious
drawbacks, but also obvious advantages compared to alternatives. For
example, authors of [5] propose to improve NFS latencies by
implementing an userland library for NFS file access. This requires
modification of all applications that work with the files. On other hand,
change in kernel NFS client would be available to all applications without
any change in the application or library code.

A APPENDICES
The following sequences of RPC calls were recorded by rpcdebug(8)

utility when different types of Unix-like clients executed the command

cat file_tests/nfscc/tests/multi_test/multi_test.py
Only requests related to first two pathname components are presented.

A.1 Linux 3.10 kernel (CentOS 7)
nfsv4 compound op #1/3: 22 (OP_PUTFH)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #1: 22: status 0
nfsv4 compound op #2/3: 3 (OP_ACCESS)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #2: 3: status 0
nfsv4 compound op #3/3: 9 (OP_GETATTR)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #3: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/4: 22 (OP_PUTFH)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 4 #1: 22: status 0
nfsv4 compound op #2/4: 15 (OP_LOOKUP)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 28: 00070001 00000087 00000000 03fd0000
00000000 00000000, file_tests)
nfsd: fh_compose(exp fd:03/135 share/file_tests, ino=33600139)
nfsv4 compound op ffff88007b56f080 opcnt 4 #2: 15: status 0
nfsv4 compound op #3/4: 10 (OP_GETFH)
nfsv4 compound op ffff88007b56f080 opcnt 4 #3: 10: status 0
nfsv4 compound op #4/4: 9 (OP_GETATTR)
[12355023.270083] nfsd: fh_verify(40: 81070001 00000087 00000000
03fd0000 00000000 00000000)
nfsv4 compound op ffff88007b56f080 opcnt 4 #4: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/3: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #1: 22: status 0
nfsv4 compound op #2/3: 3 (OP_ACCESS)
fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #2: 3: status 0
nfsv4 compound op #3/3: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #3: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/4: 22 (OP_PUTFH)

CEE SECR 2017 D.Irtegov et al.

8

nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 4 #1: 22: status 0
nfsv4 compound op #2/4: 15 (OP_LOOKUP)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 40: 81070001 00000087 00000000 03fd0000
00000000 00000000, nfscc)
nfsd: fh_compose(exp fd:03/135 file_tests/nfscc, ino=67191807)
nfsv4 compound op ffff880035990080 opcnt 4 #2: 15: status 0
nfsv4 compound op #3/4: 10 (OP_GETFH)
nfsv4 compound op ffff880035990080 opcnt 4 #3: 10: status 0
nfsv4 compound op #4/4: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 4 #4: 9: status 0
nfsv4 compound returned 0

A.2 Solaris (OpenIndiana 5.11)
nfsv4 compound op #1/9: 22 (OP_PUTFH)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #1: 22: status 0
nfsv4 compound op #2/9: 32 (OP_SAVEFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #2: 32: status 0
nfsv4 compound op #3/9: 15 (OP_LOOKUP)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 28: 00070001 00000087 00000000 03fd0000
00000000 00000000, file_tests)
nfsd: fh_compose(exp fd:03/135 share/file_tests, ino=33600139)
nfsv4 compound op ffff88001dcab000 opcnt 9 #3: 15: status 0
nfsv4 compound op #4/9: 10 (OP_GETFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #4: 10: status 0
nfsv4 compound op #5/9: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #5: 9: status 0
nfsv4 compound op #6/9: 31 (OP_RESTOREFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #6: 31: status 0
nfsv4 compound op #7/9: 17 (OP_NVERIFY)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #7: 17: status 0
nfsv4 compound op #8/9: 9 (OP_GETATTR)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #8: 9: status 0
nfsv4 compound op #9/9: 3 (OP_ACCESS)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #9: 3: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/9: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #1: 22: status 0
nfsv4 compound op #2/9: 32 (OP_SAVEFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #2: 32: status 0
nfsv4 compound op #3/9: 15 (OP_LOOKUP)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 40: 81070001 00000087 00000000 03fd0000
00000000 00000000, nfscc)
nfsd: fh_compose(exp fd:03/135 file_tests/nfscc, ino=67191807)
nfsv4 compound op ffff88001dcab000 opcnt 9 #3: 15: status 0
nfsv4 compound op #4/9: 10 (OP_GETFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #4: 10: status 0
nfsv4 compound op #5/9: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #5: 9: status 0
nfsv4 compound op #6/9: 31 (OP_RESTOREFH)
nfsv4 compound op ffff88001dcab000 opcnt 9 #6: 31: status 0
nfsv4 compound op #7/9: 17 (OP_NVERIFY)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88001dcab000 opcnt 9 #7: 17: status 10009
nfsv4 compound returned 10009
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/3: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #1: 22: status 0
nfsv4 compound op #2/3: 3 (OP_ACCESS)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #2: 3: status 0
nfsv4 compound op #3/3: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)

nfsv4 compound op ffff88007b56f080 opcnt 3 #3: 9: status 0
nfsv4 compound returned 0nfsv4 compound returned 0

A.3 FreeBSD 11.0-RELEASE-p1
nfsv4 compound op #1/5: 22 (OP_PUTFH)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #1: 22: status 0
nfsv4 compound op #2/5: 9 (OP_GETATTR)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #2: 9: status 0
nfsv4 compound op #3/5: 15 (OP_LOOKUP)
nfsd: fh_verify(28: 00070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 28: 00070001 00000087 00000000 03fd0000
00000000 00000000, file_tests)
nfsd: fh_compose(exp fd:03/135 share/file_tests, ino=33600139)
nfsv4 compound op ffff880035990080 opcnt 5 #3: 15: status 0
nfsv4 compound op #4/5: 10 (OP_GETFH)
nfsv4 compound op ffff880035990080 opcnt 5 #4: 10: status 0
nfsv4 compound op #5/5: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #5: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/3: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 3 #1: 22: status 0
nfsv4 compound op #2/3: 3 (OP_ACCESS)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 3 #2: 3: status 0
nfsv4 compound op #3/3: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 3 #3: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/5: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #1: 22: status 0
nfsv4 compound op #2/5: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #2: 9: status 0
nfsv4 compound op #3/5: 15 (OP_LOOKUP)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsd: nfsd_lookup(fh 40: 81070001 00000087 00000000 03fd0000
00000000 00000000, nfscc)
nfsd: fh_compose(exp fd:03/135 file_tests/nfscc, ino=67191807)
nfsv4 compound op ffff880035990080 opcnt 5 #3: 15: status 0
nfsv4 compound op #4/5: 10 (OP_GETFH)
nfsv4 compound op ffff880035990080 opcnt 5 #4: 10: status 0
nfsv4 compound op #5/5: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff880035990080 opcnt 5 #5: 9: status 0
nfsv4 compound returned 0
nfsd_dispatch: vers 4 proc 1
nfsv4 compound op #1/3: 22 (OP_PUTFH)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #1: 22: status 0
nfsv4 compound op #2/3: 3 (OP_ACCESS)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #2: 3: status 0
compound op #3/3: 9 (OP_GETATTR)
nfsd: fh_verify(40: 81070001 00000087 00000000 03fd0000 00000000
00000000)
nfsv4 compound op ffff88007b56f080 opcnt 3 #3: 9: status 0
compound returned 0

REFERENCES
[1] Dmitry Irtegov, Igor Knyazev, Julia Mallaeva, Sergey Oleynikov, Michael

Rootman, and Dmitry Solovyev. 2014. About one approach to building
low latency network file system. In Proceedings of the 10th Central and Eastern
European Software Engineering Conference in Russia (CEE-SECR '14). ACM,
New York, NY, USA,, Article 2, 9 pages.
DOI=10.1145/2687233.2687248

[2] Sage A. Weil. Ceph: reliable, scalable, and high-performance distributed
storage, Doctoral Dissertation, University of California at Santa Cruz Santa
Cruz, CA, USA, 2007

[3] Torben P. Lustre File System: Demo Quick Start Guide, Lustre Group, 2009

On one source of latency in NFSv4 client CEE SECR 2017

 9

[4] Peter Radkov, Li Yin, Pawan Goyal, Prasenjit Sarkar, Prashant Shenoy, A
Performance Comparison of NFS and iSCSI for IP-Networked Storage,
Proceedings of the 3rd USENIX Conference on File and Storage Technologies,
March 31-31, 2004, San Francisco, CA

[5] Chen, M., Hildebrand, D., Nelson, H., Saluja, J., Subramony, A. S. H., &
Zadok, E. (2017, February). vNFS: Maximizing NFS Performance with
Compounds and Vectorized I/O. In FAST (pp. 301-314).

[6] Haynes, Tom, and David Noveck. "Network File System (NFS) version 4
Protocol." RFC 7530 (2015).

[7] Shepler, Spencer, David Noveck, and Mike Eisler. "NFS version 4 minor
version 1." RFC 5661 (2010).

[8] Chen, Ming, et al. "Newer is sometimes better: An evaluation of NFSv4. 1."
ACM SIGMETRICS Performance Evaluation Review. Vol. 43. No. 1. ACM,
2015.

[9] Satran, Julian, and Kalman Meth. "Internet small computer systems interface
(iSCSI)." RFC 3720 (2004).

[10] Project OCFS2, General-purpose cluster file system.
https://oss.oracle.com/projects/ocfs2/

[11] A. Tannenbaum, M. Van Steen, 2006. Distributed Systems: Principles and
Paradigms (2nd Edition), Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

[12] IEEE Std 1003.1, 2016 Edition
[13] Gooch, Richard and Engberg, Pekka, Overview of the Linux Virtual File

System, https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
[14] PostMark Test Profile: https://openbenchmarking.org/test/pts/postmark

