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Preface

Welcome to the UltraSPARC® III Cu User’s Manual. This book contains information about

the architecture and programming of the UltraSPARC III Cu processor, one of Sun

Microsystems’ family of SPARC® V9-compliant processors.

Target Audience

This user’s manual is mainly targeted for programmers who write software for the

UltraSPARC III Cu processor. This user’s manual contains a depository of information that is

useful to operating system programmers, application software programmers, logic designers

and third party vendors, who are trying to understand the architecture and operation of the

UltraSPARC III Cu processor. This manual is both a guide and a reference manual for

low-level programming of the processor.

A Brief History of SPARC

SPARC stands for Scalable Processor ARChitecture, which was first announced in 1987.

Unlike more traditional processor architectures, SPARC is an open standard, freely available

through license from SPARC International, Inc. Any company that obtains a license can

manufacture and sell a SPARC-compliant processor.

By the early 1990s, SPARC processors were available from over a dozen different vendors,

and over 8,000 SPARC-compliant applications had been certified.

In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Version 9,

which defined a powerful 64-bit enhancement to the SPARC architecture. SPARC V9

provided support for the following:

• 64-bit virtual addresses and 64-bit integer data
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• Fault tolerance

• Fast trap handling and context switching

• Big-endian and little-endian byte orders

The UltraSPARC processor is the first family of SPARC V9-compliant processors available

from Sun Microsystems, Inc.

Prerequisites

This user’s manual is a companion to The SPARC Architecture Manual, Version 9. The reader

of this user’s manual should be familiar with the contents of The SPARC Architecture
Manual, Version 9, which is available from many technical bookstores or directly from its

copyright holder:

SPARC International, Inc.

2242 Camden Ave, Suite #105

San Jose, CA 95124

(408) 558-8111

http://www.sparc.org

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC V9 architecture. Since SPARC V9 is an open architecture, many of the

implementation decisions have been left to the manufacturers of SPARC-compliant

processors. These “implementation dependencies” are introduced in The SPARC Architecture
Manual, Version 9.

User’s Manual Overview

This manual is focused on the treatment of the UltraSPARC III Cu processor. However,

sometimes it refers to the UltraSPARC III family of processors to indicate generality of a

certain feature. The term “UltraSPARC III family of processors” refers to processors that are

similar to the UltraSPARC III Cu processor.

This manual is divided into multiple sections. The following sections are described:
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Processor Introduction

The processor introduction section describes the high level features of the

UltraSPARC III Cu processor. This section also discusses how the UltraSPARC III Cu

processor is used in a system.

Architecture and Functions

This section discusses the details of the UltraSPARC III Cu architecture and the functions of

various CPU units. An entire chapter is devoted to a discussion on the instruction execution

pipeline.

Execution Environment

This section describes the details necessary to understand the execution environment. Various

topics such as memory models, data formats, registers and instruction types are discussed.

Supervisor Programming

Supervisor software controls the processor and the instruction execution environment for

itself and application programs. Chapters are devoted to trap and interrupt handling.

Performance Programming

This section explores the opportunities to exploit the high-performance architecture of the

processor. Chapters are devoted to performance instrumentation and prefetch, two special

features of the UltraSPARC III Cu processor.

Instruction Definitions Appendix

This section describes, in detail, each instruction for the UltraSPARC III Cu processor.

SPARC V9 Architecture

The SPARC Architecture Manual, Version 9 was used to implement the CPU in the processor

to insure SPARC compatibility for user and application programs. The SPARC V9 manual

provides important theoretical information for operating system programmers who write

memory management software, compiler writers who write machine-specific optimizers, and
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anyone who writes code to run on all SPARC V9 compatible machines. Book copies of the

The SPARC Architecture Manual, Version 9 are readily available at bookstores or from

SPARC International, Inc.

Software that is intended to be portable across all SPARC V9 processors should adhere to

The SPARC Architecture Manual, Version 9.

In this book, the word architecture refers to the machine details that are visible to an

assembly language programmer or to the compiler code generator. It does not, necessarily,

include details of the implementation that are not visible or easily observable by software.

Where such details are provided, the intent is to enable faster and better programs.

Textual Usage

Fonts

Fonts are used as follows:

• Italic font is used for emphasis, book titles, the first instance of a word that is defined, and

assembly language terms.

• Italic sans serif font is used for exception and trap names. “The privileged_action
exception...” is an example of how this font is used.

• Typewriter font (Courier) is used for register fields (named bits), instruction fields,

and read-only register fields. “The rs1 field contains...” is an example of how this font is

used. It is also used for literals, instruction names, register names, and software examples.

• UPPERCASE items are acronyms, instruction names, or writable register fields. Some

common acronyms are listed in Acronyms and Definitions.

Note – Names of some instructions contain both uppercase and lowercase letters.

• Underbar characters join words in register, register field, exception, and trap names.

Note – Such words can be split across lines at the underbar without an intervening hyphen.

“This is true whenever the integer_condition_code field...” is an example of how the underbar

characters are used.
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Notational Conventions

The following notational conventions are used:

• Square brackets, [ ], indicate a numbered register in a register file. For example, r[0]

translates to register 0.

• Angle brackets, < >, indicate a bit number or colon-separated range of bit numbers within

a field. “Bits FSR<29:28> and FSR<12> are...” is an example of how the angle brackets

are used.

• Curly braces, { }, indicate textual substitution. For example, the string

“PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_PRIMARY_LITTLE.”

• If the bar, |, is used with the curly braces, it represents multiple substitutions. For

example, the string “ASI_DMMU_TSB_{8KB|64KB|DIRECT}_PTR_REG” expands to

“ASI_DMMU_TSB_8KB_PTR_REG,” “ASI_DMMU_TSB_64KB_PTR_REG,” and

“ASI_DMMU_TSB_DIRECT_PTR_REG.”

• The symbol designates concatenation of bit vectors. A comma (,) on the left side of an

assignment separates quantities that are concatenated for the purpose of assignment. For

example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T equals 112, then

(X, Y, Z) ← 0 T

results in X = 0, Y = 1, and Z = 1.

• “A mod B” means “A modulus B,” where the calculated value is the remainder when A is

divided by B.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.

Numbers in other bases are followed by a numeric subscript indicating their base (for

example, 10012, FFFF 000016). In some cases, numbers may be preceded by “0x” to indicate

hexadecimal (base-16) notation (for example, 0xFFFF.0000). Long binary and hexadecimal

numbers within the text have spaces or periods inserted every four characters to improve

readability.

The notation 7h’1F indicates a hexadecimal number of 1F16 with seven binary bits of width.

Informational Notes

This guide provides several different types of information in notes, as follows:
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Programming Note – Programming notes contain incidental information about

programming the UltraSPARC III Cu processor unless otherwise restricted to a particular

processor in the family.

Implementation Note – Implementation notes contain information that contains

implementation specific information the UltraSPARC III Cu processor compared to other

UltraSPARC processors.

Compatibility Note – Compatibility notes contain information relevant to the previous

SPARC V8 architecture.

UltraSPARC Note – UltraSPARC notes highlight the differences between the

UltraSPARC I and UltraSPARC II processors and the UltraSPARC III family of processors.

This note shows architectural and functional differences that may be generalized or

applicable to one particular processor in one of the families. Check the appropriate User’s

Manual or section in this User’s Manual to determine individual processor functionality as

needed.

Note – This highlights a useful note regarding important and informative processor

architecture or functional operation. This may be used for purposes not covered in one of the

other notes.
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Acronyms and Definitions

This chapter defines concepts and terminology common to all implementations of

SPARC V9.

address space identifier See ASI.

AFAR Asynchronous Fault Address Register.

AFSR Asynchronous Fault Status Register.

aliased Two virtual addresses that refer to the same physical address.

application program A program executed with the processor in non-privileged mode. Note: Statements

made in this specification regarding application programs may not be applicable to

programs (for example, debuggers) that have access to privileged processor state (for

example, as stored in a memory-image dump).

ASI Address space identifier. An 8-bit value that identifies an address space. For each

instruction or data access, the integer unit appends an ASI to the address. See also
implicit ASI.

ASR Ancillary State Register.

Ax Either the A0 or A1 pipeline.

BBC Bootbus controller (UltraSPARC III Cu processors).

big-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest

address is the most significant; a byte’s significance decreases as its address increases.

BLD Block load.

BST Block store.

byte Eight consecutive bits of data.

CDS Crossbar Data Switch. Data bus crossbars for the SunTM Fireplane interconnect of the

UltraSPARC III Cu Processor. Also known as Dual CPU Data Switch (DCDS).

clean window A register window in which all of the registers contain zero, a valid address from the

current address space, or valid data from the current address space.
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coherence A set of protocols guaranteeing that all memory accesses are globally visible to all

caches on a shared-memory bus.

completed A memory transaction is completed when an idealized memory has executed the

transaction with respect to all processors. A load is considered completed when no

subsequent memory transaction can affect the value returned by the load. A store is

considered completed when no subsequent load can return the value that was

overwritten by the store.

consistency See coherence.

context A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

copyback The process of copying back a dirty cache line in response to a cache hit while

snooping.

CPI Cycles per instruction. The number of clock cycles it takes to execute an instruction.

cross-call An interprocessor call in a multiprocessor system.

CSR Control Status Register.

current window The block of 24 r registers that is currently in use. The Current Window Pointer (CWP)

register points to the current window.

D-cache Level-1 data memory cache.

DCTI Delayed control transfer instruction.

DCU Data Cache Unit. Includes controller and Tag and Data RAM arrays.

demap To invalidate a mapping in the MMU.

deprecated The term applied to an architectural feature (such as an instruction or register) for

which a SPARC V9 implementation provides support only for compatibility with

previous versions of the architecture. Use of a deprecated feature must generate correct

results but may compromise software performance. Deprecated features should not be

used in new SPARC V9 software and may not be supported in future versions of the

architecture.

DFT Designed for test.

DIMM Dual In-line Memory Module. Provides a single or double bank of SDRAM devices

72 bits or 144 bits of data width.

dispatch To send a previously fetched instruction to one or more functional units for execution.

Typically, the instruction is dispatched from a reservation station or other buffer of

instructions waiting to be executed. See also issued.

doublet Two bytes (16 bits) of data.

doubleword An aligned octlet. Note: The definition of this term is architecture dependent and may

differ from that used in other processor architectures.
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DQM Data input/output Mask. Q stands for either input or output.

D-TLB Data Translation Lookaside Buffer.

ECU External or embedded Cache Unit controller.

EMU External Memory Unit. A combination of the ECU and the Memory Control Unit

(MCU).

exception A condition that makes it impossible for the processor to continue executing the

current instruction stream without software intervention. See also trap.

extended word An aligned octlet, nominally containing integer data. Note: The definition of this term

is architecture dependent and may differ from that used in other processor

architectures.

f register A floating-point register. SPARC V9 includes single-, double-, and quad-precision

f registers.

fccN One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FFA or FGA or FP1 Floating-point/Graphics ALU pipeline.

FGM or FP0 Floating-point/Graphics Multiply pipeline.

FGU Floating-point and Graphics Unit (FP0 and FP1).

floating-point
exception An exception that occurs during the execution of a Floating-point operate (FPop)

instruction while the corresponding bit in FSR.TEM is set to one. The exceptions are

unfinished_FPop, unimplemented_FPop, sequence_error, hardware_error,
invalid_fp_register, or IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Standard 754-1985. Listed within this

specification as IEEE_754_exception.

floating-point operate
(FPop) instructions Instructions that perform floating-point calculations, as defined by the FPop1 and

FPop2 opcodes. FPop instructions do not include FBfcc instructions or loads and

stores between memory and the floating-point unit.

floating-point trap type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs floating-point

operations, as defined by this specification.

FPRS Floating-point Register State.

FPU Floating-point unit.

FRF Floating-point Register File.

FSR Floating-point Status Register.
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halfword An aligned doublet. Note: The definition of this term is architecture dependent and

may differ from that used in other processor architectures.

HBM Hierarchical Bus Mode.

hexlet Sixteen bytes (128 bits) of data.

HPE Hardware Prefetch Enable.

I-cache Level-2 Instruction memory cache.

IEU Instruction Execution Unit.

IIU Instruction Issue Unit.

implementation Hardware or software that conforms to all of the specifications of an instruction set

architecture (ISA).

implementation
dependent An aspect of the architecture that can legitimately vary among implementations. In

many cases, the permitted range of variation is specified in the SPARC V9 standard.

When a range is specified, compliant implementations must not deviate from that

range.

implicit ASI The ASI that is supplied by the hardware on all instruction accesses and on data

accesses that do not contain an explicit ASI or a reference to the contents of the ASI

register.

informative appendix An appendix containing information that is useful but not required to create an

implementation that conforms to the SPARC V9 specification. See also normative
appendix.

initiated Synonym: issued.

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous

execution.

instruction set
architecture See ISA.

integer unit A processing unit that performs integer and control-flow operations and contains

general-purpose integer registers and processor state registers, as defined by this

specification.

interrupt request A request for service presented to the processor by an external device.

ISA Instruction set architecture. A set that defines instructions, registers, instruction and

data memory, the effect of executed instructions on the registers and memory, and an

algorithm for controlling instruction execution. It does not define clock cycle times,

cycles per instruction, data paths, etc.
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issued (1) A memory transaction (load, store, or atomic load-store) is “issued” when a

processor has sent the transaction to the memory subsystem and the completion of the

request is out of the processor’s control. Synonym: initiated.

(2) An instruction (or sequence of instructions) is said to be issued when released from

the processor's in-order instruction fetch unit. Typically, instructions are issued to a

reservation station or other buffer of instructions waiting to be executed. (Other

conventions for this term exist, but this document attempts to use “issue” consistently

as defined here). See also dispatched.

I-TLB Instruction Translation Lookaside Buffer.

I-TSB Instruction Translation Storage Buffer.

IU Integer Unit.

L2-cache Second level cache.

leaf procedure A procedure that is a leaf in the program’s call graph, that is, one that does not call (by

using CALL or JMPL) any other procedures.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest

address is the least significant; a byte’s significance increases as its address increases.

load An instruction that reads (but does not write) memory or reads (but does not write)

location(s) in an alternate address space. Load includes loads into integer or

floating-point registers, block loads, Load Quadword Atomic, and alternate address

space variants of those instructions. See also load-store and store, the definitions of

which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads and

writes location(s) in an alternate address space. Load-store includes instructions such

as CASA, CASXA, LDSTUB, and the deprecated SWAP instruction. See also load and

store, the definitions of which are mutually exclusive with load-store.

LPA Local Physical (or Processor) Address. Used in the context of Scalable Shared Memory

(SSM) system architectures.

may A keyword indicating flexibility of choice with no implied preference. Note: “May”

indicates that an action or operation is allowed; “can” indicates that it is possible.

MCU Memory Control Unit. Controls the SDRAM signals.

Memory Management
Unit See MMU.

Microtag A partial virtual address tag used for early way select of a virtually indexed, physically

tagged set associative cache. Microtag is often referred to as utag or Utag in this

documentation.
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MMU Memory Management Unit. The address translation hardware in the

UltraSPARC III Cu implementation that translates 64-bit virtual address into physical

addresses. The MMU is composed of the translation lookaside buffers (TLBs), ASRs,

and ASI registers used to manage address translation. See also context, physical
address, and virtual address.

module A master or slave device that attaches to the shared-memory bus.

MOESI A cache-coherence protocol. Each of the letters stands for one of the states that a cache

line can be in, as follows: M, modified, dirty data with no outstanding shared copy; O,

owned, dirty data with outstanding shared copy(s); E, exclusive, clean data with no

outstanding shared copy; S, shared, clean data with outstanding shared copy(s); I,

invalid, invalid data.

must Synonym: shall.

NaN Not a Number.

NCPQ Non-coherent pending queue.

next program counter See nPC.

NFO Non-fault access only.

non-faulting load A load operation that, in the absence of faults or in the presence of a recoverable fault,

completes correctly, and in the presence of an unrecoverable fault returns (with the

assistance of system software) a known data value (nominally zero). See also
speculative load.

non-privileged An adjective that describes:

(1) the state of the processor when PSTATE.PRIV = 0, that is, non-privileged mode;

(2) processor state information that is accessible to software while the processor is in

either privileged mode or non-privileged mode; for example, non-privileged registers,

non-privileged ASRs, or, in general, non-privileged state;

(3) an instruction that can be executed when the processor is in either privileged mode

or non-privileged mode.

non-privileged mode The mode in which a processor is operating when PSTATE.PRIV = 0. See also
privileged.

normative appendix An appendix containing specifications that must be met by an implementation

conforming to the SPARC V9 specification. See also informative appendix.

nPC Next program counter. A register that contains the address of the next executed

instruction if a trap does not occur.

NPT Non-privileged trap.

NWINDOWS The number of register windows present in a particular implementation.

OBP OpenBootTM PROM.
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octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been

commonly used to describe eight bits of data. In this document, the term byte, rather

than octet, is used to describe eight bits of data.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for SPARC V9 compliance.

ORQ Outgoing request queue.

PA Physical address. An address that maps real physical memory or I/O device space. See
also virtual address.

Page Table Entry See PTE.

PC Program counter. A register that contains the address of the instruction currently being

executed by the IU.

PCR Performance Control Register.

physical address See PA.

PIC Performance Instrumentation Counter.

PIO Programmed I/O.

PIPT Physically indexed, physically tagged.

PIVT Physically indexed, virtually tagged.

POR Power-on Reset. The most aggressive reset.

prefetchable (1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.

(2) A memory location condition for which the system designer has determined that no

undesirable effects will occur if a PREFETCH operation to that location is allowed to

succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or cause

external events to occur. For example, some I/O devices are designed with registers

that clear on read; others have registers that initiate operations when read. See also
side-effect.

privileged An adjective that describes:

(1) the state of the processor when PSTATE.PRIV = 1, that is, privileged mode;

(2) processor state that is only accessible to software while the processor is in

privileged mode; for example, privileged registers, privileged ASRs, or, in general,

privileged state;

(3) an instruction that can be executed only when the processor is in privileged mode.

privileged mode The mode in which a processor is operating when PSTATE.PRIV = 1. See also
non-privileged.

processor The combination of the integer unit and the floating-point unit.
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program counter See PC.

PSO Partial store order.

PTA Pending tag array.

PTE Page Table Entry. Describes the virtual-to-physical translation and page attributes for a

specific page. A PTE generally means an entry in the page table or in the TLB;

however, it is sometimes used as an entry in the translation storage buffer (TSB). In

general, a PTE contains fewer fields than a TTE. See also TLB and TSB.

QNaN Quiet Not a Number.

quadlet Four bytes (32 bits) of data.

quadword Aligned hexlet. Note: The definition of this term is architecture dependent and may be

different from that used in other processor architectures.

r register An integer register. Also called a general-purpose register or working register.

RAW Read-After-Write.

RD Rounding direction.

RDPR Read Privileged Register.

RED_state Reset, Error, and Debug state. The processor state when PSTATE.RED = 1. A

restricted execution environment used to process resets and traps that occur when

TL = MAXTL – 1.

reserved Describes an instruction field, certain bit combinations within an instruction field, or a

register field that is reserved for definition by future versions of the architecture.

Reserved instruction fields shall read as zero, unless the implementation supports

extended instructions within the field. The behavior of SPARC V9 processors when

they encounter nonzero values in reserved instruction fields is undefined.

Reserved bit combinations within instruction fields are defined in Appendix A,

Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap on these

reserved combinations.

Reserved register fields should always be written by software with values of those

fields previously read from that register or with zeroes; they should read as zero in

hardware. Software intended to run on future versions of SPARC V9 should not

assume that these fields will read as zero or any other particular value. Throughout this

specification, figures and tables illustrating registers and instruction encodings indicate

reserved fields and combinations with an em dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address reset trap

table. Reset traps cause entry into RED_state.

restricted Describes an ASI that may be accessed only while the processor is operating in

privileged mode.

RMO Relaxed memory order.
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rs1, rs2, rd The integer or floating-point register operands of an instruction. The source registers

are rs1 and rs2; the destination register is rd.

RTO Read to own.

RTOR Read to own remote. A reissued RTO transaction.

RTS Read to share.

RTSM Read to share Mtag. An RTS to modify MTag transaction.

SAM SPARC Architecture Manual, Version 9.

scrub Writes data from the W-cache to the L2-cache.

SDRAM Synchronous Dynamic Random Access Memory. May be prefaced with DDR, double

data rate SDRAM.

SFAR Synchronous Fault Address Register.

SFSR Synchronous Fault Status Register.

shall A keyword indicating a mandatory requirement. Designers shall implement all such

mandatory requirements to ensure interoperability with other SPARC V9 compliant

products. Synonym: must.

should A keyword indicating flexibility of choice with a strongly preferred implementation.

Synonym: it is recommended.

SIAM Set interval arithmetic mode instruction.

side-effect The result of a memory location having additional actions beyond the reading or

writing of data. A side-effect can occur when a memory operation on that location is

allowed to succeed. Locations with side-effects include those that, when accessed,

change state or cause external events to occur. For example, some I/O devices contain

registers that clear on read; others have registers that initiate operations when read. See
also prefetchable.

SIG Single-Instruction Group. Sometimes shortened to “single-group.”

SIR Software-initiated reset.

SIU System Interface Unit (Sun Fireplane interconnect).

SNaN Signalling Not a Number.

snooping The process of maintaining coherency between caches in a shared-memory bus

architecture. All cache controllers monitor (snoop) the bus to determine whether they

have a copy of the shared cache block.

SPE Software prefetch enable.
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speculative load A load operation that is issued by the processor speculatively, that is, before it is

known whether the load will be executed in the flow of the program. Speculative

accesses are used by hardware to speed program execution and are transparent to code.

An implementation, through a combination of hardware and system software, must

nullify speculative loads on memory locations that have side-effects; otherwise, such

accesses produce unpredictable results. Contrast with non-faulting load, which is an

explicit load that always completes, even in the presence of recoverable faults.

SSM Scalable shared memory. A directory based data coherency mechanism.

store An instruction that writes (but does not explicitly read) memory or writes (but does not

explicitly read) location(s) in an alternate address space. Store includes stores from

either integer or floating-point registers, block stores, partial store, and alternate

address space variants of those instructions. See also load and load-store, the

definitions of which are mutually exclusive with store.

superscalar An implementation that allows several instructions to be issued, executed, and

committed in one clock cycle.

supervisor software Software that executes when the processor is in privileged mode.

TBA Trap base address.

TLB Translation Lookaside Buffer. A cache within an MMU that contains recent partial

translations. TLBs speed up closely following translations by often eliminating the

need to reread PTE from memory.

TLB hit The desired translation is present in the on-chip TLB.

TLB miss The desired translation is not present in the on-chip TLB.

TPC Trap-saved PC.

Translation Lookaside
Buffer See TLB.

trap The action taken by the processor when it changes the instruction flow in response to

the presence of an exception, a Tcc instruction, or an interrupt. The action is a

vectored transfer of control to supervisor software through a table, the address of

which is specified by the privileged TBA register. See also exception.

TSB Translation storage buffer. A table of the address translations that is maintained by

software in system memory and that serves as a cache of the address translations.

TSO Total store order.

TTE Translation table entry. Describes the virtual-to-physical translation and page attributes

for a specific page in the Page Table. In some cases, the term is explicitly used for the

entries in the TSB.

UE User process error.
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unassigned A valued (for example, an ASI number) semantics which are not architecturally

mandated and which may be determined independently by each implementation within

any given guidelines.

undefined An aspect of the architecture deliberately left unspecified. Software should have no

expectation of, nor make any assumptions about, an undefined feature or behavior. Use

of such a feature can deliver unexpected results, may or may not cause a trap, can vary

among implementations, and can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause

security holes (such as allowing user software to access privileged state), put the

processor into supervisor mode or an unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is optional

or emulated in software.

unpredictable Synonym: undefined.

unrestricted Describes an ASI that can be used regardless of the processor mode, that is, regardless

of the value of PSTATE.PRIV.

user application
program Synonym: application program.

VA Virtual address. An address produced by a processor that maps all systemwide,

program-visible memory. Virtual addresses usually are translated by a combination of

hardware and software to physical addresses, which can be used to access physical

memory.

victimize [Error handling]

VIPT Virtually indexed, physically tagged.

virtual address See VA.

VIS Visual Instruction Set. Performs partitioned integer arithmetic and other small integer

operations.

VIVT Virtually indexed, virtually tagged (cache).

WAW Write-After-Write.

WDR Watchdog trap-level reset.

word An aligned quadlet. Note: The definition of this term is architecture dependent and

may differ from that used in other processor architectures.

WRF Working Register File.

writeback The process of writing a dirty cache line back to memory before it is refilled.

WRPR Write Privileged Register.

XIR Externally initiated reset.
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CHAPTER 1

Processor Introduction

1.1 Overview

The UltraSPARC III Cu processor is a high-performance, highly integrated superscalar

processor that implements the 64-bit SPARC V9 RISC architecture. It can sustain the

execution of up to four instructions per cycle, even in the presence of conditional branches

and cache misses, mainly because the units asynchronously feed instructions and data to the

rest of the pipeline. Instructions that are predicted to be executed are issued in program order

to multiple functional units, executed in parallel, and for added parallelism can be completed

out-of-order. To further increase the number of instructions executed per cycle, instructions

from two basic blocks can be issued in the same group.

The chip supports a 64-bit virtual address space and a 43-bit physical address space. The

core instruction set has been extended to include graphics instructions that provide the most

common operations related to two-dimensional image processing, two- and

three-dimensional graphics and image compression algorithms, and parallel operations on

pixel data with 8- and 16-bit components.

The processor is designed to offer very high clock speeds as well as wide superscalar issue to

exploit instruction-level parallelism. The processor offers large Level-1 instruction and data

caches, large flexible memory management units (MMUs), and support for large L2-cache.

The processor was designed to work in systems ranging from single processor workstations

through cache coherent servers with over a hundred processors. For building large systems,

the processor has built-in support for both snooping-based cache coherency and

directory-based cache coherency.

The architecture and implementation coupled with new compiler techniques make it possible

to reduce each component while not degrading the other two.
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1.2 CPU Features

The UltraSPARC III Cu processor is a richly featured processor. Features include:

• SPARC V9 Architecture with the VIS™ II Instruction Set, SPARC Binary code hardware

compatible

• 4-way superscalar processor with nine execution units and six execution pipelines

• 14 stage, non-stalling pipeline

• Improved memory latency

• 64-bit data paths, 64-bit ALUs, 64-bit address arithmetic

• 64-bit virtual address and 43-bit physical address space

• Data prefetching mechanism

• L2-cache unit that supports a 2-way set associative cache

• Comprehensive error detection and recovery

• Data Memory Management Unit with 1040 Translation Lookaside Buffer (TLB) entries

that can support up to 4 MB pages

1.3 Cache Features

The UltraSPARC III Cu processor cache features include:

• 32 KB, 4-way set associative primary instruction cache memory with parity

• 64 KB, 4-way set associative primary data cache memory with parity

• 2 KB, 4-way set associative Prefetch cache for software prefetch

• 2 KB, 4-way set associative Write cache reduces store bandwidth to Level 2 cache

• 8 MB, 2-way set associative external unified L2-cache with ECC protection (single bit

correction, double bit detection)

1.4 Technology

The UltraSPARC III Cu processor technology features include:

• 0.18 µ, 7-layer Cu metal, CMOS process

• 1.6 V core and 1.5 V I/O power supplies
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• 232 mm2 die size

• 1368 pin ceramic LGA package

• 900 MHz and higher frequency

• 80 W power dissipation at 900 MHz

1.5 UltraSPARC III Cu Differences

The UltraSPARC III Cu processor differs from previous UltraSPARC processors in several

key areas, including:

• Bootbus limitations

• Instruction set extensions

• Instruction differences

• Memory subsystem

• Interrupts

• Address space size

• Error correction

• Registers

• Non-cacheable store compression

• RAS Architecture

This section describes the UltraSPARC III Cu chip differences and includes a summary table

of those differences. The section concludes with a discussion of the UltraSPARC III Cu

processor performance enhancements and RAS architecture.

1.5.1 Bootbus Limitations

All bootbus addresses must be mapped as side-effect pages with the TTE.E bit set. In

addition, programmers must not issue the following memory operations to any bootbus

address:

• Prefetch instructions

• Block load and block store instructions

• Any memory operations with ASI_PHYS_USE_EC or ASI_PHYS_USE_EC_LITTLE

• Partial store instructions
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1.5.2 Instruction Set Extensions

The UltraSPARC III Cu processor has added Sun proprietary extensions to the SPARC V9

Instruction Set Architecture (ISA), in addition to those implemented in UltraSPARC I. The

extensions are in the areas of VIS extensions, prefetch enhancement, and interval arithmetic

support.

1.5.2.1 Visual Instruction Set (VIS) Extensions

Three new VIS instructions were added:

• Byte Mask — Sets the Graphics Status Register (GSR) for a following byte shuffle

operation. One byte mask can be issued per instruction group as the last instruction of the

group.

Byte Mask is a break-after instruction.

• Byte Shuffle — Allows any set of 8 bytes to be extracted from a pair of double-precision,

floating-point registers and written to a destination double-precision, floating-point

register. The 32-bit byte mask field of the GSR specifies the pattern of source bytes for the

byte shuffle instruction.

• Edge(ncc) — Two variants: the original instruction sets the integer condition codes, and

the new instruction does not set condition codes. Differences between the variants are as

follows:

Edge Edge(ncc)
Sets integer condition codes Does not set integer condition codes

Single instruction group Groupable

Because of implementation restrictions in the pipeline, all instructions that set condition

codes and execute in the MS pipeline stage must be in a single instruction group.

1.5.2.2 Prefetch Enhancement

The processor supports an instruction to invalidate a prefetched line. It invalidates a prefetch

cache line after prefetched data has been loaded into registers and on error conditions.

1.5.2.3 Interval Arithmetic Support

One new instruction was added to improve the efficiency of interval arithmetic computations.

The Set Interval Arithmetic Mode (SIAM) instruction enables the rounding mode bits in the

Floating-Point Status Register (FSR) to be overridden without the overhead of modifying the

RD field of the FSR. Updates directly to FSR are expensive because they flush the pipeline.
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1.5.3 Instruction Differences

Several instructions have changed relative to the previous UltraSPARC processors.

• SHUTDOWN — Low power mode compliance is achieved through a different mechanism

than that used by the UltraSPARC I processor. For compatibility, the SHUTDOWN
instruction in the UltraSPARC III Cu processor executes as a NOP.

• FLUSH — Since the processor maintains consistency between the instruction cache and

all store and atomic instructions, the FLUSH instruction is used only to clear the pipeline.

Unlike the case with the UltraSPARC I processor, the FLUSH address is ignored. It is not

used for instruction cache flushing and is not propagated to the system.

• Floating-point conversion instructions — Because of implementation restrictions, the

following integer to floating-point conversion instructions generate an unfinished_FPop
exception for certain ranges of integer operands, as shown in TABLE 1-1.

When the above instructions take an unfinished_FPop trap, system software must properly

emulate the instruction and resume execution.

• NaN handling — Because of implementation restrictions, the processor generates an

unfinished_FPop exception for operations that use the floating-point adder when one or

more of the operands is NaN. Previous UltraSPARC processors would propagate the NaN

in hardware.

• Floating-point subnormal — Because of implementation restrictions, the processor

generates an unfinished_FPop exception in nonstandard mode for floating-point addition

and floating-point subtraction operations when the result is a subnormal value. Previous

UltraSPARC processors handled these in hardware. When an unfinished_FPop trap is

generated, it is expected that system software will properly emulate the instruction and

resume execution.

• Ticc reserved field checking — The processor checks the reserved field of the Ticc
instruction for zero and generates an illegal_instruction trap if the field is nonzero.

Neither UltraSPARC I nor UltraSPARC II processors checked the Ticc reserved field for

zero.

TABLE 1-1 Integer/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FsTOi result < − 231, result ≥ 231, Inf, NaN

FsTOx |result| ≥ 252, Inf, NaN

FdTOi result < − 231, result ≥ 231, Inf, NaN

FdTOx |result| ≥ 252, Inf, NaN

FdTOs |result| ≥ 252, |result| <2-31, operand < − 222, operand ≥ 222, NaN

FiTOs operand < − 222, operand ≥ 222

FxTOs operand < − 222, operand ≥ 222

FxTOd operand < − 251, operand ≥ 251
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1.5.4 Memory Subsystem

The memory subsystem design is new. Differences include changes in the caches, cache

flushing, and TLBs.

1.5.4.1 Caches

The UltraSPARC III Cu memory system comprises five caches: four on-chip and one external

to the chip.

• Data cache (D-cache) — A 64 KB, 4-way associative, virtually indexed, physically

tagged (VIPT) cache. The D-cache is write-through, no write-allocate, not included in the

L2-cache. The line size is 32 bytes with no sub-blocking. The D-cache needs to be flushed

only if an alias is created with virtual address (VA) bit 13. VA<13> is the only virtual bit

used to index the D-cache.

• Instruction cache (I-cache) — A 32 KB, 4-way associative, VIPT cache. The I-cache is

not included in the L2-cache.

The line size is 32 bytes - no sub-blocking. The I-cache is kept consistent with the store

stream of the processor as well as with external stores from other processors.

You never need to flush the I-cache, not even for address aliases.

• Prefetch cache (P-cache) — A 2 KB, 4-way associative cache. It is virtually indexed,

virtually tagged (VIVT) cache for lookup and install to the cache. It is physically indexed

and physically tagged for snoop and invalidate operations. The P-cache is not included in

the L2-cache. The line size is 64 bytes with 32-byte sub-blocks.

The P-cache is globally invalidated if any of the following conditions occur:

■ If the context registers are written

■ If there is a demap operation in the DMU

■ When the DMU is turned on or off

Individual lines are invalidated on any of the following conditions:

■ A store hits

■ An external snoop hit

■ Use of software prefetch invalidate function (PREFETCH with fcn = 16)

The P-cache is used for software prefetch instructions as well as for autonomous hardware

prefetches from the L2-cache.

Software never needs to flush the P-cache, not even for address aliases.

• Write cache (W-cache) — A 2 KB, 4-way associative, PIPT cache. The line size is

64 bytes with 32-byte sub-blocks. The W-cache reduces bandwidth to the L2-cache by

coalescing and bursting stores to the L2-cache.

The W-cache is included in the L2-cache; all lines in the W-cache have a corresponding

line allocated in the L2-cache. The data state of the W-cache line always supersedes the

state of the data in the corresponding L2-cache line.
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It is necessary to flush the W-cache for stable storage. Flushing the L2-cache implicitly

forces the flush of the W-cache.

• L2-cache — A 1 MB to 8 MB, direct mapped or 2-way set associative, PIPT cache. The

L2-cache is write-allocate, write-back.

It is necessary to flush the L2-cache for stable storage.

1.5.4.2 Cache Flushing

The following are flushing requirements for specific caches:

• Data cache — The UltraSPARC III Cu D-cache differs in size and organization from the

UltraSPARC I D-cache and so requires changes to the algorithms used to flush the cache.

The virtually indexed caches need to be flushed when a virtual address alias is created.

Caches that contain modified data need to be flushed for stable storage.

The UltraSPARC III Cu D-cache is the only cache that needs to be flushed when a virtual

address alias is created. Like the UltraSPARC I D-cache, the UltraSPARC III Cu D-cache

uses one virtual address bit for indexing the cache and thus creates an alias boundary of

16 KB for the D-cache.

• Instruction cache — The processor maintains consistency of the on-chip I-cache with the

stores from all processors so that a FLUSH instruction is needed only to ensure the

pipeline is consistent. This means a single flush is sufficient at the end of a sequence of

stores that updates the instruction stream to ensure correct operation.

Unlike the case with the UltraSPARC I processor, the FLUSH instruction does not

propagate externally since all I-caches in an UltraSPARC III Cu multiprocessor system

are maintained consistent. Since the I-cache is a PIPT cache, it does not have to be flushed

for virtual address aliases. The I-cache never contains modified data; therefore, it does not

need to be flushed for stable storage.

• Prefetch cache — The P-cache is physically indexed and tagged. It cannot contain

modified data, so it never needs to be flushed.

• L2-caches and write caches — Since the L2-cache and W-cache can contain modified

data, they must be flushed for stable storage. The W-cache is included in the L2-cache, so

it is sufficient to flush a block from the L2-cache; if there is a corresponding block in the

W-cache, it will also be flushed. The recommended procedure to flush modified data from

the L2-cache back to memory is as follows:

■ Load the block (64 bytes) into the floating-point registers by using FP loads or

Block Load.

■ Write the floating-point registers to memory with a Block Store Commit.

■ Issue MEMBAR #Sync to ensure completion.

The Block Store with Commit instruction will invalidate the block from both the L2-cache

and the W-cache. Both of these caches are physically indexed, so they do not need to be

flushed for address aliases.
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1.5.4.3 Translation Lookaside Buffers (TLBs)

The implementation of instruction and data TLBs for the UltraSPARC III Cu processor is

described in this section.

The following are two instruction TLBs that are accessed in parallel:

• A 16-entry, fully associative TLB to hold entries for 8 KB, 64 KB, 512 KB, and 4 MB

page sizes. This TLB contains locked and unlocked pages of any size.

• A 128 entry, 2-way associative TLB used exclusively for 8 KB page entries. This TLB

contains only unlocked pages.

The following are three data TLBs that are accessed in parallel.

• A 16-entry, fully associative TLB to hold entries for 8 KB, 64 KB, 512 KB, and 4 MB

page sizes. This TLB contains locked and unlocked pages of any size.

• Two 512 entry, 2-way set associative that can each be programmed to support lookup of

any one page size at a given time. However, multiple page sizes can be resident. This TLB

contains only unlocked pages.

Other TLB differences are described below:

• TLB flushing — Both the instruction and data TLBs now have a demap-all operation that

removes all unlocked Translation Table Entries (TTEs).

• TTE format — The UltraSPARC III Cu processor now has the additional elements in the

TTE format:

■ Physical Address field: Expanded from 28 bits (PA<40:13>, TTE<40:13>) to 30 bits

(PA<42:13>, TTE<42:13>).

• Synchronous Fault Status Registers (SFSR) extensions — A new fault type was added

to the FT field of the SFSR to indicate an I/D-TLB miss, and one status bit was added to

the D-TLB SFSR:

■ NF: Set to signify that the faulting operation was a speculative load instruction.

• Instruction/Data Translation Storage Buffer (i/dTSB) Register — Three new register

extensions of the i/dTSB register were added to the UltraSPARC III Cu processor. These

registers allow a different TSB virtual address base to be used for each of the three virtual

address spaces (primary, secondary, nucleus) in the D-TLB and two virtual address spaces

(primary, nucleus) in the I-TLB. On an I/D-TLB miss, the processor selects which TSB

Extension Register to use to form the TSB base address, based on the virtual space

accessed by the faulting instruction.

• TLB Data Access Register — The access address for the TLB Data Access Register has

been expanded to enable access to three TLBs, each with up to 512 entries.

• TLB Diagnostic Register — A new register replaces the function of the diagnostic bits in

the TTE.
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1.5.5 Interrupts

The UltraSPARC III Cu processor extends the interrupt architecture previously implemented

in the UltraSPARC I processor in these areas:

• Module ID fields — Extended from 5 bits to 10 bits.

• Interrupt Transmit BUSY/NACK bits — Extended from 1 pair to 32 pairs, enabling

pipelining of outgoing interrupts.

• Data Dispatch and Receive Registers — Expanded from 3 to 8, enabling up to 64 bytes

to be transmitted in an interrupt.

• System Tick Interrupt bit — Added to the soft interrupt register.

1.5.6 Address Space Size

The UltraSPARC III Cu processor extends both the virtual and physical address space

previously implemented. It implements the full 64-bit virtual address range defined in the

SPARC V9 architecture. There are no VA holes, compared to the UltraSPARC I. The physical

address range has also been extended from 41 bits to 43 bits.

Address space with PA<42> = 1 is considered as the non-cacheable address space. Physical

address 4000000000016 to 7FFFFFFFFFF16 is in the non-cacheable area.

1.5.7 Registers

Differences in registers include enhancements to ASI registers and ASR registers.

Address Space Identifier (ASI) Registers

Changes to the ASI registers include those to the following registers:

• SRAM diagnostic registers — Several new diagnostic ASI registers were added for the

following on-chip SRAMs:

■ Prefetch cache

■ Write cache

■ Branch predict array

■ I/D-TLB CAM

Changes were made to fields of existing UltraSPARC II diagnostic ASI registers for the

following on-chip SRAMs:

■ Data cache

■ L2-cache

■ Instruction cache
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The following ASI registers were removed:

■ UDB Error Register

■ UDB Control Register

• Asyncronous Fault Status Register (AFSR) — Several changes were made to add new

fault types (L2-cache ECC errors) and remove old fault types (SDB errors). AFSR
accumulates errors.

• Asynchronous Fault Address Register (AFAR) — The AFAR was extended to handle a

43-bit physical address. It is now updated on several errors that previously did not capture

the address. AFAR overwrites for higher priority errors if a more severe error occurs.

• Secondary Asyncronous Fault Status Register (AFSR) — Secondary AFSR captures

the first error.

• Asynchronous Fault Address Register (AFAR) — Secondary AFAR captures the

address associated with the first error and it locks until it is explicitly cleared by software.

• Software Interrupt Register (SOFTINT) — The SOFTINT register has an additional

bit added to signal SYSTEM TICK COMPARE interrupts.

• System Interface Registers — The UPA interface ASI has been reused for two new

Fireplane Interconnect registers: a configuration register and an address register.

Ancillary State Registers (ASRs)

Changes to the ASRs include changes to the following registers:

• System Tick and Compare — Two new ASRs were added to support a system clock:

ASR 1816, a System Tick Register (analogous to the per-processor tick register ASR 416),

and ASR 1916, a System Tick Compare Register (analogous to the per-processor tick

compare register 1716).

• Graphics Status Register (GSR) — New fields were added to the GSR:

■ 32-bit MASK field used by the BSHUFFLE instruction

■ 1-bit IM field to enable interval arithmetic round mode

■ 2-bit IRD field to specify round mode for interval arithmetic

• Performance Control Register (PCR) — The PCR has been extended to enable a larger

number of performance events to be measured.

• Dispatch Control Register (DCR) — Many control fields were added to the DCR to aid

in debugging first silicon.

1.5.8 Non-Cacheable Store Compression

Like previous implementations, the UltraSPARC III Cu processor uses a 16-byte buffer to

merge adjacent non-cacheable stores into a single external data transaction. This merging

greatly increases store bandwidth to the graphics frame buffer. A change in the algorithm for

determining when to break merging improves store bandwidth to graphics devices.
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1.5.9 Error Correction

Error correction differs from the UltraSPARC I processor and the UltraSPARC II processor

handling, as follows:

• L2-cache — The processor uses ECC protection on the L2-cache instead of parity

protection. It requires software correction and recovery for single bit L2-cache ECC read

errors, which are signaled as a precise error.

• System interface — A new ECC code has been defined for ECC protection across 132

data bits (nine ECC bits) and three MTag bits (four ECC bits) on the system bus and on

the data switch. The syndromes for these codes differ from the syndromes used

previously. The processor requires software correction and recovery for single-bit system

ECC errors, which are signaled as disrupting errors.

1.5.10 SRAM Protection and RAS Features

TABLE 1-2 lists all UltraSPARC III Cu on-chip SRAM protection and other RAS features.

TABLE 1-2 RAS Features

No. Feature Feature Description

1. D-cache Data array parity

protection

2 parity bits per 64-bit data

2. D-cache Physical Tag array

parity protection

1-bit parity per tag entry

3. D-cache Snoop Tag array

parity protection

1-bit parity per tag entry

4. I-cache Data array parity

protection

1-bit parity per partially decoded instruction

5. I-cache Physical Tag array

parity protection

1-bit parity per tag entry

6. I-cache Snoop Tag array

parity protection

1-bit parity per tag entry

7. L2-cache data array ECC

protection

ECC Protection with 1-bit correction and 2-bit detection

8. L2-cache Tag array ECC

protection

ECC Protection with 1-bit correction and 2-bit detection

9. Dual AFSR/AFAR Secondary AFSR/AFAR captures on the first error event

while primary AFSR/AFAR accumulates in case of multiple

events
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CHAPTER 2

System Introduction

This chapter discusses how the UltraSPARC III Cu processor is used in systems.

2.1 System Configurations

The UltraSPARC III Cu processor can be used in a variety of configurations from

two-processor systems to very large, high-performance Symmetric Multiprocessor (SMP)

Systems.

2.1.1 Two-Processor Configuration with UltraSPARC III Cu

FIGURE 2-1 is an example of a two-processor UltraSPARC III Cu configuration. This

configuration is the basic building block that can be used to build SMP systems.

In this configuration, both UltraSPARC III Cu processors are connected to a Dual CPU Data

Switch (DCDS) via a 16-byte interface at 150 MHz. Each processor has an address and

control interface to the SDRAMs. However, the data from the SDRAM is connected directly

to the DCDS via a 64-byte interface running at 75 MHz. Note that the ranges for the

SDRAM on different UltraSPARC III Cu CPUs should not overlap. Each UltraSPARC III Cu

CPU connects to the Fireplane Interconnect Address bus. The UltraSPARC III Cu CPU also

connects with an L2-cache via a 32-byte interface and with the Boot PROM via the Boot Bus

interface. Both UltraSPARC III Cu CPUs provide a JTAG interface.
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FIGURE 2-1 Two-Processor Configuration with the UltraSPARC III Cu

Note – Some processors or memories may not be present in the actual system.

2.1.2 Four-Processor Configuration with UltraSPARC III Cu

A four-processor configuration, shown in , is built from a two-processor configuration. This

example also demonstrates how larger systems can be created by using an address repeater

and a Level 1 data switch. I/O controllers, bridge chips, or external devices are connected to

the system via the address repeater and the data switch. This configuration can be repeated to

create a high performance SMP system.

UltraSPARC III Cu
CPU

Dual CPU Data Switch

Addr + Ctl

SDRAM

UltraSPARC III Cu
CPU

Data @ 75 MHz
64 bytes + ECC

16 bytes @ 150 MHz

L2-cache

Addr + Ctl

SDRAM

Data @ 75 MHz
64 bytes + ECC

L2-cache

Fireplane Address Interconnect
37 bit + control + arbitration + ECC

Boot PROM

Boot Bus

JTAG

JTAG

Fireplane Data Interconnect
32 bytes @ 150 MHz

32 bytes
@ 200-350 MHz

32 bytes
@ 200-350 MHz
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Four-Processor Configuration with the UltraSPARC III Cu

Level 1 Data Switch

Fireplane Address Interconnect
37 bit + control + arbitration + ECC

Fireplane Data Interconnect

To System Data Switch
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2.1.3 Multiprocessor System with the UltraSPARC III Cu

A multiprocessor system, as shown in FIGURE 2-2, can be built using the two-processor

configuration shown in FIGURE 2-1. A system address and data repeater are used to build such

systems. Various devices can be connected to the system via PCI interfaces. Level 1 and

Level 2 address repeaters and data switches are used to build systems that can accommodate

up to six processor/memory boards and up to four I/O subsystems.

FIGURE 2-2 Multiprocessor System with the UltraSPARC III Cu
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2.1.4 Very Large Multiprocessor System with the

UltraSPARC III Cu

A very large multiprocessor system, as shown in FIGURE 2-3, can be built by interconnecting

multiple configurations, shown in FIGURE 2-2, using Level 3, 18-port crossbar switches.

FIGURE 2-3 Very Large Multiprocessor System with the UltraSPARC III Cu

US III Cu

L2
SDRAM

Dual CPU Data Switch

US III Cu

L2
SDRAM

US III Cu

L2
SDRAM

Dual CPU Data Switch

US III Cu

L2
SDRAM

Address
Repeater

Data Path
Controller

Level 1
Data Switch

Address
Repeater

Data Path
Controller

Level 1
Data Switch

PCI

33 MHz Cards

66 MHz Cards

PCI

33 MHz Cards

66 MHz Cards

18 x 18
Address
Crossbar

18x18
Response
Crossbar

18x18
Data
Crossbar

Level 0Level 1Level 3

System
Address
Repeater

System
Data
Controller

System
Data
Switch
(Level 2)

Level 2
Chapter 2 System Introduction 2-17



2.2 Cache Coherence

UltraSPARC III Cu-based systems support a “snooping” based cache coherence protocol and

a directory based cache coherence protocol (also known as Scalable Shared Memory (SSM)).

For small to medium systems, the UltraSPARC III Cu processor uses a MOESI snooping

protocol. In this protocol, when a processor wants a line, it broadcasts the request to all other

processors, which check their caches to see if they have the line.

For larger systems, the UltraSPARC III Cu processor has built-in support for a directory

based coherence protocol (SSM).

In practice, there are small clusters of processors that are connected together with a snooping

based coherence protocol. A directory based cache coherence protocol is used between

clusters.

2.3 System Interfaces

There are multiple interfaces on the UltraSPARC III Cu processor. This section summarizes

the various interfaces.

2.3.1 Fireplane Interconnect

The Fireplane Interconnect has two parts. Both typically run in the range of 150 MHz.

• A hierarchical bus for address and control.

• A point-to-point data interconnect.

The Fireplane Interconnect Address Bus has 37 bits of address plus control, arbitration and

ECC bits. All UltraSPARC III Cu processors connect to this bus directly. To build larger

multiprocessor systems, a repeater chip is used to create a hierarchical bus.

The Fireplane Interconnect Data Bus has 32 bytes of data along with ECC and routing

information. All UltraSPARC III Cu processors connect to the Fireplane Interconnect Data

Bus through a DCDS switch. To build larger multiprocessor systems, a point-to-point data

network built with Level 1 data switches can be used.
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2.3.2 SDRAM Interface

The UltraSPARC III Cu processor provides address and control bits to the SDRAM. The data

from the SDRAM is directly driven to the DCDS via a 64-byte interface running at one-half

of the Fireplane frequency.

2.3.3 DCDS Interface

The UltraSPARC III Cu processor connects to the Dual CPU Data Switch (DCDS) via a

16-byte interface running at 150 MHz and capable of delivering a peak bandwidth of

2.4 GB/s. DCDS is an eight chip, bit slice switch that converts it into a 32-byte Fireplane

Interconnect Data Port running at 150 MHz and capable of delivering a peak bandwidth of

4.8 GB/s.

2.3.4 L2-Cache Interface

The UltraSPARC III Cu processor connects to an up to 8 MB, 2-way set associative external

unified Level 2 (L2) cache with ECC protection via a 32-byte interface, running at 200 MHz

or higher.

2.3.5 Boot Bus Interface

The UltraSPARC III Cu processor has a Boot Bus interface that connects to a Boot PROM,

other booting mechanisms, and diagnostic and recovery mechanisms.

2.3.6 JTAG Interface

The UltraSPARC III Cu processor provides a standard 1149.1 compliant JTAG interface.

This interface can be used to scan out the internal state of the processor for fault diagnosis.

The full scan is a destructive operation that requires the CPU to go through a Power-on reset

(POR) before being used again. In addition, the UltraSPARC III Cu processor also provides a

shadow JTAG interface that allows a subset of the state to be scanned while the processor is

running.
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CHAPTER 3

CPU Architecture Basics

The UltraSPARC III Cu processor is a high-performance, highly integrated, superscalar

processor. The UltraSPARC III Cu fully implements the 64-bit SPARC V9 architecture,

supporting a 64-bit virtual address space and a 43-bit physical address space. The core

instruction set is extended to include new SIMD operations. The processor was designed to

offer very high clock speeds as well as wide superscalar issue to exploit instruction-level

parallelism. The processor offers large Level-1 instruction and data caches, large flexible

memory management units (MMUs), and support for a large L2-cache. The processor was

designed to work in systems ranging from single processor workstations through

cache-coherent servers with more than a thousand processors. For building a wide range of

system configurations, the processors has built-in support for both snooping-based cache

coherency and directory-based cache coherency.

The UltraSPARC III Cu processor also offers a number of performance enhancements over

previous UltraSPARC processors. The processor incorporates a number of data prefetching

mechanisms to exploit memory-level parallelism. The processor offers an enhanced data

memory management unit (D-MMU) that has 1040 TLB entries and more support for

flexibly using large pages, up to 4 MB pages, to more effectively map gigabytes of data. The

processor supports a 2-way set associative L2-cache instead of a direct-mapped cache.

3.1 Component Overview

The processor consists of a high-performance, instruction fetch engine, called the instruction

issue unit, that is decoupled from the rest of the pipeline by an instruction buffer. Instructions

are steered to either floating-point execution units, integer execution units, or a load/store

unit for execution. Integrated on the processor are controls for the L2-cache, interface to the

Fireplane bus, and a memory controller. A simple block diagram of the UltraSPARC III Cu

processor is shown in FIGURE 3-1.
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3-
FIGURE 3-1 UltraSPARC III Cu Architecture
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The UltraSPARC III Cu instruction cache is a 32 KB size, 32-byte line size (eight

instructions), physically tagged, 4-way set associative cache. Its throughput is one cycle with

two-cycle latency. In addition to data and tag array, it also has a microtag, predecode, Load

Prediction Bit (LPB), and snoop tag array. The microtag uses eight bits of virtual address to

enable way-select to be performed before the physical address translation is completed. The

predecode bits include information about which pipeline each instruction will issue to and

other information to optimize execution. The LPB is used to dynamically learn those load

instructions that frequently see a read-after-write (RAW) hazard with preceding stores. The

snoop tag is a copy of the tags dedicated for snoops caused by either stores from the same or

different processors. The instruction cache in the UltraSPARC III Cu processor is kept

completely coherent so the cache never needs to be flushed.

The instruction fetch engine is also dependent upon control transfer instructions, such as

branches and jumps. The UltraSPARC III Cu processor uses a 16K entry branch predictor to

predict fetch direction of conditional branches. The target must be determined for branches

that are either predicted or known to redirect instruction fetches. For PC relative branches,

the target of the branch is computed; this adds a one-cycle branch taken penalty, but avoids

target misprediction. For predicting the target of return instructions an 8-entry Return

Address Stack (RAS) is used. For other indirect branches (branches whose targets are

determined by a register value), the software can provide a branch target prediction with a

jump target preparation instruction.

Between the instruction fetch pipeline and the execution pipeline is an instruction buffer that

can hold up to 16 instructions. The instruction buffer decouples the fetch and execute

pipelines and buffers burstiness in each pipeline from each other. The buffer can effectively

hide low latency issues like the taken branch penalty and even hides some of the penalty of

instruction cache misses.

3.1.2 Execution Pipelines

The UltraSPARC III Cu processor has six execution pipelines and can issue up to four

instructions per cycle. The six execution pipelines consist of the following:

• Two integer arithmetic and logic (ALU) pipelines

• Branch pipeline

• Load/store pipeline which also handles special instructions

• Floating-point multiply pipeline which also handles SIMD instructions

• Floating-point addition pipeline which also handles SIMD instructions

The integer ALU pipelines can issue integer addition, subtraction, logic operations, and

shifts. These pipelines have single-cycle latency and throughput. The branch pipeline handles

all branch instructions and can resolve one branch each cycle. The load/store pipeline can

handle one load or store instruction each cycle and is discussed in more detail in
Chapter 3 CPU Architecture Basics 3-25



Section 3.1.3. Integer multiplication and division is performed by the load/store pipeline.

Integer multiplication has a latency of 6 to 9 cycles depending on the size of the operands.

Division is also iterative and requires 40 to 70 cycles.

The floating-point pipelines are each four-cycle latency pipelines but are fully pipelined (one

instruction per cycle per pipeline). These pipelines handle single and double precision

floating-point operations and a set of data parallel operations that operate on 8- or 16-bit

fields. Floating-point division and square root operations use the floating-point multiplication

pipeline and are iterative computations. Floating-point division requires 17 or 20 cycles for

single and double precision, respectively. Floating-point square root requires 23 or 29 cycles

for single and double precision, respectively.

3.1.3 Load/Store Unit

As stated earlier, a load or store instruction can be issued each cycle to the load/store

pipeline. The load/store unit consists of the load/store pipeline, a store queue, a data cache,

and a write cache.

Loads have either a two- or three-cycle latency. Integer loads that are for unsigned words or

double words have a two-cycle latency. All other load instructions have a three-cycle latency.

Data can be forwarded from earlier stores still in the store queue to subsequent loads if a

RAW hazard is detected. Data forwarding requires a three-cycle latency. For those

instructions that can have a two-cycle latency, there is a prediction bit in the instruction

cache used to identify those loads that often require store forwarding, which will be issued as

three-cycle loads. If a two-cycle load is not correctly predicted to have a RAW hazard, the

load must be reissued.

There is an 8-entry store queue to buffer stores. Stores reside in the store queue from the time

they are issued until they complete an update to the write cache. The store queue can

effectively isolate the processor from the latency of completing stores. If the store queue fills

up, the processor will block on a subsequent store. The store queue can coalesce stores to the

same cache line. The store queue allows non-catchable stores (for example, stores to a

graphics frame buffer) to be coalesced together such that the required bandwidth to the

device is greatly reduced.

The data cache is a 64 KB, 4-way associative, two-cycle latency, one-cycle throughput,

virtually indexed, physically tagged (VIPT) cache. The data cache, like the instruction cache,

uses 8-bit microtags to do way-selection based on virtual addresses. The data cache is

write-through, no write-allocate, and not included in the L2-cache. The line size is 32 bytes

with no sub-blocking. The data cache needs to be flushed only if an alias is created using

virtual address bit 13. VA[13] is the only virtual bit used to index the data cache.

The write cache is a write-back cache used to reduce the amount of store bandwidth required

to the L2-cache. It exploits both temporal and spatial locality in the store stream. The small

(2 KB) structure achieves a store bandwidth equivalent to a 64 KB write-back data cache
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while maintaining SPARC V9 TSO compatibility. The write cache is kept fully coherent with

both the processor pipeline and the system memory state. The write cache is 4-way set

associative and has 64-byte lines. The write cache maintains per byte dirty bits.

3.1.3.1 Data Prefetching Support

The UltraSPARC III Cu processor makes use of an advanced data prefetching mechanism.

This mechanism is used to both overlap load misses to increase memory-level parallelism

and to hide load-miss latency. This mechanism allows software to explicitly expose the

memory-level parallelism and to schedule memory operations. This mechanism is extremely

important because the UltraSPARC III Cu processor has blocking loads; when the processor

reaches a load instruction that misses in the cache, the processor waits for the load to

complete before executing any other instructions. The processor supports software

prefetching where the compiler (or JavaTM JIT) can schedule prefetching of data to exploit

memory-level parallelism. Some versions of the processor will also support hardware

prefetching, where the processor observes common data sequences and attempts to prefetch

the data automatically.

There are a number of variations of software prefetches. Software prefetches can specify if

the data should be brought into the processor either for reading or both reading and writing.

Software can also specify if the data should be installed into the L2-cache, for data that will

be reused frequently, or only brought into the prefetch cache.

One of the main mechanisms for implementing prefetches is a special prefetch cache. The

prefetch cache is a small (2 KB) cache that is accessed in parallel with the data cache for

floating-point loads. Floating-point load misses, hardware prefetches, and software

prefetches bring data into the prefetch cache. The prefetch cache is 4-way set associative and

has 64-byte lines, which are broken into two 32-byte sub-blocks with separate valid bits. The

prefetch cache is write invalidate.

3.1.4 Memory Management Units

There are separate Memory Management Units (MMUs) for instruction and data address

translation. The MMUs consist of a set of translation lookaside buffers (TLBs) that are tables

of translations from virtual to physical addresses. As long as a virtual address can be

translated using one of the entries in a TLB, the operation proceeds without interruption. If

there is no translation available for a virtual address, the processor traps to software to update

the TLBs with a valid translation.

For the instruction address stream translation, there are two TLBs accessed in parallel. The

first TLB is a 16-entry, fully associative TLB. This TLB can translate page sizes of 8K, 64K,

512K, and 4M, and locked page always reside in this TLB. The second TLB is a 64 set,

2-way set associative (128 entries) TLB. This large TLB is used to translate a page size of

8K.
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The D-MMU of the UltraSPARC III Cu processor is enhanced to provide more translation

entries and more support for using large pages for translation. For the data reference address

stream translation there are three TLBs accessed in parallel. The first TLB is a 16-entry

fully-associative TLB. This TLB can translate page sizes of 8K, 64K, 512K, and 4M. The

second TLB is a 256-set, 2-way set-associative (512 entries) TLB. This TLB can translate at

8K, 64K, 512K, and 4M page sizes, but at any one time it is configured to only handle one

of the page sizes. The third TLB is identical to the second. This TLB, like the second, can

handle one of four page sizes and can be configured to the same or a different page size than

the second TLB.

The two large TLBs is very important for general use of large pages for translation. One of

the TLBs can be set for large pages (such as 4 MB pages) while the other can be set to the

default page size (usually 8 KB pages). With this configuration, the processor provides robust

support for large pages.

3.1.5 L2-cache Unit (Level-2 Unified Cache)

The UltraSPARC III Cu processor can support an L2-cache of 1 MB, 4 MB or 8 MB. The

L2-cache is 2-way set associative, PIPT cache. The line size of the L2-cache depends on the

cache size (64 bytes for 1 MB, up to 512 bytes for 8 MB). Regardless of the line size, the

cache uses 64-byte sub-blocks that are the unit of fill and the unit of coherency. The

L2-cache is write-allocate, write-back. The tags for the L2-cache are on the CPU chip.

For data, the L2-cache uses standard SRAM parts running at either one-third, one-fourth, or

one-fifth of the processor speed. The interface between the processor and the SRAM is

32 bytes wide. The L2-cache for the UltraSPARC III Cu processor is fully protected with

error correcting code (ECC). Single bit errors in the L2-cache are corrected and double bit

errors are detected. These result in UltraSPARC III Cu state-of-the-art reliability.

3.1.6 System Interface Unit

The system interface unit (SIU) is the UltraSPARC III Cu processor’s port to the external

world. All data is transferred between the UltraSPARC III Cu processor and local DRAM,

main memory associated with another CPU, or the system bus passes through the SIU. The

SIU is the engine for the cache coherency protocol for multiprocessor systems.

The SIU supports clock divisors of 4, 5, and 6 between the system clock and the internal

CPU clock. When the system reset becomes inactive, both the internal CPU clock and the

system interface clock are synchronized at the rising edge.

The system interface allows for a low-cost interconnect of up to six agents. An agent may be

another UltraSPARC III Cu processor, an I/O controller, bus repeater or an SSM controller.

The bandwidth of the external interface buses allows the system interface to be implemented

using a snooping coherence protocol. A snooping interface allows each agent to maintain
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coherency without the need for an external coherency controller. An UltraSPARC III Cu

processor snoops coherent transaction requests issued on the system interface buses and

follows a write-invalidate MOESI cache coherence policy. Snooping-based systems can be

built with tens of processors.

SSM is a directory-based protocol used for creating very large multiprocessor systems.

Smaller groups of processors using a snooping interface can utilize SSM controllers to create

systems with over a hundred processors. The SIU of the UltraSPARC III Cu processor has

built-in support for working with an SSM controller to facilitate the creation of large

systems.

3.1.7 Memory Controller Unit

The UltraSPARC III Cu processor has an on-chip Memory Controller Unit (MCU). The

UltraSPARC III Cu memory system supports a minimum of 128 MB and a maximum of

16 GB of main memory. The MCU supports 75 MHz SDRAM and interfaces to various

densities of DRAM and single or multiple banks of memory. The MCU only sends out

control signals to the DRAM. The UltraSPARC III Cu SIU is responsible for delivering data

to the data switch for write operations and retrieving data from the data switch for read

operations.

3.2 CPU Operating Modes

The UltraSPARC III Cu processor operates in various modes.

3.2.1 Privileged Mode

This mode is a “supervisor” mode. In this mode, the software is allowed to access both

privileged and non-privileged registers and ASIs. There are certain features that can be

accessed only in privileged mode. Non-privileged software is not allowed to access these

features.

Privileged mode execution is typically used by the kernel and operating system.
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3.2.2 Non-Privileged Mode

This mode is a “non-supervisor” mode. In this mode, the software is allowed to access only

non-privileged registers and ASIs. If non-privileged software tries to access privileged

registers or ASIs, exceptions are generated and handled by the operating system.

Non-privileged mode execution is typically used by the application programmers.

3.2.3 Reset and RED_State

The UltraSPARC III Cu processor can be reset using various mechanisms. This section deals

with the reset and RED_state for the UltraSPARC III Cu processor.

3.2.3.1 RED_state Characteristics

A processor enters RED_state by one of the two ways.

• First, by trapping when already at the maximum trap level.

• Second, by setting the PSTATE.RED.

When the processor enters the RED_state, it will clear the DCU Control Register, including

enable bits for I-cache, D-cache, I-MMU, D-MMU, and virtual and physical watchpoints.

Note – Exiting RED_state by writing zero to PSTATE.RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,

which may be in a cacheable memory area. This condition could result in a bus error on

some systems and cause an instruction_access_error trap. You can mask the trap by setting

the NCEEN bit in the ESTATE_ERR_EN register to zero, but this approach will mask all

noncorrectable error checking. Exiting RED_state with DONE or RETRY avoids the

problem.

3.2.3.2 Resets

Reset priorities from highest to lowest are power-on resets (POR, hard or soft), externally

initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).
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Power-on Reset (Hard Reset)

A Power-on Reset (POR) occurs when the POK pin is activated and stays asserted until the

processor is within its specified operating range. When the POK pin is active, all other resets

and traps are ignored. POR has a trap type of 1 at physical address offset 2016. Any pending

external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after

POR. The following bits must be initialized before the caches are enabled:

• In the I-cache, valid bits must be cleared and microtag bits must be set so that each way

within a set has a unique microtag value.

• In the D-cache, valid bits must be cleared and microtag bits must be set so that each way

within a set has a unique microtag value.

• All L2-cache tags and data

The I-MMU and D-MMU TLBs must also be initialized. The P-cache valid bits must be

initialized before any floating-point loads are executed.

The MCU refresh control register as well as the Fireplane configuration register must be

initialized after a POR.

In SSM systems, the MTags contained in memory must be initialized before any Fireplane

transactions are generated.

Caution – Executing a DONE or RETRY instruction when TSTATE is not initialized after a

POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using wrpr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is

not at the risk of damaging the chip.

System Reset (Soft Reset)

A system reset occurs when the Reset pin is activated. When the Reset pin is active, all other

resets and traps are ignored. System reset has a trap type of 1 at physical address offset 2016.

Any pending external transactions are canceled.

Note – Memory refresh continues uninterrupted during a system reset. System interface,

L2-cache configuration, and memory controller configuration are preserved across a system

reset.
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Externally Initiated Reset (XIR)

An XIR is sent to the processor through an external hardware pin. It causes a SPARC V9

XIR, which has a trap type 316 at physical address offset 6016. XIR has higher priority than

all other resets except Power-on Reset and System Reset.

XIR affects only one processor, rather than the entire system. Memory state, cache state, and

most Control Status Register state are unchanged. System coherency is not guaranteed to be

maintained through an XIR reset. The saved PC and nPC will only be approximate because

the trap is not precise with respect to pipeline state.

Watchdog Reset (WDR) and error_state

The processor enters error_state when a trap occurs at TL = MAXTL.

The processor automatically exits error_state using WDR. The processor signals itself

internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x4016. WDR sets the processor in a state where it is prepared for diagnosis of

failures.

WDR affects only one processor rather than the entire system. CWP updates due to window

traps that cause watchdog traps are the same as the no watchdog trap case.

Software-Initiated Reset (SIR)

An SIR is initiated by an SIR instruction within any processor. This per-processor reset has

a trap type 4 at physical address offset 8016. SIR affects only one processor rather than the

entire system.

RED_state Trap Vector

When the UltraSPARC III Cu processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state trap vector base address (RSTVaddr);

the base address is at virtual address FFFF FFFF F000 000016, which passes through to

physical address 7FF F000 000016.

3.2.4 Error Handling

The UltraSPARC III Cu processor provides extensive support for detecting and correcting

errors. Note that some errors may still be uncorrectable.
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Error Classes in Severity

The classes of error in order of severity are as follows:

1. Hardware-corrected errors. Hardware tries to correct the error automatically. A trap is

generated to log the error conditions when the error is corrected to enable the actions for

preventive maintenance.

2. Software-correctable errors. Hardware does not correct the error automatically. Instead,

it invokes a trap requesting the recovery software to correct the error. Corrective actions

are expected from the recovery software. If recovery is successful, the system should

continue the operation.

3. Uncorrectable errors. By its nature the error is uncorrectable, and hardware invokes a

trap to signal the occurrence of the error to appropriate recovery software. Depending on

the condition under which the error occurs, the system may be able to recover from the

error and continue operation. If not, it may be able to isolate the error to a particular

process and terminate it. Otherwise, the software should shutdown the system gracefully.

4. Fatal errors. By its nature, the error indicates either loss of system consistency or a

system interconnect protocol error. It is dangerous to continue operation in this situation

because of the impending threat of a failure to maintain data integrity. Therefore, upon the

detection of the error, the processor generates an ERROR signal to its interconnect,

expecting to be halted/reset by the system. System actions induced by the ERROR signal

are system implementation dependent.

Errors Synchronous and Asynchronous to Instruction Execution

Some errors can be detected asynchronously to instruction execution. Other errors are

detected in the course of an instruction execution, that is, synchronous to instruction

execution. Separate error recording mechanisms are used for synchronous and asynchronous

errors.

An error asynchronous to instruction execution is signalled either through a disrupting trap to

the processor or through an ERROR signal to system hardware to induce a system reset,

depending on the severity of the error.

The errors signalled through a disrupting trap do not directly correspond to an instruction.

Traps may or may not be recoverable.

Errors signalled with an ERROR are meant either to be loss of system consistency or a

protocol error on system interconnect.

On the other hand, an error detected in the course of an instruction execution is signalled

through an error trap to the instruction, with additional information recorded in hardware.

The trap is either precise or deferred. The program (process) affected by the error should be

given a corrected response, or if the error is uncorrectable, the process should be terminated

appropriately. Precise traps are used wherever possible.
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Corrective Actions

Errors are handled by invocation of one of the following actions:

• Reset-inducing ERROR signal. The most severe fatal error generates an ERROR signal

to induce a system reset. Both, an error detected in the course of instruction execution and

an error asynchronous to instruction execution may generate an ERROR signal.

• Precise traps. Most errors detected in the course of an instruction execution generate a

precise trap. If the error is hardware correctable, software just logs it. If the error is

software correctable, software corrects it before continuing execution. If the error is

uncorrectable, software takes appropriate action.

• Deferred traps. Some uncorrectable errors requiring immediate attention generate a

deferred trap to request software intervention. The recovery software examines the

recorded error information to determine the extent of the damage caused by the error.

Depending on the observed effect, the system may need to be brought down, or it may

continue to run when the effect is isolated within the user program. In any event, the error

does not require immediate reset of the system.

• Disrupting traps. An error asynchronous to instruction execution generates a disrupting

trap to request logging and clearing. The error may already be corrected by hardware and

may only require logging. If the error is software correctable, software corrects it before

continuing execution. If the error is uncorrectable, software takes appropriate action.

3.2.5 Debug and Diagnostics Mode

The UltraSPARC III Cu processor provides interfaces for diagnostic access to most internal

state of the processor. This is important for diagnosing, and when possible recovering from

failures. There are a couple of different diagnostic interfaces. All the diagnostic interfaces are

accessible only from software running in privileged mode or from an external system

controller in a server.

There are a number of diagnostic registers that are mapped to internal ASI registers. These

registers are accessed by load and store alternate ASI instructions that specify certain

configurations of ASI numbers and virtual addresses to access the register (all internal

registers are 8 bytes and must be accessed as 8-byte units with 8-byte aligned addresses).

Diagnostic registers are provided for recording various fault conditions as well as important

information and state associated with the fault to help diagnosis and possibly recover.

For diagnostic and error recovery, large memories on chip, such as caches, can have each

element of the memory array be directly read and written. These accesses are performed with

load and store alternate ASIs that use specific ASIs that point to the memory array. These

accesses can only be done by privileged software.
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Special ASI numbers are used for diagnostic accesses to structures where the virtual address

is used to specify the portion of the structure to be read (all internal state must be accessed in

8-byte units with 8-byte aligned addresses). Most structures can be directly read and many

structures can also be directly written or quickly cleared.

The UltraSPARC III Cu processor also provides a serial JTAG interface that can be used by a

system controller for diagnostics. A system controller can perform a shadow scan where

various configuration and diagnostic information is scanned out of the processor without

interfering with the operation of the processor. The system controller can also use the JTAG

interface to scan in information to configure or control various aspects of the processor.

The JTAG interface can also be used to perform a full scan dump. When a full scan dump is

performed, most of the flops in the processor are scanned out through a scan chain. A full

scan dump is a destructive action and the processor must be reset after a full scan dump. The

full scan provides an important tool for diagnosis of serious failures.

For controlling diagnostics mode, there is a range of configuration registers, which can

enable and disable many features of the processor. The configuration registers are only

accessible in privileged mode. Some of the configuration registers are implemented as ASRs.

These registers are accessible from the RDASR/WRASR interface. Most of the configuration

registers are mapped as internal ASI registers. These registers are accessed by load and store

alternate ASI instructions that specify certain configurations of ASI numbers and virtual

addresses to access the register (all internal registers are 8 bytes and must be accessed as

8-byte units with 8-byte aligned addresses).
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CHAPTER 4

Instruction Execution

This chapter focuses on the needs of compiler writers and others who are interested in

scheduling instructions to optimize program performance. The chapter discusses the

following topics:

• Section 4.1, “Introduction”

• Section 4.2, “Processor Pipeline”

• Section 4.3, “Pipeline Recirculation”

• Section 4.4, “Grouping Rules”

• Section 4.5, “Conditional Moves”

• Section 4.6, “Instruction Latencies and Dispatching Properties”

4.1 Introduction

The instruction at the memory location specified by the program counter (PC) is fetched and

then executed, annulled, or trapped. Instruction execution may change program-visible

processor and/or memory state. As a side-effect of its execution, new values are assigned to

the PC and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it

impossible to complete normal execution. Such an exception may in turn generate a precise

trap. Other events may also cause traps: an exception caused by a previous instruction (a

deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request (a

reset trap). If a trap occurs, control is vectored into a trap table. See Chapter 12, “Traps and

Trap Handling,” for a detailed description of exception and trap processing.
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4.1.1 NOP, Neutralized, and Helper Instructions

The distinction between NOP and neutralized instructions is subtle.

4.1.1.1 NOP Instruction

The architected NOP instruction is coded as a SETHI instruction with destination register

%g0. This instruction is groupable in the A0 or A1 pipeline.

4.1.1.2 Neutralized Instruction

Some instructions have no visible effects on the software. They have been de-implemented or

assigned to not have an effect if the processor is in a certain mode. These instructions are

often referred to as NOP instructions, but they are not the same as the NOP instruction in that

they execute in the pipeline that is assigned to them. These are versions of instructions that

have no effect because they only access the %g0 register and do not have any side-effects.

Hence, these instructions are functionally neutral.

4.1.1.3 Helper Instructions

Helper instructions are generated by the hardware to help in the execution or re-execution of

an instruction. The hardware partitions a single instruction into multiple instructions that

flow through the pipeline consecutively. They have no software visibility and are part of the

hardware function of the pipeline.

4.2 Processor Pipeline

The processor pipeline consists of fourteen stages plus an extra stage that is occasionally

used by the hardware. The pipeline stages are referred to by the following mnemonic single

letter names and are shown in TABLE 4-1.

TABLE 4-1 Processor Pipeline Stages

Pipeline Stage Definition

A Address generation

P Preliminary Fetch

F Fetch instructions from I-cache
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Rather than executing the instructions in a single pipeline, several separate pipelines are each

dedicated to execution of a particular class of instructions. The execution pipelines start after

the R-stage of the pipeline. Some instructions take a cycle or two to execute, others take a

few cycles within the pipeline. As long as the execution fits within the fixed pipeline depth,

execution can in general be fully pipelined. Some instructions have extended execution times

that sometimes vary in duration depending on the state of the processor.

The following sections provide a stage-by-stage description of the pipeline. Chapter 3, “CPU

Architecture Basics,” describes the functions of the various execution units. This chapter

explains how the pipeline operates the execution units to process the instructions.

FIGURE 4-1 illustrates each pipeline stage in detail and the relationship between high level,

large architectural structures.

B Branch target computation

I Instruction group formation

J J: grouping

R Register access (dispatch/dependency checking stage)

E Execute

C Cache

M Miss detect

W Write

X eXtend

T Trap

D Done

TABLE 4-1 Processor Pipeline Stages (Continued)

Pipeline Stage Definition
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FIGURE 4-1 Instruction Pipeline Diagram Instruction Dependencies
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Instruction dependencies exist in the grouping, dispatching, and execution of instructions.

4.2.1 Grouping Dependencies

Up to four instructions can be grouped together for simultaneous dispatch. The number of

instructions that can be grouped together depends on the consecutive instructions that are

present in the instruction fetch stream, the availability of execution resources (execution

units), and the state of the system. Instructions are grouped together to provide superscalar

execution of multiple instruction dispatches per clock cycle.

Some instructions are single instruction group instructions. These are dispatched by

themselves one clock at a time as a single instruction in the group.

Note – Pipeline Recirculation: During recirculation, the recirculation invoking instruction

is often re-executed as a single group instruction and often with helper instruction inserted

into the pipeline by the hardware. Even groupable instructions are retried in a single

instruction group. See Section 4.3, “Pipeline Recirculation” for details.

4.2.2 Dispatch Dependencies

Instructions can be held at the R-stage for many different reasons, including:

• Working register operand not available

• Functional Unit not available

• Store-load sequence in progress (atomic operation)

When instructions are held at the dispatch stage, the upper pipeline continues to operate until

the instruction buffer is full. At that point, the upper pipeline stalls.

During recirculation, the recirculation invoking instruction is held at the dispatch stage until

its execution dependency is resolved.

4.2.3 Execution Dependencies

The pipeline assumes all load instructions will hit in a primary cache, allowing the pipeline

to operate at full speed. A cache miss will recirculate the pipeline.

• D-cache Miss

• Load requires data to be bypassed from an earlier store that has not completed and does

not meet the criteria for read-after-write data bypassing.
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4.2.4 Instruction-Fetch Stages

The instruction-fetch pipeline stages A, P, F, and B are described below.

4.2.4.1 A-stage (Address Generation)

The address stage generates and selects the fetch address to be used by the instruction cache

in the next cycle. The address that can be selected in this stage for instruction fetching comes

from several sources, including:

• Sequential PC

• Branch target (from B-stage)

• Trap target

• Interrupt

• Predicted return target

• Jmpl target

• Resolved branch/Jmpl target from execution pipeline

4.2.4.2 P-stage (Preliminary Fetch)

The preliminary fetch stage starts fetching four instructions from the instruction cache. Since

the I-cache has a two-cycle latency, the P-stage and the F-stage are both used to complete an

I-cache access. Although the I-cache has a two-cycle latency, it is pipelined and can access a

new set of up to four instructions every cycle. The address used to start an I-cache access is

generated in the previous cycle.

The P-stage also accesses the Branch Predictor (BP), which is a small, single-cycle access

SRAM whose output is latched at the end of the P-stage. The BP predicts the direction of all

conditional branches, based on the PC of the branch and the direction history of the most

recent conditional branches.

4.2.4.3 F-stage (Fetch)

The F-stage is used for the second half of the I-cache access. At the end of this stage, up to

four instructions from an I-cache line (32 bytes) are latched for decode. An I-cache fetch

group is not permitted to cross an I-cache line (32-byte boundary).
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4.2.4.4 B-stage (Branch Target Computation)

The B-stage is the final stage of the instruction-fetch pipeline, A-P-F-B. In this stage, the

four fetched instructions are first available in a register. The processor analyzes the

instructions, looking for Delayed Control Transfer Instructions (DCTI) that can alter the path

of execution. It finds the first DCTI, if any, among the four instructions and computes (if PC

relative) or predicts (if register based) its target address. If this DCTI is predicted taken, the

target address is passed to the A-stage to begin fetching from that stream; if predicted not

taken, the target is passed on to the CTI queue for use in case of mispredict. Also in the

B-stage, the computation of the hit or miss status of the instruction fetch is performed, so

that the validity of the four instructions can be reported to the instruction queue.

In the case of an instruction cache miss, a request is issued to the L2-cache and all the way

out to memory if needed to get the required line. The processor includes an optimization,

where along with the line being fetched, the subsequent line (32 bytes) is also returned and

placed into the instruction prefetch buffer. A subsequent miss that can get its instructions

from the instruction prefetch buffer will behave like a fast miss.

4.2.5 Instruction Issue and Queue Stages

The I-stage and J-stage correspond to the enqueueing and dequeueing of instructions from

the instruction queue. The R-stage is where instruction dependencies are resolved.

4.2.5.1 I-stage (Instruction Group Formation)

In the I-stage, the instructions fetched from the I-cache are entered as a group into the

instruction queue. The instruction queue is four instructions wide by four instruction groups

deep. The instruction may wait in the queue for an arbitrary period of time until all earlier

instructions are removed from the queue.

The instructions are grouped to use up to four of the execution pipelines, shown in TABLE 4-2.

TABLE 4-2 Execution Pipelines

Pipeline Description

A0 Integer ALU pipeline 0

A1 Integer ALU pipeline 1

BR Branch pipeline

MS Memory/Special pipeline

FGM Floating Point/VIS multiply pipeline (with divide/square root pathway)

FGA Floating Point/VIS add ALU pipeline
Chapter 4 Instruction Execution 4-43



4.2.5.2 J-stage (Instruction Group Staging)

In the J-stage, a group of instructions are dequeued from the instruction queue and prepared

for being sent to the R-stage. If the R-stage is expected to be empty at the end of the current

cycle, the group is sent to the R-stage.

4.2.5.3 R-stage (Dispatch and Register Access)

The integer working register file is accessed during the R-stage for the operands of the

instructions (up to three) that have been steered to the A0, A1, and MS pipelines. At the end

of the R-stage, results from previous instructions are bypassed in place of the register file

operands, if required.

Up to two floating-point or VIS instructions are sent to the Floating Point/VIS Unit in this

stage.

The register and pipeline dependencies between the instructions in the group and the

instructions in the execution pipelines are calculated concurrently with the register file

access. If a dependency is found, the dependent instruction and any older instruction in the

group is held in the R-stage until the dependency is resolved.

4.2.6 Execution Pipeline

The execution pipeline contains the E, C, M, W and X stages.

4.2.6.1 Integer Instruction Execution: E-stage (Execute)

The E-stage is the first stage of the execution pipelines. Different actions are performed in

each pipeline.

Integer instructions in the A0 and A1 pipelines compute their results in the E-stage. The

instructions include most arithmetic, all shift, and all logical instructions. The results are

available for bypassing to dependent instructions that are in the R-stage, resulting in

single-cycle execution for most integer instructions. The A0 and A1 pipelines are the only

two sources of bypass results in the E-stage.

Other integer instructions are steered to the MS pipeline and if necessary are sent with their

operands to the special execution unit in this stage. They can start their execution during the

E-stage, but will not produce any results to be bypassed until the C-stage or the M-stage.
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Load instructions steered to the MS pipeline start accessing the D-cache during the E-stage.

The D-cache features Sum Addressed Memory (SAM) decode logic that combines the

arithmetic calculation for the virtual address with the row decode of the memory array to

reduce lookup time. The virtual address is computed in the E-stage for translation lookaside

buffer (TLB) access and possible access to the P-cache.

Floating-point and VIS instructions access the floating-point register file in the E-stage to

obtain their operands. At the end of the E-stage, the results from previous completing

floating-point/VIS instructions can be bypassed to the E-stage instructions.

Conditional branch instructions in the BR pipeline resolve their directions in the E-stage.

Based on their original predicted direction, a mispredict signal is computed and sent to the

A-stage for possible refetching of the correct instruction stream.

JMPL and RETURN instructions compute their target addresses in the E-stage of the MS

pipeline. The results are sent to the A-stage to start fetching instructions from the target

stream.

4.2.6.2 C-stage (Cache)

The data cache delivers results for doubleword (64-bit) and unsigned word (32-bit) integer

loads in the C-stage. The D-TLB access is initiated in the C-stage and proceeds in parallel

with the D-cache access. For floating-point loads, the P-cache access is initiated in the

C-stage. The results of the D-TLB access and P-cache access are available in the M-stage.

Special instruction unit results are produced at the end of this stage and can be bypassed to

waiting dependent instructions in the R-stage — minimum two-cycle latency for SIU

instructions. The integer pipelines, A0 and A1, write their results back to the working

register file in the C-stage.

The C-stage is the first stage of execution for floating-point and VIS instructions in the FGA

and FGM pipelines.

4.2.6.3 M-stage (Miss)

Data cache misses are determined in the M-stage by a comparison of the physical address

from the D-TLB to the physical address in the D-cache tags. If the load requires additional

alignment or sign extension (such as signed word, all halfword, and all byte loads), it is

carried out in this stage, resulting in a three-cycle latency for those load operations. This

stage is used for the second execution cycle of floating-point and VIS instructions. Load data

are available to the floating-point pipelines in the M-stage.
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4.2.6.4 W-stage (Write)

In the W-stage, the MS integer pipeline results are written into the working register file. The

W-stage is also used as the third execution cycle for floating-point and VIS instructions. The

results of the D-cache miss are available in this stage and the requests are sent to the

L2-cache if needed.

4.2.6.5 X-stage (Extend)

The X-stage is the last execution stage for most floating-point operations (except divide and

square root) and for all VIS instructions. Floating-point results from this stage are available

for bypass to dependent instructions that will be entering the C-stage in the next cycle.

4.2.7 Trap and Done Stages

This section describes the stages that interrupt or complete instruction execution.

The results of operations are bypassed and sent to the working register file. If no traps are

generated, then they are successfully pipelined down to the architectural register file and

committed. If a trap or recirculation occurs, then the architectural register file (contains

committed data) is copied to the working register in preparation for the instructions to be

re-executed.

4.2.7.1 T-stage (Trap)

Traps, including floating-point and integer traps, are signalled in this stage. The trapping

instruction, and all instructions younger than the trapping instruction must invalidate their

results before reaching the D-stage to prevent their results from being erroneously written

into the architectural or floating-point register files.

4.2.7.2 D-stage (Done)

Integer results are written into the architectural register file in this stage. At this point, they

are fully committed and are visible to any traps generated from younger instructions in the

pipeline.

Floating-point results are written into the floating-point register file in this stage. These

results are visible to any traps generated from younger instructions.
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4.3 Pipeline Recirculation

When a dependency is encountered in or before the dispatch R-stage, then the pipeline is

stalled. Most dependencies, like register or functional unit dependencies are resolved in the

R-stage. When a dependency is encountered after the dispatch R-stage, then the pipeline is

recirculated. Recirculation involves resetting the PC back to the recirculation invoking

instruction. Instructions older than the dependent instruction continue to execute. The

offending instructions and all younger instructions are recirculated. The offending instruction

is re-fetched and goes through the entire pipeline again.

Upon recirculation, the instruction responsible for the recirculation becomes a single-group

instruction that is held in the R-stage until the dependency is resolved.

Load Instruction Dependency

In the case of a load instruction miss in a primary cache, the pipeline recirculates and the

load instruction waits in the R-stage. When the data is returned in the D-cache fill buffer, the

load instruction is dispatched again and the data is provided to the load instruction from the

fill buffer. The pipeline logic inserts two helpers behind the load instruction to move the data

in the fill buffer to the D-cache. The instruction in the instruction fetch stream, after the load

instruction, follows the helpers and will regroup with younger instructions, if possible.

4.4 Grouping Rules

Grouping rules are made before going into R-stage. A group is a collection of instructions

with no resource constraints that will limit them from being executed in parallel.

Instruction grouping rules are necessary for the following reasons:

• The instruction execution order is maintained.

• Each pipeline runs a subset of instructions.

• Resource dependencies, data dependencies, and multicycle instructions require helpers

(NOPs) to maintain the pipelines.

Before continuing, we define a few terms that apply to instructions.

break-before: The instruction will always be the first instruction of a group.

break-after: The instruction will always be the last instruction of a group.
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single-instruction group (SIG): The instruction will not be issued with any other

instructions in the group. (SIG is sometimes shortened herein to “single-group.”)

instruction latency: The number of processor cycles after dispatching an instruction from

the R-stage that a following data-dependent instruction can dispatch from the R-stage.

blocking, multicycle: The instruction reserves one or more of the execution pipelines for

more than one cycle. The reserved pipelines are not available for other instructions to issue

into until the blocking, multicycle instruction completes.

4.4.1 Execution Order

Rule: Within the R-stage, some of the instructions can be dispatched and others cannot.
If an instruction is younger than an instruction that is not able to dispatch, then the
younger instruction will not be dispatched.

“Younger” and “older” refer to instruction order within the program.The instruction that

comes first in the program order is the older instruction.

4.4.2 Integer Register Dependencies to Instructions in the

MS Pipeline

Rule: If a source register operand of an instruction in the R-stage matches the
destination register of an instruction in the MS pipeline’s E-stage, then the instruction
in the R-stage may not proceed.

The MS pipeline has no E-stage bypass.

If an operand of an instruction in the R-stage matches the destination register of an

instruction in the MS pipeline’s C-stage, then the instruction in the R-stage may not proceed

if the instruction in the MS pipeline’s C-stage does not generate its data until the M-stage.

For example, LDSB does not have the load data until the M-stage, but LDX has its data in the

C-stage. Thus, LDX would not cause an interlock, but LDSB would.

Most instructions in the MS pipeline have their data by the M-stage, so there is no

dependency check on the MS pipeline’s M-stage destination register. In the case of

multicycle MS instructions, the data is always available by the M-stage as the last of the

instructions passes through the pipeline.
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4.4.2.1 Helpers

Sometimes an instruction, as part of its operation, requires multiple flows in the pipeline. We

call those extra flows after the initial instruction flow helper cycles. The only pipeline that

executes such instructions is the MS pipeline. If an instruction requires a helper, that helper

is generated in the R-stage. The help generation logic generates as many helpers as the

instruction requires.

Most of the time the logic determines the number of helpers by examining the opcode.

However, some recirculate cases run the recirculated instruction differently than the original

flow down the pipeline, and some instructions, like integer multiply and divide, require

variable numbers of helpers. Some helper counts are determined by I/O and memory

controllers and system devices. For example, the D-cache unit requires helpers as it

completes an atomic memory instruction.

Rule: Instructions requiring helpers are always break-after.

There can be no instruction in a group that is younger than an instruction that requires

helpers. Another way of saying this is “an instruction that requires helpers will be the

youngest in its group.” This rule preserves the in-order execution of the integer instructions.

Rule: Helpers block the pipeline.

Helpers block the pipeline from executing other instructions; thus, instructions with helpers

are blocking.

Rule: Helpers are always single-group.

A helper cycle is always alone in a group. No other instruction will ever be dispatched from

the R-stage if there is a helper cycle in the R-stage.

4.4.3 Integer Instructions Within a Group

Rule: Integer instructions within a group are not allowed to write the same destination
register.

By not writing the same destination register at the same time, we simplify bypass logic and

register file write-enable determination and potential Write-after-Write (WAW) errors. The

instructions are break-before second destination is written.

This rule applies only to integer instructions writing integer registers. Floating-point

instructions and floating-point loads (done in the integer A0, A1, and MS pipelines) can be

grouped so that two or more instructions in the same group can write the same floating-point

destination register. Instruction age is associated with each instruction. The write from an

older instruction is not visible, but the execution of the instruction might still cause a trap

and set condition codes.

There are no special rules concerning integer instructions that set condition codes and
integer branch instructions.
Chapter 4 Instruction Execution 4-49



Integer instructions that set condition codes can be grouped in any way with integer

branches. In fact, any number instructions that set condition codes can be in any order

relative to the branch are allowed, provided that they do not violate any other rules. No

special rules apply to this specific case. Integer instructions that set condition codes in the A1

and A0 pipelines can compute a taken/not taken result in the E-stage, which is the same stage

in which the branch is evaluating the correctness of its prediction. The control logic

guarantees that the correct condition codes are used in the evaluation.

4.4.4 Same-Group Bypass

Rule: Same-group bypass is disallowed, except store instructions.

The group bypass rule states that no instruction can bypass its result to another instruction in

the same group. The one exception to this rule is store. A store instruction can get its store

data (rd), but not its address operands (rs1, rs2), from an instruction in the same group.

4.4.5 Floating-Point Unit Operand Dependencies

4.4.5.1 Latency and Destination Register Addresses

Floating-point operations have longer latencies than most integer instructions. Moreover,

floating-point square root and divide instructions have varying latencies depending on

whether the operands are single precision or double precision. All the floating-point

instruction latencies are four clock cycles (except for floating-point divide and square root

and PDIST → PDIST).

The operands for floating-point operations can either be single precision (32-bit) or double

precision (64-bit). Sixteen of the double precision registers are each made up of two single

precision registers. An operation using one of these double precision registers as a source

operand may be dependent on an earlier single precision operation producing part of the

register value. Similarly, an operation using one of the single precision registers as a source

operand may be dependent on an earlier double precision operation, a part of which may

produce the single precision register value.

4.4.5.2 Grouping Rules for Floating-Point Instructions

Rule: Floating-point divide/square root is busy.
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The floating-point divide/square root unit is a non-pipelined unit. The Integer Execution Unit

sets a busy bit for each of the two stages of the divide/square root and depends on the FGU

to clear them. Only the first part of the divide/square root is considered to have a busy unit;

therefore, once the first part is complete, a new floating-point divide/square root operation

can be started.

Rule: Floating-point divide/square root needs a write slot in FGM pipeline.

In the stage in which a divide/square root is moved from the first part to the last part, we

cannot issue any instructions to the FGM pipeline. This constraint provides the write slot in

the FGM pipeline so the divide/square root can write the floating-point register file.

Rule: Floating-point store is dependent on floating-point divide/square root.

The floating-point divide/square root unit has a latency longer than the normal pipeline. As a

result, if a floating-point store depend on the result of a floating-point divide/square root,

then the floating-point store instruction may not be dispatched until the floating-point divide/

square root instruction has completed.

4.4.5.3 Grouping Rules for VIS Instructions

Rule: Graphics Status Register (GSR) Write instructions are break-after.

The SIAM, BMASK, and FALIGNADDR instructions write the GSR. The BSHUFFLE and

FALIGNDATA instructions read the GSR in their operation. Because of GSR write latency, a

GSR reader cannot be in the same group as a GSR writer unless the GSR reader is older than

the GSR writer. The simplest solution to this dependency is to make all GSR write

instructions break-after.

Note – The WRGSR instruction is not included in this rule as a special case. The WRGSR
instruction is already break-after by virtue of being a WRASR instruction.

4.4.5.4 PDIST Special Cases

PDIST-to-dependent-PDIST is handled as a special case with one-cycle latency. PDIST
latency to any other dependent operation is four-cycle latency. In addition, a PDIST cannot

be issued if there is ST, block store (BST), or partial store instruction in the M-stage of the

pipeline. PDIST issue is delayed if there is a store type instruction two groups ahead of it.

4.4.6 Grouping Rules for Register-Window Management

Instructions

Rule: Window changing instructions are single-group.
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The window changing instructions SAVE, RESTORE, and RETURN are all single-group

instructions. These instructions are never grouped with any other instruction. This rule

greatly simplifies the tracking of register file addresses.

Rule: Window changing instructions force bubbles after.

The window changing instructions SAVE, RESTORE, and RETURN also force a subsequent

pipeline bubble. A bubble is distinct from a helper cycle in that there is nothing valid in the

pipeline within a bubble. During the bubble, control logic transfers the new window from the

Architectural Register File (ARF) to the Working Register File (WRF).

Rule: FLUSHW is single-group.

To simplify the Integer Execution Unit’s handling of the register file window flush, the

FLUSHW instruction is single-group.

Rule: SAVED and RESTORED are single-group.

To simplify the Integer Execution Unit’s window tracking, SAVED and RESTORED are

single-group instructions.

4.4.7 Grouping Rules for Reads and Writes of the ASRs

Rule: Write ASR and Write PR instructions are single-group.

WRASR and WRPR are always the youngest instructions in a group. This case prevents

problems with an instruction being dependent on the result of the write, which occurs late in

the pipeline.

Rule: Write ASR and Write PR force seven bubbles after.

To guarantee that any instruction that starts in the R-stage is started with the most up-to-date

status registers, WRASR and WRPR force bubbles after they are dispatched. Thus, if a WRASR
or a WRPR instruction is in the pipeline anywhere from the E-stage to the T-stage, no

instructions are dispatched from the R-stage (bubbles are forced in).

Rule: Read ASR and Read PR force up to six bubbles before (break-before multicycle).

Many instructions can update the ASRs and PRs. Therefore, if an RDASR or RDPR
instruction is in the R-stage and any valid instruction is in the integer pipelines from the

E-stage to the X-stage, the UltraSPARC III Cu processor does not allow the RDASR and

RDPR instructions to be dispatched. Instead, we wait for all pipeline states to write the ASRs

and privileged registers and then read them.

4.4.8 Grouping Rules for Other Instructions

Rule: Block Load (BLD) and Block Store (BST) are single-group and multicycle.
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For simplicity in the Integer Execution Unit and memory system, BLD and BST are

single-group instructions with helpers.

Rule: FLUSH is single-group and seven bubbles after.

To simplify the Instruction Issue Unit and Integer Execution Unit, the FLUSH instruction is

single-group. This makes instruction cancellation and issue easier. FLUSH is held in the

R-stage until the store queue and the pipeline from E-stage through D-stage is empty.

Rule: MEMBAR (#Sync, #Lookaside, #StoreLoad, #Memissue) is single-group.

To simplify the Integer Execution Unit and memory system, MEMBAR is a single-group

instruction. MEMBAR will not dispatch until the memory system has completed necessary

transactions.

Rule: Software-initiated reset (SIR) is single-group.

For simplicity, SIR is a single-group instruction.

Rule: Load FSR (LDFSR) is single-group and forces seven bubbles after.

For simplicity, LDFSR is a single-group instruction.

Rule: DONE and RETRY are single-group.

DONE and RETRY instructions are dispatched as a single-group.

Rule: DONE and RETRY force seven bubbles after.

DONE and RETRY are typically used to return from traps or interrupts and are known as trap

exit instructions.

It takes a few cycles to properly restore the pre-trap state and the working register file from

the architectural register file, so we force bubbles after the trap exit instructions to give us the

cycles to do it all. We will not accept a new instruction until the trap exit instruction leaves

the pipeline (also known as D + 1).

4.5 Conditional Moves

The compiler needs to have a detailed model of the implementation of the various

conditional moves so it can optimally schedule code. TABLE 4-3 describes the implementation

of the five classes of SPARC V9 conditional moves in the pipeline. FADD and ADD
instructions (shaded rows) are also described as a reference for comparison with the

conditional move instructions.
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Where:

RD Latency — The number of processor cycles until the destination register is available for

bypassing to a dependent instruction.

Pipelines Used — The pipeline that the instruction uses when it is issued. The pipelines are

shown in TABLE 4-2.

Busy Cycles — The number of cycles that the pipelines are not available for other

instructions to be issued. A value of one signifies a fully pipelined instruction.

Groupable — Whether instructions using pipelines, other than those used by the conditional

move, can be issued in the same cycle as the conditional move.

{i,f}CC Dependency — The number of cycles that a CC setting instruction must be

scheduled ahead of the conditional move in order to avoid incurring pipeline stall cycles.

4.6 Instruction Latencies and Dispatching

Properties

In this section, a machine description is given in the form of a table (TABLE 4-4) dealing with

dispatching properties and latencies of operations. The static or nominal properties are

modelled in the following terms (columns in TABLE 4-4), which are discussed below.

• Latencies

• Blocking properties in dispatching

• Pipeline resources (A0, A1, FGA, FGM, MS, BR)

TABLE 4-3 SPARC V9 Conditional Moves

Instruction
RD
Latency Pipelines Used

Busy
Cycles Groupable Dependency

FMOVicc 3 cycles FGA and BR 1 Yes icc − 0

FMOVfcc 3 cycles FGA and BR 1 Yes fcc − 0

FMOVr 3 cycles FGA and MS 1 Yes N/A

FADD 4 cycles FGA 1 Yes N/A

ADD 1 cycle A0 or A1 1 Yes N/A

MOVcc 2 cycles MS and BR 1 Yes icc − 0

MOVR 2 cycles MS and BR 1 Yes N/A
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• Break rules in grouping (before, after, single-group)

The pipeline assumes the primary cache will be accessed. The dynamic properties, such as

the effect of a cache miss and other conditions, are not described here.

4.6.1 Latency

In the Latency column, latencies are minimum cycles at which a dependent operation

(consumer) can be dispatched relative to the producer operation without causing a

dependency stall or instructions holding back in the R-stage to execute.

Operations like ADDcc produce two results, one in the destination register and another in the

condition codes. For such operations, latencies are stated as a pair x,y, where x is for the

destination register dependence and y is for the condition code.

A zero latency implies that the producer and consumer operations may be grouped together

in a single group, as in {SUBcc, BE %icc}.

Operations like UMUL have different latencies, depending on operand values. These are given

as a range, min–max, for example, 6–8 in UMUL. Operations like LDFSR involve waiting for

a specified condition. Such cases are described by footnotes and a notation like 32+ for

CASA (meaning at least 32 cycles).

Cycles for branch operations (like BPcc) give the dispatching cycle of the retiring target

operation relative to the branch. A pair of numbers, for example 0,8, is given, depending on

the outcome of a branch prediction, where 0 means a correct branch prediction and 8 means

a mispredicted case.

Special cases, such as FCMP(s,d), in which latencies depend on the type of consuming

operations are described in footnotes (bracketed, for example, [1]).

4.6.2 Blocking

The Blocking column gives the number of clock cycles that the dispatch unit waits before

issuing another group of instructions. Operations like FDIVd (MS pipeline) have limited

blocking property; that is, the blocking is limited to the time before another instruction that

uses MS pipeline can be dispatched. Such cases are noted with footnotes. All pipelines block

instruction dispatch when an instruction is targeted to them, but they are not ready for

another instruction to be pipelined-in.
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4.6.3 Pipeline

The Pipeline column specifies the resource usage. Operations like MOVcc require more than

one resource, as designated by the notation MS and BR. The operation LDF can dispatch to

either MS, A0, or A1 as indicated.

4.6.4 Break and SIG

Grouping properties are given in columns Break and SIG (single-instruction group). In the

Break column, an entry can be “Before,” meaning that this operation causes a break in a

group so that the operation starts a new group. Operations like RDCCR require dispatching to

be stalled until all operations in flight are completed (reach D-stage); in such cases, details

are provided in a footnote reference in the Break column.

Operations like ALIGNADDR must be the last in an instruction group, causing a break in the

group of type “After.”

Certain operations are not groupable and therefore are issued in single-instruction groups. A

break “before” and “after” are implied for non-groupable instructions.

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (1 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG

ADD 1 A0 or A1

ADDcc 1,0 [1] A0 or A1

ADDC 5 4 MS Yes

ADDCcc 6,5 [2] 5 MS Yes

ALIGNADDR 2 MS After

ALIGNADDRL 2 MS After

AND 1 A0 or A1

ANDcc 1,0 [1] A0 or A1

ANDN 1 A0 or A1

ANDNcc 1,0 [1] A0 or A1

ARRAY(8,16,32) 2 MS

BiccD 0, 8 [3] 0, 5 [4] BP

BMASK 2 MS After

BPcc 0, 8 [3] 0, 5 [4] BP

BPR 0, 8 [3] 0, 5 [4] BP and MS

BSHUFFLE 3 FGA Yes
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CALL label 0-3 [5] BP and MS

CASA 32+ 31+ MS After

CASXA 32+ 31+ MS After

DONEP 7 Yes BP and MS Yes

EDGE(8,16,32){L} 5 4 MS Yes

EDGE(8,16,32)N 2 MS

EDGE(8,16,32)LN 2 MS

FABS(s,d) 3 FGA

FADD(s,d) 4 FGA

FALIGNDATA 3 FGA

FANDNOT1{s} 3 FGA

FANDNOT2{s} 3 FGA

FAND{s} 3 FGA

FBPfcc BP

FBfccD BP

FCMP(s,d) 1,5 [6] FGA

FCMPE(s,d) 1,5 [6] FGA

FCMPEQ(16,32) 4 MS and FGA

FCMPGT(16,32) 4 MS and FGA

FCMPLE(16,32) 4 MS and FGA

FCMPNE(16,32) 4 MS and FGA

FDIVd 20(14) [6] 17(11) [7] FGM

FDIVs 17(14) [6] 14(11) [7] FGM

FEXPAND 3 FGA

FiTO(s,d) 4 FGA

FLUSH 8 7 BP and MS Before [8] Yes

FLUSHW Yes MS Yes

FMOV(s,d) 3 FGA

FMOV(s,d)cc 3 FGA and BP

FMOV(s,d)r 3 FGA and MS

FMUL(s,d) 4 FGM

FMUL8(,SU,UL)x16 4 FGM

FMUL8x16(AL,AU) 4 FGM

FMULD8(SU,UL)x16 4 FGM

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (2 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
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FNAND{s} 3 FGA

FNEG(s,d) 3 FGA

FNOR{s} 3 FGA

FNOT(1,2){s} 3 FGA

FONE{s} 3 FGA

FORNOT(1,2){s} 3 FGA

FOR{s} 3 FGA

FPACK(FIX, 16,32) 4 FGM

FPADD(16, 16s, 32, 32s) 3 FGA

FPMERGE 3 FGA

FPSUB(16, 16s, 32, 32s) 3 FGA

FsMULd 4 FGM

FSQRTd 29(14) [6] 26(11) [7] FGM

FSQRTs 23(14) [6] 20(11) [7] FGM

FSRC(1,2){s} 3 FGA

F(s,d)TO(d,s) 4 FGA

F(s,d)TOi 4 FGA

F(s,d)TOx 4 FGA

FSUB(s,d) 4 FGA

FXNOR 3 FGA

FXOR{s} 3 FGA

FxTO(s,d) 4 FGA

FZERO{s} 3 FGA

ILLTRAP MS

JMPL reg,%o7 0-4, 9-10 [9] 0-3, 8-9 MS and BP

JMPL %i7+8,%g0 3-5, 10-12 [10] 2-4, 9-11 MS and BP

JMPL %o7+8, %g0 0-4, 9 [11] 0-3, 8 MS and BP

LDDD 2 Yes MS After

LDDAD 2 Yes MS After

LDDF{A} 3 MS, A0, or A1

LDF{A} 3 MS, A0, or A1

LDFSRD [22] Yes MS Yes

LDSB{A} 3 MS

LDSH{A} 3 MS

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (3 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
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LDSTUB{A} 31+ 30+ MS After

LDSW{A} 3 MS

LDUB{A} 3 MS

LDUH{A} 3 MS

LDUW{A} 2 MS

LDX{A} 2 MS

LDXFSR [22] Yes MS Yes

MEMBAR #LoadLoad [12] MS Yes

MEMBAR #LoadStore [12] MS Yes

MEMBAR #Lookaside [13] MS Yes

MEMBAR #MemIssue [13] MS Yes

MEMBAR #StoreLoad [13] MS Yes

MEMBAR #StoreStore [12] MS Yes

MEMBAR #Sync [14] MS Yes

MOVcc 2 MS and BP

MOVfcc 2 MS and BP

MOVr 2 MS

MULScc 6,5 [2] 5 MS Yes

MULX 6-9 5-8 MS After

NOP N/A MS

OR 1 A0 or A1

ORcc 1,0 [1] A0 or A1

ORN 1 A0 or A1

ORNcc 1,0 [1] A0 or A1

PDIST 4 FGM

POPC Emulated

PREFETCH{A} MS

RDASI 4 MS Before [15]

RDASR 4 MS Before [15]

RDCCR 4 MS Before [15]

RDDCRP

RDFPRS 4 MS Before [15]

RDPC 4 MS Before [15]

RDPR 4 MS Before [15]

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (4 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
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RDSOFTINTP

RDTICK 4 MS Before [15]

RDYD 4 MS Before [15]

RESTORE 2 1 MS Before [16] Yes

RESTOREDP MS Yes

RETRYP 2 Yes MS and BP After

RETURN 2,9 [17] 1,8 MS and BP Before [18] Yes

SAVE 2 1 MS Before [19] Yes

SAVEDP 2 Yes MS Yes

SDIV 39 38 MS After

SDIV{cc}D 40,39 [2] 39 MS After

SDIVX 71 70 MS After

SETHI 1 A0 or A1

SHUTDOWN [23] NOP MS NOP

SIAM Yes MS Yes

SIR Yes BP and MS Yes

SLL{X} 1 A0 or A1

SMULD 6-7 5-6 MS After

SMULccD 7-8, -6-7 [2] 6-8 MS After

SRA{X} 1 A0 or A1

SRL{X} 1 A0 or A1

STB{A} MS

STBARD [20] MS Yes

STD{A}D 2 MS Yes

STDF{A} MS

STF{A} MS

STFSRP 9 MS Before [21] Yes

ST(H,W,X){A} MS

STXFSR 9 MS Before [21] Yes

SUB 1 A0 or A1

SUBcc 1,0 [1] A0 or A1

SUBC 5 4 MS Yes

SUBCcc 6,5 [2] 5 MS Yes

SWAP{A} 31+ 30+ MS After

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (5 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
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1. These operations produce two results: destination register and condition code (%icc, %xcc). The latency is one in the

former case and zero in the latter case. For example, SUBcc and BE %icc are grouped together (zero latency).

2. These operations produce two results: destination register and condition code (%icc, %xcc). The latency is given as a

pair of numbers —m,n — for the register and condition code, respectively. When latencies vary in a range, such as in

UMULcc, this range is indicated by pair – pair.

3. Latency is x,y for correct, incorrect branch prediction. It is measured as the difference in the dispatching cycle of the

retiring target instruction and that of the branch.

4. Blocking cycles are x,y for correct, incorrect branch prediction. They are measured as the difference in the dispatching

cycle of instruction in the delay slot (or target, if annulled) that retires and that of the branch.

5. Native Call and Link with immediate target address (label).

6. Latency in parentheses applies when operands involve IEEE special values (NaN, INF), including zero and illegal

values.

7. Blocking is limited to another FD operation in succession; otherwise, it is unblocking. Blocking cycles in parentheses

apply when operands involve special and illegal values.

8. Dispatching stall (7+ cycles) until all stores in flight retire.

9. 0–4 if predicted true; 9–10 if mispredicted.

TADDcc 5 Yes MS Yes

TSUBcc 5 Yes MS Yes

Tcc BR and MS

UDIVD 40 39 MS After

UDIVccD 41,40 [2] 40 MS After

UDIVX 71 70 MS After

UMULD 6-8 5-7 MS After

UMULccD 7-8, 6-7 [2] 6-8 MS After

WRASI 16 BR and MS Yes

WRASR 7 BR and MS Yes

WRCCR 7 BR and MS Yes

WRFPRS 7 BR and MS Yes

WRPRP 7 BR and MS Yes

WRYD 7 BR and MS Yes

XNOR 1 A0 or A1

XNORcc 1,0 [1] A0 or A1

XOR 1 A0 or A1

XORcc 1,0 [1] A0 or A1

TABLE 4-4 UltraSPARC III Cu Instruction Latencies and Dispatching Properties (6 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
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10. Latency is taken to be the difference in dispatching cycles from jmpl to target operation, including the effect of an

operation in the delay slot. Blocking cycles thus may include cycles due to restore in the delay slot. In a given pair x,y,

x applies when predicted correctly and y when predicted incorrectly. Each x or y may be a range of values.

11. 0–4 if predicted true; 9 if mispredicted.

12. This MEMBAR has NOP semantics, since the ordering specified is implicitly done by processor (memory model is TSO).

13. All operations in flight complete as in MEMBAR #Sync.

14. All operations in flight complete.

15. Issue stalls a minimum of 7 cycles until all operations in flight are done (get to D-stage).

16. Dispatching stalls until previous save in flight, if any, reaches D-stage.

17. 2 if predicted correctly, 9 otherwise. Similarly for blocking cycles.

18. Dispatching stalls until previous restore in flight, if any, reaches D-stage.

19. Dispatching stall until previous restore in flight, if any, reaches D-stage.

20. Same as MEMBAR #StoreStore, which is NOP.

21. Dispatching stalls until all FP operations in flight are done.

22. Wait for completion of all FP operations in flight.

23. The Shutdown instruction is not implemented. The instruction is neutralized and appears as a NOP to software (no

visible effects).
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CHAPTER 5

Data Formats

The processor recognizes the following fundamental data types:

• Signed integer: 8, 16, 32, and 64 bits

• Unsigned integer: 8, 16, 32, and 64 bits

• VIS Instruction data formats: pixel (32 bits), fixed16 (64 bits), and fixed32 (64 bits)

• Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

• Byte: 8 bits

• Halfword: 16 bits

• Word: 32 bits

• Tagged word: 32 bits (30-bit value plus 2-bit tag; deprecated)

• Doubleword: 64 bits (deprecated in favor of Extended word)

• Extended word: 64 bits

• Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width

commensurate with their range. The floating-point formats conform to the IEEE Standard for

Binary Floating-point Arithmetic, IEEE Std 754-1985. In tagged words, the least significant

two bits are treated as a tag; the remaining 30 bits are treated as a signed integer.

Names are assigned to individual subwords of the multiword data formats as described in the

following sections:

• Signed Integer Double

• Unsigned Integer Double

• Floating-Point, Double-Precision

• Floating-Point, Quad-Precision
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5.1 Integer Data Formats

The processor supports the following integer data formats:

• Signed integer

• Unsigned integer

• Tagged integer word

5.1.1 Integer Data Value Range

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer data

formats.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges

Data Type Width (bits)

Range

Lower Upper

Signed integer byte 8 −27 27 − 1

Signed integer halfword 16 −215 215 − 1

Signed integer word 32 −231 231 − 1

Signed integer tagged word 32 −229 229 − 1

Signed integer double word 64 −263 263 − 1

Signed extended integer 64 −263 263 − 1

Unsigned integer byte 8 0 28 − 1

Unsigned integer halfword 16 0 216 −1

Unsigned integer word 32 0 232 − 1

Unsigned integer tagged word 32 0 230 − 1

Unsigned integer double word 64 0 264 − 1

Unsigned extended integer 64 0 264 − 1

(Unsigned) tagged integer word 32 0 230 − 1
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5.1.2 Integer Data Alignment

TABLE 5-2 describes the memory and register alignment for integer data.

The data types are illustrated in the following subsections.

5.1.3 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

• Signed integer byte

• Signed integer halfword

• Signed integer word

• Signed integer doubleword

• Signed extended integer

TABLE 5-2 Integer Data Alignment

Subformat
Type Width Subformat Field

Required
Address
Alignment

Memory
Address
(Big-
endian)

Register
Number
Alignment

Register
Number

SB

B (byte)

signed_byte_integer<7:0> None n any r

UB unsigned_byte_integer<7:0>

SH
H (halfword)

signed_halfwd_integer<7:0> 0 mod 2 n any r

UH unsigned_halfwd_integer<7:0>

SW
W (word)

signed_word_integer<7:0> 0 mod 4 n any r

UW unsigned_word_integer<7:0>

SD-0

D (double word)

signed_dbl_integer<63:32>
0 mod 8 n 0 mod 2 r

UD-0 unsigned_dbl_integer<63:32>

SD-1 signed_dbl_integer<31:0> 4 mod 8 n + 4 1 mod 2 r + 1

UD-1 unsigned_dbl_integer<31:0>

SX
X (extendedword)

signed_ext_integer<63:0>
0 mod 8 n — r

UX unsigned_ext_integer<63:0>
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5.1.3.1 Signed Integer Byte

FIGURE 5-1 illustrates the signed integer byte data format.

FIGURE 5-1 Signed Integer Byte Data Format

5.1.3.2 Signed Integer Halfword

FIGURE 5-2 illustrates the signed integer halfword data format.

FIGURE 5-2 Signed Integer Halfword Data Format

5.1.3.3 Signed Integer Word

FIGURE 5-3 illustrates the signed integer word data format.

FIGURE 5-3 Signed Integer Word Data Format

5.1.3.4 Signed Integer Double

FIGURE 5-4 illustrates both components (SD-0 and SD-1) of the signed integer double data

format.

FIGURE 5-4 Signed Integer Double Data Format

7 6 0

SSB

15 14 0

SSH

31 30 0

SSW

31 30 0

S signed_dbl_integer<62:32>SD–0

SD–1
31 0

signed_dbl_integer<31:0>
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5.1.3.5 Signed Extended Integer

FIGURE 5-5 illustrates the signed extended integer (SX) data format.

FIGURE 5-5 Signed Extended Integer Data Format

5.1.4 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

• Unsigned integer byte

• Unsigned integer halfword

• Unsigned integer word

• Unsigned integer doubleword

• Unsigned extended integer

5.1.4.1 Unsigned Integer Byte

FIGURE 5-6 illustrates the unsigned integer byte data format.

FIGURE 5-6 Unsigned Integer Byte Data Format

5.1.4.2 Unsigned Integer Halfword

FIGURE 5-7 illustrates the unsigned integer halfword data format.

FIGURE 5-7 Unsigned Integer Halfword Data Format

63 62 0

S signed_ext_integerSX

7 0
UB

15 0
UH
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5.1.4.3 Unsigned Integer Word

FIGURE 5-8 illustrates the unsigned integer word data format.

FIGURE 5-8 Unsigned Integer Word Data Format

5.1.4.4 Unsigned Integer Double

FIGURE 5-9 illustrates both components (UD-0 and UD-1) of the unsigned integer double data

format.

FIGURE 5-9 Unsigned Integer Double Data Format

5.1.4.5 Unsigned Extended Integer

FIGURE 5-10 illustrates the unsigned extended integer (UX) data format.

FIGURE 5-10 Unsigned Extended Integer Data Format

5.1.5 Tagged Word

The Tagged word data format is similar to the unsigned word format except for a 2-bit field

in the two least significant bit (LSB) positions. Bit 31 is the overflow bit.

FIGURE 5-11 illustrates the tagged word data format.

FIGURE 5-11 Tagged Word Data Format

31 0
UW

31 0

unsigned_dbl_integer<63:32>UD–0

UD-1
31 0

unsigned_dbl_integer<31:0>

63 0

unsigned_ext_integerUX

31 0

tag
2 1

TW of
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5.2 Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are described

below.

• Single-precision floating-point (32-bit)

• Double-precision floating-point (64-bit)

• Quad-precision floating-point (128-bit)

5.2.1 Floating-Point Data Value Range

The value range for each format is included with the format and description of each format.

5.2.2 Floating-Point Data Alignment

TABLE 5-3 describes the address and memory alignment for floating-point data.

* The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be doubleword-aligned (that is, the

address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores instead of multiple single word loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-aligned (that is, the ad-

dress of its FQ-0 word should be 0 mod 16).

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address
(Big-endian)*

Register
Number
Alignment

Available
Registers

FS s:exp<7:0>:fraction<22:0> 0 mod 4 † n any f0,f1,...f31

FD-0 s:exp<10:0>:fraction<51:32> 0 mod 4 † n 0 mod 2 f0,f2,...f62

FD-1 fraction<31:0> 0 mod 4 † n + 4 1 mod 2 f1,f3,...f63

FX-0 0 mod 4 † n 0 mod 4 f0,f4,...f60

FX-1 0 mod 4 † n 0 mod 4 f2,f6,...f62

FQ-0 s:exp<14:0>:fraction<111:96> 0 mod 4 ‡ n 0 mod 4 f0,f4,...f60

FQ-1 fraction<95:64> 0 mod 4 ‡ n + 4 1 mod 4 f1,f5,...f61

FQ-2 fraction<63:32> 0 mod 4 ‡ n + 8 2 mod 4 f2,f6,...f62

FQ-3 fraction<31:0> 0 mod 4 ‡ n + 12 3 mod 4

FX 0 mod 4 † n 0 mod 4 f3,f7,...f63
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5.2.3 Floating-Point, Single-Precision

FIGURE 5-12 illustrates the floating-point single-precision data format, and TABLE 5-4

describes the formats.

FIGURE 5-12 Floating-Point Single-Precision Data Format

5.2.4 Floating-Point, Double-Precision

FIGURE 5-13 illustrates both components (FD-0 and FD-1) of the floating-point

double-precision data format when two 32-bit registers are used. FIGURE 5-14 illustrates a

double-precision data format using one 64-bit register.

TABLE 5-5 describes the data formats.

FIGURE 5-13 Floating-Point Double-Precision Double Word Data Format

TABLE 5-4 Floating-Point Single-Precision Format Definition

s = sign (1-bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255) (−1)s × 2e−127 × 1.f

Subnormal value (e = 0) (−1)s × 2−126 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S exp<7:0> fraction<22:0>
2223

FS

31 30 0

S exp<10:0> fraction<51:32>
1920

FD–0

FD–1
31 0

fraction<31:0>
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FIGURE 5-14 Floating-Point Double-Precision Extended Word Data Format

5.2.5 Floating-Point, Quad-Precision

FIGURE 5-15 illustrates all four components (FQ-0 through FQ-3) of the floating-point

quad-precision data format, and TABLE 5-6 describes the formats.

Compatibility Note – Floating-point quad is not implemented in the processor.

Quad-precision operations are emulated in the OS kernel.

TABLE 5-5 Floating-Point Double-Precision Format Definition

s = sign (1-bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047) (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0) (−1)s × 2−1022 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

63 0

fraction<51:0>FX
62

S exp<10:0>
5152
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FIGURE 5-15 Floating-Point Quad-Precision Data Format

5.3 VIS Execution Unit Data Formats

VIS instructions are optimized for short integer arithmetic, where the overhead of converting

to and from floating-point is significant. Data components can be 8 or 16 bits; intermediate

results are 16 or 32 bits.

There are two VIS data formats:

• Pixel Data

• Fixed-point Data

TABLE 5-6 Floating-Point Quad-Precision Format Definition

s = sign (1-bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767) (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0) (-1)s × 2−16382 × 0.f

Zero (e = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

31 30 0

S exp<14:0> fraction<111:96>
1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction<95:64>

fraction<63:32>

fraction<31:0>

31 0

31 0
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Data Conversions

Conversion from pixel data to fixed data occurs through pixel multiplications. Conversion

from fixed data to pixel data is done with the pack instructions, which clip and truncate to an

8-bit unsigned value. Conversion from 32-bit fixed to 16-bit fixed is also supported with the

FPACKFIX instruction.

Rounding

Rounding can be performed by adding one to the round bit position. Complex calculations

needing more dynamic range or precision should be performed using floating-point data.

Range

The range of values that each format supports is described below.

Data Alignment

The data in memory is expected to be aligned according to TABLE 5-7. If the address does not

properly align, then an exception is generated and the load/store operation fails.

5.3.1 Pixel Data Format

The Fixed 8-bit data format consists of four unsigned 8-bit integers contained in a 32-bit

word.

One common use is to represent intensity values for the color components of an image. For

example, R, G, B and α are used as color components and are positioned as shown in

FIGURE 5-16.

TABLE 5-7 Pixel, Fixed16, and Fixed32 Data Alignment

VIS Data
Format
Type Width VIS Data Format Name

Required
Address
Alignment

Memory
Address
(Big-
endian)

Register
Number
Alignment

Register
Number

Pixel 8 32 Pixel Data Format 0 mod 4 n r r

Fixed16 64 Fixed16 Data Format 0 mod 8 n 0 mod 2 r

Fixed32 64 Fixed32 Data Format 0 mod 8 n 0 mod 2 r
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FIGURE 5-16 Pixel Data Format with Band Sequential Ordering Shown

The fixed 8-bit data format can represent two types of pixel data:

• Band interleaved images, with the various color components of a point in the image

stored together

• Band sequential images, with all of the values for one color component stored together

5.3.2 Fixed-Point Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values contained in a

64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed-point values

contained in a 64-bit word. Fixed-point data values provide an intermediate format with

enough precision and dynamic range for filtering and simple image computations on pixel

values.

5.3.2.1 Fixed16 Data Format

Fixed data values provide an intermediate format with enough precision and dynamic range

for filtering and simple image computations on pixel values.

Perform rounding by adding one to the round bit position. Perform complex calculations

needing more dynamic range or precision by means of floating-point data.

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values contained in a

64-bit word. FIGURE 5-17 illustrates the Fixed16 VIS data format.

FIGURE 5-17 Fixed16 VIS Data Format

31 24 023 16 15 8 716

R G B α

63 48 0

integer fraction integer fraction integer fraction integer fraction
47 32 31 16 15
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5.3.2.2 Fixed32 Data Format

The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in a

64-bit word. FIGURE 5-18 illustrates the Fixed32 VIS data format.

FIGURE 5-18 Fixed32 VIS Data Format

63 032 31

integer fraction integer fraction
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CHAPTER 6

Registers

This chapter discusses the following topics:

Section 6.1, “Introduction”

Section 6.2, “Integer Unit General-Purpose r Registers”

Section 6.3, “Register Window Management”

Section 6.4, “Floating-Point General-Purpose Registers”

Section 6.5, “Control and Status Register Summary”

Section 6.6, “State Registers”

Section 6.7, “Ancillary State Registers: ASRs 16-25”

Section 6.8, “Privileged Registers”

Section 6.9, “Special Access Register”

Section 6.10, “ASI Mapped Registers”

6.1 Introduction

The processor consists of many types of registers that serve various purposes and are

accessed in many different ways.

There are separate working registers for the integer and floating-point units (FPUs). Both of

these register sets have been expanded over the evolution of the SPARC processor. The

integer unit registers are shadowed using windowing and selection methods. The registers in

the floating-point register set (also used for VIS and block load store instructions) are

combined in specific ways to support data sizes up to 128 bits. All integer registers and the

upper floating-point registers are 64 bits wide.
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The processor also has a vast array of control, status, state, and diagnostic registers that are

used to setup, control, and operate the processor. The two main operating modes of the

processor, privileged and non-privileged mode, have a profound effect on which of the

control and status registers are available to the software.

The majority of the control and status registers are 64 bits wide and are accessed using the

privileged register access instructions, state register access instructions, and load/store with

ASI access instructions. For convenience, some registers in this chapter are illustrated as

fewer than 64 bits wide. Any bits not shown are reserved for future extensions to the

architecture. Such reserved bits are read as zeroes and, when written by software, should be

written with the values of those bits previously read from that register or with zeroes.

• Integer Unit Working Registers (includes r and global)

• Floating-point Unit Working Registers

• Privileged Registers

• State and Ancillary State Registers (includes ASRs)

• Floating-point Status Register (FSR)

• ASI Mapped Registers (CSRs)

Some of the figures and tables in this chapter are reproduced from The SPARC Architecture
Manual, Version 9 and other sources. Many new diagrams and tables appear for the first time.

Contents of this chapter applies to non-privileged mode unless stated otherwise.

6.2 Integer Unit General-Purpose r Registers

An UltraSPARC III Cu processor contains 160 general-purpose 64-bit r registers. They are

windowed into 32 registers addressable by Integer Unit Instructions.

The r registers are partitioned into eight addressable global registers and 24 addressable

windowed registers. There are four global register sets: normal, MMU, Interrupt, and

Alternate. The windowed registers point to eight working register sets that are windowed into

r[8] to r[31], as one full register set (eight locals and eight ins) and a half register set (eight

outs) belonging to the next higher state.

In summary, the r registers consist of eight in registers, eight local registers, eight out
registers, and the selected eight global registers.

The current window pointer (CWP) register selects the in/local/out windowed registers.

SAVE and RESTORE instructions modify the CWP register.

The PSTATE.AG, .IG, and .MG fields select the global register set. Processor exceptions

modify the PSTATE register fields to select the global register set.

PSTATE and CWP registers are accessible using privileged instructions.
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At any moment, general-purpose registers appear in non-privileged mode as shown in

TABLE 6-1.

TABLE 6-1 Integer Unit General-Purpose Registers

Windowed
Register Name

r Register
Address Source Comments

in[7] r[31] Current Register Set

in[6] r[30] Current Register Set

in[5] r[29] Current Register Set

in[4] r[28] Current Register Set

in[3] r[27] Current Register Set

in[2] r[26] Current Register Set

in[1] r[25] Current Register Set

in[0] r[24] Current Register Set

local[7] r[23] Current Register Set

local[6] r[22] Current Register Set

local[5] r[21] Current Register Set

local[4] r[20] Current Register Set

local[3] r[19] Current Register Set

local[2] r[18] Current Register Set

local[1] r[17] Current Register Set

local[0] r[16] Current Register Set

out[7] r[15] Next higher level Register Set See footnote 1

out[6] r[14] Next higher level Register Set

out[5] r[13] Next higher level Register Set

out[4] r[12] Next higher level Register Set

out[3] r[11] Next higher level Register Set

out[2] r[10] Next higher level Register Set

out[1] r[ 9] Next higher level Register Set

out[0] r[ 8] Next higher level Register Set

global[7] r[ 7] Global[ 7]

global[6] r[ 6] Global[ 6]

global[5] r[ 5] Global[ 5]

global[4] r[ 4] Global[ 4]
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6.2.1 Windowed (in/local/out) r Registers

At any time, an integer unit instruction can access a 24-register window into the register sets.

A register window comprises the eight in and eight local registers (a complete register set)

together with the eight in registers (upper half of the next higher register set). The CALL
instruction writes its own address into register r[15] (out register 7).

6.2.2 Global r Register Sets

Registers r[0]–r[7] refer to a set of eight global registers (g0–g7). At any time, one of

four sets of eight global register sets is selected and can be accessed as the current global

register set. The currently enabled set of global registers is selected by the Alternate Global

(AG), Interrupt Global (IG), and MMU Global (MG) fields in the PSTATE register. See

“Processor State (PSTATE) Privileged Register 6” on page 112 for a description of the AG,

IG, and MG fields.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

An illustration showing the current IU registers is shown in FIGURE 6-1.

global[3] r[ 3] Global[ 3]

global[2] r[ 2] Global[ 2]

global[1] r[ 1] Global[ 1]

global[0] r[ 0] Global[ 0] Value (r[ 0]) always zero

1. The CALL instruction writes its own address into the r[15] register (out[7]).

TABLE 6-1 Integer Unit General-Purpose Registers (Continued)

Windowed
Register Name

r Register
Address Source Comments
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FIGURE 6-1 Three Overlapping Windows and the Eight Global Registers

Compatibility Note – Since the PSTATE register is writable only by privileged software,

existing non-privileged SPARC V8 software operates correctly on a processor if Supervisor

Software ensures that User Software sees a consistent set of global registers.

In summary, the processor has eight windows or register sets (NWINDOWS = 8). The total

number of r registers in the processor is 160: 8 normal global registers, 8 alternate global

registers, 8 interrupt global registers, 8 MMU global registers, plus the number of register

sets (eight) times 16 registers/set.
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6.2.2.1 Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs of

the CWP – 1 (modulo NWINDOWS) window are addressable as the ins of the current window,

and the outs in the current window are the ins of the CWP + 1 (modulo NWINDOWS) window.

The locals are unique to each window.

An outs register with address o, where 8 ≤ o ≤ 15, refers to exactly the same register as

(o+16) does after the CWP is incremented by one (modulo NWINDOWS). Likewise, an in
register with address i, where 24 ≤ i ≤ 31, refers to exactly the same register as address

(i − 16) does after the CWP is decremented by one (modulo NWINDOWS). See FIGURE 6-1 and

FIGURE 6-2.

Since CWP arithmetic is performed modulo NWINDOWS, the highest-numbered implemented

window (window 7) overlaps with window 0. The outs of window NWINDOWS − 1 are the ins
of window 0. Implemented windows are numbered contiguously from 0 through

NWINDOWS − 1.

6.2.3 128-bit Operand Considerations

LDD, LDDA, STD, and STDA instructions access 128-bit data associated with adjacent

r registers and require even-odd register alignment. An attempt to execute an LDD, LDDA,

STD, or STDA instruction that refers to a misaligned (odd) destination register number causes

an illegal_instruction trap.

6.3 Register Window Management

Note – Register window management is the responsibility of the operating system

(supervisor code). The user code sees an unlimited stack of register windows and does not

have to worry about register window management. The operating system provides support for

underflow and overflow of the stack. This mechanism is transparent to the user code.

The current window in the windowed portion of r registers is given by the CWP register. The

CWP is decremented by the RESTORE instruction and incremented by the SAVE instruction.

Window overflow is detected by the CANSAVE register, and window underflow is detected by

the CANRESTORE register, both of which are controlled by privileged software. A window

overflow (underflow) condition causes a window spill (fill) trap.
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Programming Note – Because the windows overlap, the number of windows available to

software is one less than the number of implemented windows, that is, 7 (NWINDOWS − 1).

FIGURE 6-2 Windowed r Registers for NWINDOWS = 8

w5 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins
w1 locals

w1 ins

w6 locals w6 ins
w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window 5)

account for the two windows in the right side of the equation. The

“overlap window” is the window that must remain unused because its ins
and outs overlap two other valid windows.

NWINDOWS = 8, CWP = 0, CANSAVE = 4, OTHERWIN = 1, and

CANRESTORE = 1. If the procedure using window w0 executes a

RESTORE, then window w7 becomes the current window. If the

procedure using window w0 executes a SAVE, then window w1 becomes

the current window.

SAVE RESTORE w5 ins

CANSAVE = 4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(Current Window Pointer)
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6.3.1 CALL and JMPL Instructions

Programming Note – Since the procedure call instructions (CALL and JMPL) do not

change the CWP, a procedure can be called without changing the window.

6.3.2 Circular Windowing

Programming Note – When the register file is full, the outs of the newest window are the

ins of the oldest window, which still contains valid data.

6.3.3 Clean Window with RESTORE and SAVE Instructions

Programming Note – The local and out registers of a register window are guaranteed to

contain either zeroes or an old value that belongs to the current context upon reentering the

window through a SAVE instruction. If a program executes a RESTORE followed by a SAVE,

then the resulting window’s locals and outs may not be valid after the SAVE, since a trap

may have occurred between the RESTORE and the SAVE.

6.4 Floating-Point General-Purpose Registers

The Floating-point register file contains addressable registers for the following:

• Floating-point Instructions

• VIS Instructions

• Block load and store instructions

• FSR load and store instructions

The registers have various widths and assigned addresses as follows:

• 32 32-bit (single-precision) floating-point registers, f [0], f [1], … f [31]

• 32 64-bit (double-precision) floating-point registers, f [0], f [2], … f [62]

• 16 128-bit (quad-precision) floating-point registers, f [0], f [4], … f [60]
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The floating-point registers are arranged so that some of them overlap, that is, are aliased.

The layout and numbering of the floating-point registers are shown in TABLE 6-2, TABLE 6-3,

and TABLE 6-4. Unlike the windowed r registers, all of the floating-point registers are

accessible at any time. The floating-point registers can be read and written by FPop (FPop1/

FPop2 format) instructions, load/store single/double/quad floating-point instructions, and

block load and block store instructions.

TABLE 6-2 32-bit Floating-Point Registers with Aliasing

Operand Register and FieldFrom Register Operand Register and Field From Register

f31 <31:0> f31<31:0> f15 <31:0> f15<31:0>

f30 <31:0> f30<31:0> f14 <31:0> f14<31:0>

f29 <31:0> f29<31:0> f13 <31:0> f13<31:0>

f28 <31:0> f28<31:0> f12 <31:0> f12<31:0>

f27 <31:0> f27<31:0> f11 <31:0> f11<31:0>

f26 <31:0> f26<31:0> f10 <31:0> f10<31:0>

f25 <31:0> f25<31:0> f9 <31:0> f9<31:0>

f24 <31:0> f24<31:0> f8 <31:0> f8<31:0>

f23 <31:0> f23<31:0> f7 <31:0> f7<31:0>

f22 <31:0> f22<31:0> f6 <31:0> f6<31:0>

f21 <31:0> f21<31:0> f5 <31:0> f5<31:0>

f20 <31:0> f20<31:0> f4 <31:0> f4<31:0>

f19 <31:0> f19<31:0> f3 <31:0> f3<31:0>

f18 <31:0> f18<31:0> f2 <31:0> f2<31:0>

f17 <31:0> f17<31:0> f1 <31:0> f1<31:0>

f16 <31:0> f16<31:0> f0 <31:0> f0<31:0>

TABLE 6-3 64-bit Floating-Point Registers with Aliasing

Operand Register and Field From Register Operand Register and Field From Register

f62 <63:0> f62<63:0> f30 <63:0> f30<31:0>:f31<31:0>

f60 <63:0> f60<63:0> f28 <63:0> f28<31:0>:f29<31:0>

f58 <63:0> f58<63:0> f26 <63:0> f26<31:0>:f27<31:0>

f56 <63:0> f56<63:0> f24 <63:0> f24<31:0>:f25<31:0>

f54 <63:0> f54<63:0> f22 <63:0> f22<31:0>:f23<31:0>

f52 <63:0> f52<63:0> f20 <63:0> f20<31:0>:f21<31:0>

f50 <63:0> f50<63:0> f18 <63:0> f18<31:0>:f19<31:0>

f48 <63:0> f48<63:0> f16 <63:0> f16<31:0>:f17<31:0>

f46 <63:0> f46<63:0> f14 <63:0> f14<31:0>:f15<31:0>

f44 <63:0> f44<63:0> f12 <63:0> f12<31:0>:f13<31:0>

f42 <63:0> f42<63:0> f10 <63:0> f10<31:0>:f11<31:0>

f40 <63:0> f40<63:0> f8 <63:0> f8<31:0>:f9<31:0>

f38 <63:0> f38<63:0> f6 <63:0> f6<31:0>:f7<31:0>

f36 <63:0> f36<63:0> f4 <63:0> f4<31:0>:f5<31:0>

f34 <63:0> f34<63:0> f2 <63:0> f2<31:0>:f3<31:0>

f32 <63:0> f32<63:0> f0 <63:0> f0<31:0>:f1<31:0>
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6.4.1 Floating-Point Register Number Encoding

The floating-point register number encoding in the instruction field depends on the width of

register being addressed. The encoding for the 5-bit instruction field (labeled b<4>–b<0>,

where b<4> is the most significant bit of the register number), is given in TABLE 6-5.

Compatibility Note – In the SPARC V8 architecture, bit 0 of 64- and 128-bit register

numbers encoded in instruction fields was required to be zero. Therefore, all SPARC V8

floating-point instructions can run unchanged on a UltraSPARC III Cu processor, using the

encoding in TABLE 6-5.

TABLE 6-4 128-bit Floating-Point Registers with Aliasing

Operand Register and FieldFrom Register

f60 <127:0> f60<63:0>:f62<63:0>

f56 <127:0> f56<63:0>:f58<63:0>

f52 <127:0> f52<63:0>:f54<63:0>

f48 <127:0> f48<63:0>:f50<63:0>

f44 <127:0> f44<63:0>:f46<63:0>

f40 <127:0> f40<63:0>:f42<63:0>

f36 <127:0> f36<63:0>:f38<63:0>

f32 <127:0> f32<63:0>:f34<63:0>

f28 <127:0> f28<31:0>:f29<31:0>:f30<31:0>:f31<31:0>

f24 <127:0> f24<31:0>:f25<31:0>:f26<31:0>:f27<31:0>

f20 <127:0> f20<31:0>:f21<31:0>:f22<31:0>:f23<31:0>

f16 <127:0> f16<31:0>:f17<31:0>:f18<31:0>:f19<31:0>

f12 <127:0> f12<31:0>:f13<31:0>:f14<31:0>:f15<31:0>

f8 <127:0> f8<31:0>:f9<31:0>:f10<31:0>:f11<31:0>

f4 <127:0> f4<31:0>:f5<31:0>:f6<31:0>:f7<31:0>

f0 <127:0> f0<31:0>:f1<31:0>:f2<31:0>:f3<31:0>

TABLE 6-5 Floating-Point Register Number Encoding

Register Operand
Type 6-bit Register Number, fn

Encoding in a 5-bit Register Field in an
Instruction, rd/rs

32-bit (single) 0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

64-bit (double) b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

128-bit (quad) b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>
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6.4.2 Double and Quad Floating-Point Operands

A 32-bit f register can hold one single-precision operand; a 64-bit (double-precision)

operand requires an aligned pair of f registers, and a 128-bit (quad-precision) operand

requires an aligned quadruple of f registers. At a given time, the floating-point registers can

hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-precision values in

the lower half of the floating-point register file, plus an additional 16 double-precision or

8 quad-precision values in the upper half, or mixtures of the three sizes.

See FIGURE 6-3, TABLE 6-2, TABLE 6-3, and TABLE 6-4 for illustrative formats.

Programming Note – Data to be loaded into a floating-point double or quad register that

is not doubleword aligned in memory must be loaded into the lower 16 double registers

(8 quad registers) by means of single-precision LDF instructions. If desired, the data can then

be copied into the upper 16 double registers (8 quad registers).

Programming Note – An attempt to execute an instruction that refers to a misaligned

floating-point register operand (that is, a quad-precision operand in a register whose 6-bit

register number is not 0 mod 4) shall cause a fp_exception_other trap, with FSR.ftt = 6

(invalid_fp_register).

Programming Note – Given the encoding in TABLE 6-5, it is impossible to specify a

double-precision register with a misaligned register number.

Note – The processor does not implement quad-precision operations in hardware. All

floating-point quad (including load and store) operations trap to the OS kernel and are

emulated. Since the processor does not implement quad floating-point arithmetic operations

in hardware, the fp_exception_other trap with FSR.ftt = 6 (invalid_fp_register) does not

occur in processors.
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FIGURE 6-3 Integer Unit r Registers and Floating-Point Unit Working Registers
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6.5 Control and Status Register Summary

This section presents a summary of control and status registers.

6.5.1 State and Ancillary State Register Summary

See FIGURE 6-4 and TABLE 6-6 for more information on state and ancillary state registers

(ASRs).

FIGURE 6-4 State and Ancillary State Registers
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6.5.2 Privileged Register Summary

See FIGURE 6-5 and TABLE 6-7 for more information on privileged registers.

TABLE 6-6 State and Ancillary State Registers

State Register
Number
(base 10 used)

Access
Restriction R/W Abbreviation Description Reference Section Notes

0
None RW YD Register 32-bit Multiply/Divide

(deprecated)

1 Reserved

2 None RW CCR Condition Code

3 None RW ASI Address Space Identifier Section 6.6.3

4

Depends R TICK TICK register for CPU Timer,

also accessible as a privileged

register

Section 6.7.4 1

1. Writes are always privileged; reads are privileged if TICK.NPT = 1; otherwise, reads are non-privileged.

5 None R PC Program Counter Section 6.6.5

6 None RW FPRS Floating-point Registers State

ASR 7−15
Reserved Reserved for future use; do not

reference by software.

ASR 16 Privileged RW PCR Performance Instrumentation Chapter 14,

“Performance

Instrumentation”

2

2. If PCR.NC = 0, access is always privileged. If PCR.NC ≠ 0 and PCR.PRIV = 0, access is non-privileged; otherwise, access is privileged.

ASR 17
Depends RW PIC 3

3. All accesses are privileged if PCR.PRIV = 1; otherwise, all accesses are non-privileged.

ASR 18 Privileged RW DCR Dispatch Control Register Section 6.7.1

ASR 19 None RW GSR Graphics (VIS) Status Register Section 6.7.2

ASR 20 Privileged W SET_SOFTINT Software Interrupts Section 6.7.3

ASR 21 Privileged W CLR_SOFTINT

ASR 22 Privileged RW SOFTINT_REG

ASR 23 Privileged RW TICK_CMP CPU and System Timer

Registers

Section 6.7.4

ASR 24 Depends RW STICK 4

4. Writes are always privileged; reads are privileged if STICK.NPT = 1. Otherwise, reads are non-privileged.

ASR 25 Privileged RW STICK_CMP

ASR 26−31
Reserved Reserved for future use; do not

reference by software.
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FIGURE 6-5 Privileged Registers
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6.5.3 ASI and Specially Accessed Register Summary

See FIGURE 6-6 and TABLE 6-8 for more information on ASI and specially accessed registers.

TABLE 6-7 Privileged Registers

Privileged
Register Number
(base 10 used)

Access
Restriction R/W Abbreviation Description

Reference
Section Notes

0 Privileged RW TPC Trap stage program counter Section 6.8.1

1 Privileged RW TNPC Trap state next program counter

2 Privileged RW TSTATE Trap state register

3 Privileged RW TT Trap type register

4
Privileged RW TICK CPU TICK timer register, also

accessible as a state register

Section 6.7.4

5 Privileged RW TBA Trap base address register Section 6.8.2

6 Privileged RW PSTATE Processor state register Section 6.8.3

7 Privileged RW TL Trap level register Section 6.8.4

8 Privileged RW PIL Processor Interrupt Level register Section 6.8.5

9 Privileged RW CWP Current window pointer Section 6.8.6

10 Privileged RW CANSAVE Saveable register sets

11 Privileged RW CANRESTORE Restorable register sets

12 Privileged RW CLEANWIN Clean register sets

13
Privileged RW OTHERWIN Other register sets susceptible to

spill/fill

14
Privileged RW WSTATE Window state register for traps due

to spills and fills

Section 6.8.7

15−30 Privileged Reserved

31 Privileged R VER Processor version register Section 6.8.8
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FIGURE 6-6 ASI and Specially Accessed Registers

TABLE 6-8 ASI and Specially Accessed Registers

Type Abbreviation Description
Access
Restriction R/W

Reference
Section Notes

ASI DCUCR Data Cache Unit Control

Register

Section 6.10.1

ASI 5816 PA WATCHPOINT Watchpoint for physical

addresses
Section 6.10.2

VA WATCHPOINT Watchpoint for virtual

addresses

LD/ST

Floating-

point

Opcode

Load/Store FSR Access the Floating-point

Status Register

37 0
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Status Registers
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50 0
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63 0
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63 0
PA Watchpoint
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RW

RW

RW

Value
0016
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STFSR, STXFSR
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Special Access Registers
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6.6 State Registers

The state registers provide control and status to the Integer Execution Unit.

The type and accessibility of the registers (privileged vs. non-privileged mode) are

summarized in FIGURE 6-4.

The SPARC V9 architecture provides for up to 31 state registers, 24 of which are classified

as ASRs, numbered from 7 through 31. The eight State Registers, 0 through 7, are defined by

the SPARC V9 architecture.

6.6.1 32-bit Multiply/Divide (YD) State Register 0

The Y register is deprecated; it is provided only for compatibility with previous versions of

the architecture. It should not be used in new SPARC V9 software. It is recommended that all

instructions that reference the Y register (that is, SMULD, SMULccD, UMULD, UMULccD,

MULSccD, SDIVD, SDIVccD, UDIVD, UDIVccD, RDYD, and WRYD) be avoided.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-7, contain the more significant

word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer

multiply (SMULD, SMULccD, UMULD, UMULccD) instruction or an integer multiply step

(MULScc) instruction. The Y register also holds the more significant word of the 64-bit

dividend for a 32-bit integer divide (SDIVD, SDIVccD, UDIVD, UDIVccD) instruction.

FIGURE 6-7 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as zero.

The Y register is read and written with the RDYD and WRYD instructions, respectively.

6.6.2 Integer Unit Condition Codes State Register 2 (CCR)

The Condition Codes Register (CCR), shown in FIGURE 6-8, holds the integer condition

codes.

The CCR is accessible using Read and Write State Register instructions (RDCCR and

WRCCR) in non-privileged or privileged mode.

63 032 31
— product<63:32> or dividend<63:32>
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FIGURE 6-8 Condition Codes Register

6.6.2.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The

icc condition codes indicate the result of an operation when viewed as a 32-bit operation.

For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit

result is negative (icc.N is set to one) but the 64-bit result is nonnegative (xcc.N is set to

zero).

Each of the 4-bit condition code fields is composed of four 1-bit subfields, as shown in

FIGURE 6-9.

FIGURE 6-9 Integer Condition Codes (CCR_icc and CCR_xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last

instruction that modified the integer condition codes; 1 = negative, 0 = non-negative.

The z bits indicate whether the ALU result was zero for the last instruction that modified the

integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in)

64-bit (xcc) or 32-bit (icc) two’s-complement notation for the last instruction that modified

the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a two’s-complement carry (or borrow) occurred during the last

instruction that modified the integer condition codes. Carry is set on addition if there is a

carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is a borrow into

bit 63 (xcc) or bit 31 (icc); 1 = carry, 0 = no carry.

7 4 03

xcc iccCCR

7 5 4
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cvn z

64-bit Interpretation
32-bit Interpretation
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Condition Codes

These bits are modified by the arithmetic and logical instructions, the names of which end

with the letters “cc” (for example, ANDcc) and by the WRCCR instruction. They can be

modified by a DONE or RETRY instruction, which replaces these bits with the CCR field of

the TSTATE register. The BPcc and Tcc instructions may cause a transfer of control based

on the values of these bits. The MOVcc instruction can conditionally move the contents of an

integer register based on the state of these bits. The FMOVcc instruction can conditionally

move the contents of a floating-point register according to the state of these bits.

CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes, which indicate the results of an integer

operation, with both of the operands and the result considered to be 64 bits wide.

CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer

operation, with both of the operands and the result considered to be 32 bits wide. In addition

to the BPcc and Tcc instructions, the Bicc instruction may also cause a transfer of control

based on the values of these bits.

6.6.3 Address Space Identifier (ASI) Register ASR 3

The ASI Register (FIGURE 6-10) specifies the ASI to be used for load and store alternate

instructions that use the “rs1 + simm13” addressing form.

Non-privileged (user-mode) software may write any value into the ASI register; however,

values with bit 7 equal to zero select restricted ASIs. When a non-privileged instruction

makes an access that uses an ASI with bit 7 equal to zero, a privileged_action exception is

generated.

FIGURE 6-10 Address Space Identifier Register

6.6.4 TICK Register (TICK) ASR4

See Section 6.7.4, “Timer State Registers: ASRs 4, 23, 24, 25” for more details.

7 0

ASI
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6.6.5 Program Counters State Register 5

The program counter (PC) contains the address of the instruction currently being executed.

The next program counter (nPC) holds the address of the next instruction to be executed if a

trap does not occur. The low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer

instruction is known as the delay instruction. This delay instruction is executed (unless the

control transfer instruction annuls it) before control is transferred to the target. During

execution of the delay instruction, the nPC points to the target of the control transfer

instruction, and the PC points to the delay instruction. See Chapter 7, “Instruction Types” for

more details.

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,

FBPfcc, JMPL, and RETURN instructions. It can be read directly by a RDPC instruction.

6.6.6 Floating-Point Registers State (FPRS) Register 6

The Floating-point Registers State (FPRS) Register, shown in FIGURE 6-11, holds control

information for the floating-point register file. Mode and status information about the

Floating-point unit (FPU) is presented in Section 6.9.1.

This register is readable and writable using the read and write state register instructions

RDFPRS and WRFPRS when the processor is in non-privileged or privileged mode.

FIGURE 6-11 Floating-Point Registers State Register

6.6.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a

floating-point instruction causes a fp_disabled trap. If this bit is set but the PSTATE.PEF bit

is not set, then executing a floating-point instruction causes a fp_disabled trap; that is, both

FPRS.FEF and PSTATE.PEF must be set to enable floating-point operations.

012

DLFEF DUFPRS
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6.6.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32–f62. It

is set whenever any of the upper floating-point registers is modified. The processor may set it

pessimistically; it may be set whenever a floating-point instruction is issued, even though that

instruction never completes and no output register is modified. The dirty bit may be set by

instructions that the processor executes but does not complete due to wrong branch

prediction. The DU bit is cleared only by software.

6.6.6.3 FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0–f31. It is set

whenever any of the lower floating-point registers is modified. The processor may set it

pessimistically; it may be set whenever a floating-point instruction is issued, even though that

instruction never completes and no output register is modified. The DL bit is cleared only by

software.

6.7 Ancillary State Registers: ASRs 16-25

The SPARC V9 architecture provides for optional ancillary state registers (ASRs) in addition

to the six state registers defined for all SPARC V9 processors and already described.

An ASR is read and written with the RDASR and WRASR instructions, respectively. Access to

a particular ASR may be privileged or non-privileged. A RDASR or WRASR instruction is

privileged if the accessed register is privileged.

All the state and ancillary state registers are summarized in TABLE 6-6. Some of the registers

descriptions are presented below.

6.7.1 Dispatch Control Register (DCR) ASR 18

The DCR provides control over the dispatch unit and branch prediction logic. The DCR also

provides factory test equipment with access to internal logic states using the OBSDATA bus

interface.

The DCR is a read/write register. Unused bits read as zero and should be written only with

zero or values previously read from them. The DCR is a privileged register; attempted access

by non-privileged (user) code causes a privileged_opcode trap. POR value is xxxx.xx0x2.

The DCR is illustrated in FIGURE 6-12 and described in TABLE 6-9.
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FIGURE 6-12 Dispatch Control Register (ASR 18)

TABLE 6-9 DCR Bit Description

Bit Field Type Description

63:14 — Reserved.

13:12 DPE Data Cache Parity Error Enable - If cleared, no parity checking at the Data Cache

SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be done. It also implies

no Dcache_Parity_error trap (TT 0x071) will ever be generated. However, parity bits are

still generated automatically and correctly by HW.

11:6 OBSDATA These bits are used to select the set of signals driven on the OBSDATA<9:0> pins of the

processor for factory test purposes.

Branch and Return Control

5 BPE Branch Prediction Enable. When BPE = 1, conditional branches are predicted through

internal hardware. When BPE = 0, all branches are predicted not taken. After power-on

reset initialization, this bit is set to zero. This bit is also automatically set to zero on any

trap causing RED_state entry (but not cleared when privileged code enters

RED_state by setting the RED bit in PSTATE).

4 RPE Return Address Prediction Enable. When RPE = 0, the return address prediction stack is

disabled. Even when encountering a JMPL instruction, instruction fetch will continue on

a sequential path until the return address is generated and a mispredict is signalled.

When RPE = 1, the processor may attempt to predict the target address of JMPL
instructions and prefetch subsequent instructions accordingly.

After power-on reset initialization, this bit is set to zero. This bit is also automatically

set to zero on any trap causing a RED_state entry (but left unchanged when privileged

code enters RED_state by setting PSTATE.RED).

Instruction Dispatch Control

3 SI Single Issue Disable. When SI = 0, only one instruction will be outstanding at a time.

Superscalar instruction dispatch is disabled, and only one instruction is executed at a

time. When SI = 1, normal pipelining is enabled. The processor can issue new

instructions prior to the completion of previously issued instructions.

After power-on reset initialization, this bit is set to zero. This bit is also automatically

set to zero on any trap causing RED_state entry (but left unchanged when privileged

code enters RED_state by setting PSTATE.RED).

63 0

MS

12456

IPESIRPEBPE IFPOEOBS

1112

—

1314

DPE

3
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Note – Both IPE and DPE will default to 0 (disable) after power-on or system reset.

Interrupt Floating-Point Operation Enable (Bit 1)

The IFPOE bit enables system software to take interrupts on floating-point instructions. This

enable bit is cleared by hardware at power-on. System software must set the bit as needed.

When this bit is enabled, the UltraSPARC III Cu processor forces a fp_disabled trap when an

interrupt occurs on FP-only code. The trap handler is then responsible for checking whether

the floating-point is indeed disabled. If it is not, the trap handler then enables interrupts to

take the pending interrupt.

Note – This behavior deviates from SPARC V9 trap priorities in that interrupts are of lower

priorities than the other two types of floating-point exceptions (fp_exception_ieee_754,

fp_exception_other).

• This mechanism is triggered for a floating-point instruction only if none of the

approximately twelve preceding instructions across the two integer, load/store, and branch

pipelines are valid, under the assumption that they are better suited to take the interrupt

(only one trap entry/exit).

• Upon entry, the handler must check both TSTATE.PEF and FPRS.FEF bits. If

TSTATE.PEF = 1 and FPRF.FEF = 1, the handler has been entered because of an

interrupt, either interrupt_vector or interrupt_level. In such a case:

■ The fp_disabled handler should enable interrupts (that is, set PSTATE.IE = 1); then,

issue an integer instruction (for example, add %g0,%g0,%g0). An interrupt is

triggered on this instruction.

2 IPE Instruction Cache Parity Error Enable - If cleared, no parity checking at the Instruction

Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be done. It also

implies no Icache_Parity_error trap (TT 0x072) will ever be generated. However, parity

bits are still generated automatically and correctly by HW.

1 IFPOE Interrupt Floating-point Operation Enable. The IFPOE bit enables system software to

take interrupts on floating-point instructions. When set, the processor forces a

fp_disabled trap when an interrupt occurs on floating-point code.

0 MS Multiscalar dispatch enable. When MS = 0, the processor operates in scalar mode,

issuing and executing one instruction at a time. Pipelined operation is still controlled by

the SI bit. MS = 1 enables superscalar (normal) instruction issue.

After power-on reset initialization, this bit is set to zero. The bit is also automatically set

to zero on any trap causing RED_state entry (but left unchanged when privileged

code enters RED_state by setting PSTATE.RED).

TABLE 6-9 DCR Bit Description (Continued)

Bit Field Type Description
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■ The processor then enters the appropriate interrupt handler (PSTATE.IE is turned off

here) for the type of interrupt.

■ At the end of the handler, the interrupted instruction is a RETRY after returning from

the interrupt. The add %g0, %g0, %g0 is a RETRY.

■ The fp_disabled handler then returns to the original process with a RETRY.

■ The “interrupted” FPop is then retried (taking a fp_exception_ieee_754 or

fp_exception_other at this time if needed).

6.7.2 Graphics Status Register (GSR) ASR 19

The GSR is used with the VIS Instruction Set.

The GSR is accessible in non-privileged mode. It can be read and written using the RDASR
and WRASR state register instructions.

Accesses to the GSR cause a fp_disabled trap if PSTATE.PEF or FPRS.FEF is zero.

The GSR is illustrated in FIGURE 6-13 and described in TABLE 6-10.

FIGURE 6-13 Graphic Status Register (ASR 19)

TABLE 6-10 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> This field specifies the mask used by the BSHUFFLE instruction. The field

contents are set by the BMASK instruction.

31:28 Reserved.

27 IM Interval Mode: When IM = 1, the values in FSR.RD and FSR.NS are

ignored; the processor operates as if FSR.NS = 0 and rounds floating-point

results according to GSR.IRND.

26:25 IRND<1:0> IEEE Std 754-1985 rounding direction to use in Interval Mode

(GSR.IM = 1), as follows:

When GSR.IM = 1, the value in GSR.IRND overrides the value in FSR.RD.

0

—

63 2325 24 8 7

SCALE ALIGNIRNDIMMASK
27283132 26

—

IRND Round toward

0 Nearest (even if tie)

1 0

2 + ∞
3 − ∞
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6.7.3 Software Interrupt State Registers:

ASRs 20, 21, and 22

Three registers are used to control software interrupts: SOFTINT, SET_SOFTINT, and

CLR_SOFTINT. Bits written to the SOFTINT register will cause traps to the level the trap is

enabled. The SOFTINT register can be written to directly using ASR 22, or indirectly using

the SET_SOFTINT and CLR_SOFTINT registers as described in this section.

All three registers are accessible only in privileged mode. The SOFTINT register is accessed

using the RD and WR state register access instructions. The SET_SOFTINT and

CLR_SOFTINT registers are written using the WR state register access instruction. See

TABLE 6-11 and FIGURE 6-14 for more details.

FIGURE 6-14 SOFTINT, SET_SOFTINT, and CLR_SOFTINT Register Formats

24:8 Reserved.

7:3 SCALE<4:0> Shift count in the range 0–31, used by the PACK instructions for formatting.

2:0 ALIGN<2:0> Least three significant bits of the address computed by the last executed

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

TABLE 6-11 Register-Window State Registers

Soft Interrupt Register ASR # Name and Description Privileged Access Instructions

SOFTINT 22 Software Interrupt Register RDSOFTINIT

WRSOFTINT

SET_SOFTINT 20 Set Software Interrupt register bits. WRSOFTINIT_SET

CLR_SOFTINT 21 Clear Software Interrupt register bits. WRSOFTINIT_CLR

TABLE 6-10 GSR Bit Description (Continued)

Bit Field Description

0

—

63 11516

INT_LEVEL

17

IM ITM

0

Reads zero, writes ignored.
63 17 16

 Sets bits in SOFTINT.

0

Reads zero, writes ignored.
63 17 16

 Clears bits in SOFTINT.

SOFTINT

SET_SOFTINT

CLR_SOFTINT
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SOFTINT Register

The operating system uses the SOFTINT to schedule interrupts. The field definitions are

described in TABLE 6-12.

SET_SOFTINT Register

The SET_SOFTINT register is written to set bits in the SOFTINT register to set a bit in that

register. When a bit in the SET_SOFTINT register is set to a one, the corresponding bit in

the SOFTINT is set.

CLR_SOFTINT Register

The CLR_SOFTINT register is written in privileged mode using the WR write state register

instruction to clear bits in the SOFTINT register. When a bit in the CLR_SOFTINT register

is set to a one, the corresponding bit in the SOFTINT register is cleared.

TABLE 6-12 SOFTINT Bit Descriptions

Bit Field Description

16 SM

(STICK_INT)

When the STICK_COMPARE.INT_DIS bit is zero (system tick compare is enabled) and

its STICK_CMPR field matches the value in the STICK register, then the SM field in

SOFTINT is set to one and a Level-14 interrupt is generated. See Section 6.7.4, “Timer

State Registers: ASRs 4, 23, 24, 25” for details.

15:1 INT_LEVEL When a bit is set within this field (bits 15:1), an interrupt is caused at the corresponding

interrupt level. Note that INT_LEVEL<15> is shared by Level-15 interrupt and PIC
overflow interrupt.

0 TM

(TICK_INT)

When the TICK_COMPARE.INT_DIS bit is zero (that is, tick compare is enabled) and its

TICK_CMPR field matches the value in the TICK register, then the TM field in the

SOFTINT register is set to one and a Level-14 interrupt is generated. See

“TICK_COMPARE Register” for details.
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6.7.4 Timer State Registers: ASRs 4, 23, 24, 25

The processor has two timers. The TICK timer is driven by the CPU clock. The STICK timer

is driven by the system clock. Four registers are used to implement the timer and support the

timer interrupts.

FIGURE 6-15 Timer State Registers

TICK Register

The TICK register is a 63-bit counter that counts processor clock cycle.

In privileged mode, the TICK register is always readable using either the RDPR (privileged

read) or RDTICK (state register read) instructions. The TICK register is always writable in

privileged mode using the WRPR (privileged write) instruction; there is no WRTICK (state

register write) instruction.

The TICK.NPT bit (bit 63) selects the non-privileged mode readability. If TICK.NPT = 0,

then the TICK register is readable in non-privileged mode using the RDTICK state register

read instruction. When TICK.NPT = 1, an attempt by software to read the TICK register in

non-privileged mode causes a privileged_action exception. Software operating in

non-privileged mode can never write to the TICK register.

TABLE 6-13 Timer State Registers

Soft Interrupt Register
ASR #
(base 10) Name and Description Access Instructions

TICK 4 TICK register Depends

TICK_COMPARE 23 TICK Compare register State Register Instructions in privileged mode

STICK 24 STICK register Depends

STICK_COMPARE 25 STICK Compare register State Register Instructions in privileged mode

063 62

TICK NPT COUNTER

063 62

INT_DIS TICK_CMPR

063 62

NPT COUNTER

063 62

INT_DIS TICK_CMPR

TICK_COMPARE

STICK

STICK_COMPARE
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TICK.NPT is set to one by a power-on reset trap. The value of TICK.COUNTER is reset

after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented (by

one or more) from the last value written, rather than from some previous value of the counter.

The number of counts between a write and a subsequent read does not accurately reflect the

number of processor cycles between the write and the read. Software may rely only on

read-to-read counts of the TICK register for accurate timing, not on write-to-read counts.

Note – The TICK register is unaffected by any reset other than a power-on reset.

Programming Note – TICK.NPT may be used by a secure operating system to control

access by user software to high accuracy timing information. The operation of the timer

might be emulated by the trap handler, which could read TICK.counter and change the

value to lower its accuracy.

TICK_COMPARE Register

The TICK_COMPARE register causes the processor to generate a trap when the TICK
register reaches the value in the TICK_COMPARE register and the INT_DIS bit is zero. If

the INT_DIS bit is one, then no interrupt is generated.

When the TICK_CMPR field exactly matches the TICK.COUNTER field and INT_DIS = 0,

then a TICK_INT is posted in the SOFTINT register. This has the effect of posting a

Level-14 interrupt to the processor when the processor has PIL register value less than

fourteen and PSTATE.IE register field 1.

Programming Note – The Level-14 interrupt handler must check the SOFTINT<14>, TM
(TICK_INT), and SM (STICK_INT) fields of the SOFTINT register to determine the

source or sources of the Level-14 interrupt.

In privileged mode, the TICK_COMPARE register is always accessible using the state register

read and write instructions. The TICK_COMPARE register is not accessible in non-privileged

mode. Non-privileged accesses to this register causes a privileged_opcode trap.

STICK Register

The STICK register is a 63-bit counter that increments at a rate determined by the system

clock.
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The STICK register is always accessible in privileged mode using the RDSTICK and

WRSTICK state register instructions.

The STICK.NPT bit (bit 63) selects the non-privileged mode readability. If

STICK.NPT = 0, then the STICK register is readable in non-privileged mode using the

RDSTICK state register read instruction. When STICK.NPT = 1, an attempt by software to

read the STICK register in non-privileged mode causes a privileged_action exception.

Software operating in non-privileged mode can never write to the STICK register.

STICK.NPT bit is set to one by a power-on reset trap. The value of STICK.COUNTER is

cleared after a power-on reset trap.

After the STICK register is written, reading the STICK register returns a value incremented

(by one or more) from the last value written, rather than from some previous value of the

counter.

Note – The STICK register is unaffected by any reset other than a power-on reset.

STICK_COMPARE Register

The STICK_COMPARE register causes the processor to generate a trap when the STICK
register reaches the value in the STICK_COMPARE register and the INT_DIS bit is zero. If

the INT_DIS bit is one, then no interrupt is generated.

The STICK_COMPARE is only accessible in privileged mode. Accesses to this register in

non-privileged mode causes a privileged_opcode trap.

When STICK_CMPR field exactly matches STICK.COUNTER field and INT_DIS = 0, then

a TICK_INT is posted in the SOFTINT register. This has the effect of posting a Level-14

interrupt to the processor when the processor has PIL register value less than fourteen and

PSTATE.IE register field 1.

Programming Note – The Level-14 interrupt handler must check SOFTINT<14>,

TICK_INT, and STICK_INT to determine the source of the Level-14 interrupt.

After a power-on reset trap, the INT_DIS bit is set to one (disabling system tick compare

interrupts), and the STICK_CMPR value is set to zero.
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6.8 Privileged Registers

The privileged registers are described in this section. The privileged registers are visible only

to software running in privileged mode (PSTATE.PRIV = 1). Privileged registers are written

with the WRPR instruction and read with the RDPR instruction.

Refer to FIGURE 6-5 for more details.

6.8.1 Trap Stack Privileged Registers 0 through 3

The four trap stack registers (TPC, TNPC, TSTATE, and TT) form a group of registers that

are shadowed for each of the five trap levels. Each instance of the registers save the state of

key integer unit parameters at each trap level. FIGURE 6-16 shows the format for this register

group. This figure is followed by a description of each register. FIGURE 6-17 shows how the

register stack responds to an event example.

The group of trap stack registers contain state information from the previous trap level. The

registers include values from the program counter (PC), the next program counter (nPC), the

trap state (TSTATE) register (a group of fields comprising the contents of the CCR, ASI,

CWP, and PSTATE registers), and the trap type (TT) register containing the value of the trap

that caused entry into the current trap level.

6.8.1.1 Common Attributes

There are MAXTL = 5 instances of the trap control registers, but only one group is accessible

at any time. The current value in the TL register determines which instance of the trap

control registers are accessible.

All trap control registers are accessible in privileged mode. An attempt to read or write any

of these registers in non-privileged mode causes a privileged_opcode exception.

An attempt to read or write any of these registers when TL = 0 causes an illegal_instruction
exception.
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FIGURE 6-16 Trap State Register Format

Trap Program Counter

The Trap Program Counter (TPC) contains the PC from the previous trap level.

Trap Next Program Counter

The Trap Next Program Counter (TNPC) register is the nPC from the previous trap level.

Trap State Register

The Trap State (TSTATE) Register contains the state from the previous trap level, comprising

the contents of the CCR, ASI, CWP, and PSTATE registers from the previous trap level.

Trap Type

The Trap Type (TT) register normally contains the trap type of the trap that caused entry to

the current trap level.

6.8.1.2 Trap Stack Operation

The trap stack and an event example are shown in FIGURE 6-17.

063
TPC PC from trap while in trap level

063

nPC from trap while in trap level

039

CCR

08

TNPC

TSTATE

TT

2 1

2 1

0 0

0 0

ASI PSTATE CWP
32 31 24 19 8 2

Trap Type
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FIGURE 6-17 Trap Stack and Event Example

6.8.1.3 Effects of Reset and Normal Operation

The effects of reset on each register are shown in TABLE 6-14. During normal operation, the

trap stack register values defined for the trap levels above the current one are undefined.

6.8.2 Trap Base Address (TBA) Privileged Register 5

The TBA register, shown in FIGURE 6-18, provides the upper 49 bits of the address used to

select the trap vector for a trap. The TBA register is accessible using read and write

privileged register instructions. The lower 15 bits of the TBA always read as zero, and writes

to them are ignored.

TABLE 6-14 Trap Stack Register Power-On and Normal Operation

Trap Control
Register After Power-on Reset

During Normal Operation, for n greater
than the current trap level (n > TL)

TPC TPC[0] =

TPC[1] to TPC[5] are undefined

TPC[n] is undefined

TNPC TPC[0] =

TNPC[1] to TNPC[5] are undefined

TNPC[n] is undefined

TSTATE TPC[0] =

TSTATE[1] to TSTATE[5] are undefined

TSTATE[n] is undefined

TT TPC[0] = Reset Trap Type

TT[1] to TT[4] are undefined

TT[5] = 00116

TT[n] is undefined

TL = 4 TPC
TNPC
TSTATE

TT
TPC
TNPC
TSTATE

TT

TL = 3

TPC
TNPC
TSTATE

TT

TL = 2

TPC
TNPC
TSTATE

TT

TL = 1

TPC
TNPC
TSTATE
TT

TL = 0

Event Example

1) Processor is at TL = 1
2) Processor traps
3) Current PC, nPC, etc. written into TL = 1 group
4) TL incremented to 2
5) Processor returns from Trap
6) TL = 1 group is written to PC, nPC, etc.

Trap Stack
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FIGURE 6-18 Trap Base Address Register

The full address for a trap vector is specified by the contents in the TBA, TL, and TT[TL]
registers at the time the trap is taken, as shown in FIGURE 6-19.

FIGURE 6-19 Trap Vector Address Format

TL>0 bit

The “TL > 0” bit is zero if TL = 0 when the trap was taken, and one if TL > 0 when the trap

was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for

traps from TL > 0. See Chapter 12, “Traps and Trap Handling” for more details on trap

vectors.

TTTL field

The TTTL field is written with the contents of the TT register representing the new trap level

that is being taken.

6.8.3 Processor State (PSTATE) Privileged Register 6

The PSTATE register (FIGURE 6-20) holds the current state of the processor. There is only

one instance of the PSTATE register. The PSTATE register is copied to a 12-bit field in the

TSTATE register of the trap stack. See Chapter 12, “Traps and Trap Handling” for more

details.

FIGURE 6-20 PSTATE Fields

63 15 14 0

000 0000 0000 0000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

MGIG

1011
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Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to

the next instruction executed. The privileged RDPR and WRPR instructions are used to read

and write all the bits in the PSTATE, respectively.

Subsections on page 113 through page 114 describe the fields contained in the PSTATE
register.

6.8.3.1 Global Register Set Selection - IG, MG, AG bits

The UltraSPARC III Cu processor provides Interrupt and MMU Global Register sets in

addition to the two global register sets (normal and alternate) specified by SPARC V9. The

currently active set of global registers is specified by the AG, IG, and MG bits and are set and

cleared according to the events listed in TABLE 6-15.

Note – The IG, MG, and AG fields are saved on the trap stack along with the rest of the

PSTATE Register.

TABLE 6-15 PSTATE Global Register Selection Events

Event Globals Selected for Use

PSTATE Settings

AG IG MG

DONE, RETRY [1]

1. Since PSTATE is preserved in the TSTATE register when a trap occurs, the previous value of these bits are normally restored

upon return from a trap (via DONE or RETRY instruction).

Global Registers encoded in

TSTATE register (Previous

Global Registers before most

recent trap)

0 0 0

fast_instruction_access_MMU_miss,
fast_data_access__MMU_miss,
fast_data_access_protection,
data_access_exception,
instruction_access_exception

MMU Global registers 0 0 1

interrupt_vector_trap Interrupt Global registers 0 1 0

Reserved [2]

2.  A WRPR to PSTATE, using a reserved combination of AG, IG, and MG bit values, causes an illegal_instruction exception.

0 1 1

Write to privileged register (WPR) that modifies

AG, IG or MG bits in PSTATE register

Any Global Register x x x

Any trap other than those listed above Alternate Global registers 1 0 0

Reserved. 1 0 1

Reserved. 1 1 0

Reserved. 1 1 1
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Executing a DONE or RETRY instruction restores the previous {AG, IG, MG} state before the

trap is taken. Programmers can also set or clear these three bits by writing to the PSTATE
register with a WRPR instruction.

Note – Attempting to use the “wrpr %pstate” instruction to set a reserved encoding for

IG, MG, and AG (more than one of these bits set) results in an illegal_instruction exception.

However, the processor does not check for a reserved encoding when writing directly to the

TSTATE register. Hence, executing a DONE or RETRY with an invalid AG, IG, MG bit

combination may result in an undefined behavior of the processor.

Compatibility Note – UltraSPARC III Cu processors support two more sets (privileged

only) of eight 64-bit global registers compared to the UltraSPARC II family: interrupt

globals and MMU globals. These additional registers are called the trap globals. Two 1-bit

fields, PSTATE.IG and PSTATE.MG, were added to the PSTATE register to select which set

of global registers to use.

PSTATE_interrupt_globals (IG)

When PSTATE.IG = 1, the processor interprets integer register numbers in the range 0–7 as

referring to the interrupt global register set. See the Note on page 114. When an

interrupt_vector trap (trap type = 6016) is taken, processor sets IG and clears AG and MG.

PSTATE_MMU_globals (MG)

When PSTATE.MG = 1, the processor interprets integer register numbers in the range 0–7 as

referring to the MMU global register set.

The processor sets MG and clears IG and AG when any of the following traps are taken:

• fast_instruction_access_MMU_miss trap (trap type = 6416–6716)

• fast_data_access_MMU_miss trap (trap type = 6816–6B16)

• fast_data_access_protection trap (trap type = 6C16–6F16)

• data_access_exception trap (trap type = 3016)

• instruction_access_exception trap (trap type = 0816)

PSTATE_alternate_globals (AG)

When PSTATE.AG = 1, the processor interprets integer register numbers in the range 0– 7 as

referring to the alternate global register set.
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If an exception is taken and it does not set another global bit, then the processor defaults to

the Alternate Global register set by setting AG and clearing IG and MG.

6.8.3.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are performed in

little-endian byte order with an ASI of ASI_PRIMARY_LITTLE. When PSTATE.CLE = 0,

all data reads and writes using an implicit ASI are performed in big-endian byte order with

an ASI of ASI_PRIMARY. Instruction accesses are always big-endian.

6.8.3.3 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the

PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This behavior

allows system software to have a different implicit byte ordering than the current process.

Thus, if PSTATE.TLE is set to one, data accesses using an implicit ASI in the trap handler

are little-endian. The original state of PSTATE.CLE is restored when the original PSTATE
register is restored from the trap stack.

6.8.3.4 PSTATE_mem_model (MM)

The processor supports Total Store Order (TSO), only. The 2-bit field in the PSTATE.MM is

hardwired to 00 indicating TSO mode. See TABLE 6-16 for MM Encodings.

• Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are

ordered with respect to earlier loads and stores. Thus, loads can bypass earlier stores but

cannot bypass earlier loads; stores cannot bypass earlier loads and stores. Programs that

execute correctly in either PSO or RMO will execute correctly in the TSO model.

TABLE 6-16 MM Encodings

MM Value SPARC V9

00 Total Store Order (TSO)

01 Reserved

10 Reserved

11 Reserved
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6.8.3.5 PSTATE_RED_state (RED)

PSTATE.RED (Reset, Error, and Debug state) is set whenever the UltraSPARC III Cu

processor takes a RED state disrupting or nondisrupting trap. The IU sets PSTATE.RED
when any hardware reset occurs. It also sets PSTATE.RED when a trap is taken while

TL = (MAXTL − 1). Software can exit RED_state by the following method:

• Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE and

clears PSTATE.RED if it was zero in the stacked copy.

Note – Software can also exit the RED_state by writing a zero to PSTATE.RED with a

WRPR instruction. However, this method is not recommended due to potential side-effects

and unpredictable behavior.

6.8.3.6 PSTATE_enable_floating-point (PEF)

When set to one, the PEF bit enables the FPU, which allows privileged software to manage

the FPU. For the FPU to be usable, both PSTATE.PEF and FPRS.FEF must be set.

Otherwise, any floating-point instruction that tries to reference the FPU causes a fp_disabled
trap.

6.8.3.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, the high-order 32 bits of any virtual addresses for instruction and

data are cleared to zero in the following cases:

• Before data addresses are sent out of the processor

• Before addresses are sent to the MMU

• For instruction accesses to all caches

• Before being stored to a general-purpose register for CALL, JMPL, and RDPC instructions

• Before being stored to TPC[n] and TNPC[n] when a trap occurs

When an ASI_PHYS_* ASI is used in a load or store instruction, the setting of

PSTATE.AM is ignored and the full 64-bit address is used. (See ASI 1416,

ASI_PHYS_USE_EC, for an example).

When PSTATE.AM = 1, the processor writes the full 64-bit program counter value (upper 32

bits are forced to be zero) to the destination register of a CALL, JMPL, or RDPC instruction.

When PSTATE.AM = 1 and a trap occurs, the processor writes the full 64-bit program

counter value to TPC[TL].

When PSTATE.AM = 1 and a synchronous exception occurs, the processor writes the full

64-bit address to the Data Synchronous Fault Address Register (D-SFAR).
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When PSTATE.AM = 1 and an asynchronous exception occurs, the processor writes the full

64-bit address to the Data Asynchronous Fault Address Register (D-AFAR).

The PSTATE.AM bit must be set when 32-bit software is executed.

6.8.3.8 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode. This bit is controlled by

events in the processor and can be explicitly set.

6.8.3.9 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

6.8.4 Trap Level (TL) Privileged Register 7

The trap level register, shown in FIGURE 6-21, specifies the current trap level. TL = 0 is the

normal (nontrap) level of operation. TL > 0 implies that one or more traps are being

processed. The maximum valid value that the TL register may contain is MAXTL = 5, which

is always equal to the number of supported trap levels beyond Level-0. See Chapter 12,

“Traps and Trap Handling” for more details about the TL register.

FIGURE 6-21 Trap Level Register

Programming Note – Writing the TL register with a value greater than MAXTL (five for

UltraSPARC III Cu) causes the value MAXTL to be written. Writing the TL register with a

wrpr %tl instruction does not alter any other processor state; that is, it is not equivalent to

taking or returning from a trap.

6.8.5 Processor Interrupt Level (PIL) Privileged Register 8

The processor interrupt level (PIL), illustrated in FIGURE 6-22, is the interrupt level above

which the processor will accept an interrupt. Interrupt priorities are mapped so that interrupt

Level-2 has greater priority than interrupt Level-1, and so on.

2 0

TL TL
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FIGURE 6-22 Processor Interrupt Level Register

On SPARC V8 processors, the Level-15 interrupt is considered to be nonmaskable; therefore,

it has different semantics from other interrupt levels. SPARC V9 processors do not treat

Level-15 interrupts differently from other interrupt levels.

6.8.6 Register-Window State Privileged Registers 9

through 13

The state of the register window is determined by a set of privileged registers that are read

and written by privileged mode software using the RDPR and WRPR instructions, respectively.

In addition, these privileged registers are modified by instructions related to register

windowing and are used to generate traps that allow supervisor software to spill, fill, and

clean the register window sets.

Register-window management is described in a separate chapter.

TABLE 6-17 Register-Window State Privileged Registers

Register-Window State Registers
Value
Range Description

Current Window Pointer

0 to 7

State Register 9: The CWP register is a counter that identifies

the current window into the set of integer registers. See

Chapter 12, “Traps and Trap Handling” for information on

how hardware manipulates the CWP register.

Saveable Window Sets

0 to 6

State Register 10: The CANSAVE register contains the

number of register sets following CWP that are not in use and

are available to be allocated by a SAVE instruction without

generating a window spill exception.

3 0

PIL PIL

CWP

02

CANSAVE

02
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Note – The CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN registers contain

values in the range 0 to 7 or 0 to 6 as indicated in TABLE 6-17. The effect of writing a value

greater than indicated to any of these registers is undefined. The values programmed into

these registers must combine into a consistent set of numbers that will work.

Note – The most significant 61 bits of all these registers are set to zero. When any are

written, the most significant 61 bits are ignored.

Compatibility Note – The following differences between the SPARC V8 and SPARC V9

architectures are visible only to privileged software; they are invisible to non-privileged

software.

1. In the SPARC V9 architecture, SAVE increments CWP and RESTORE decrements CWP. In

the SPARC V8 architecture, the opposite is true: SAVE decrements PSR.CWP and RESTORE
increments PSR.CWP.

2. PSR.CWP in the SPARC V8 architecture is changed on each trap. In the SPARC V9

architecture, CWP is affected only by a trap caused by a window fill or spill exception.

Restorable Window Sets

0 to 7

State Register 11: The CANRESTORE register contains the

number of register sets preceding CWP that are in use by the

current program and can be restored (by the RESTORE
instruction) without generating a window fill exception.

Clean Window Sets

0 to 6

State Register 12: The CLEANWIN register contains the

number of windows that can be used by the SAVE instruction

without causing a clean_window exception.

Other Window Sets

0 to 7

State Register 13: The OTHERWIN register contains the

count of register sets that will be spilled/filled by a separate

set of trap vectors based on the contents of WSTATE_OTHER.

If OTHERWIN is zero, register sets are spilled/filled by use of

trap vectors based on the contents of WSTATE_NORMAL.

The OTHERWIN register can be used to split the register sets

among different address spaces and handle spill/fill traps

efficiently by use of separate spill/fill vectors.

TABLE 6-17 Register-Window State Privileged Registers (Continued)

Register-Window State Registers
Value
Range Description

CANRESTORE

02

CLEANWIN
02

OTHERWIN
02
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Clean Windows (CLEANWIN) Register Note

The CLEANWIN register counts the number of register window sets that are “clean” with

respect to the current program, that is, register sets that contain only zeroes, valid addresses,

or valid data from that program. Registers in these windows need not be cleaned before they

can be used. The count includes the register sets that can be restored (the value in the

CANRESTORE register) and the register sets following CWP that can be used without

cleaning. When a clean window is requested (by a SAVE instruction) and none is available, a

clean_window exception occurs to cause the next window to be cleaned.

Programming Note – CLEANWIN must never be set to a value greater than six. Setting

CLEANWIN greater than six would violate the register window state definition. Notice that

the hardware does not enforce this restriction; it is up to Supervisor software to keep the

window state consistent.

6.8.7 Window State (WSTATE) Privileged Register 14

The WSTATE register, shown in FIGURE 6-23, specifies bits that are inserted into TTTL<4:2>

on traps caused by window spill and fill exceptions.

This register is read/write by using the RDPR and WRPR privileged instructions.

These bits are used to select one of eight different window spill and fill handlers. If

OTHERWIN = 0 at the time a trap is taken because of a window spill or window fill

exception, then the WSTATE.NORMAL bits are inserted into TT[TL] field of the Trap Vector

Address. Otherwise, the WSTATE.OTHER bits are inserted into TT[TL].

FIGURE 6-23 WSTATE Register

6.8.8 Version (VER) Privileged Register 31

The version register, shown in FIGURE 6-24, specifies the fixed parameters pertaining to a

particular processor implementation and mask set.

The VER register is read-only, readable by the RDPR privileged instruction.

WSTATE

05 3 2

OTHER NORMAL
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FIGURE 6-24 Version Register

VER.manuf Field

The VER.manuf field contains our 16-bit manufacturer code, 003E16, which is our JEDEC

semiconductor manufacturer code.

VER.impl Field

The VER.impl field uniquely identifies the processor implementation or class of

software-compatible implementations of the architecture. TABLE 6-18 shows the processor

implementation codes.

VER.mask Field

The VER.mask specifies the current mask set revision and is chosen by the implementor. It

generally increases numerically with successive releases of the processor but does not

necessarily increase by one for consecutive releases. TABLE 6-19 lists the UltraSPARC III Cu

Processor Mask Version.

TABLE 6-18 Processor Implementation Codes

Processor VER.impl

UltraSPARC I 001016

UltraSPARC II 001116

UltraSPARC IIi 001216

UltraSPARC IIe 001316

UltraSPARC III Cu 001516

TABLE 6-19 UltraSPARC III Cu Processor Mask Version Codes

Mask Version VER.mask

TO_1.x 4’h1

TO_2.x 4’h2

63 48 47 24 23 16 15 8 7 05 432 31

maxwin = 7000maxtl = 50000 0000maskimplmanufacturer = 003E16
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VER.maxtl Field

The VER.maxtl value, 5, is the maximum number of trap levels supported by the

processor.

VER.maxwin Field

The VER.maxwin value, 7, is the maximum number of Integer Unit register windows that

access the NWINDOWS = 8 window register sets.

6.9 Special Access Register

6.9.1 Floating-Point Status Register (FSR)

The FSR register fields, illustrated in FIGURE 6-24, contain FPU mode and status information.

Section 6.6.6, “Floating-Point Registers State (FPRS) Register 6” presents state information

about the FPU.

The FSR is accessible using special load and store opcodes. They work in privileged and

non-privileged mode. The lower 32 bits of the FSR are read and written by the STFSRD and

LDFSRD floating-point instructions; all 64 bits of the FSR are read and written by the

STXFSR and LDXFSR floating-point instructions, respectively. FIGURE 6-25 illustrates the

FSR fields.

The ver, ftt, and reserved (“—”) fields are not modified by LDFSR or LDXFSR, which

are read-only fields.

FIGURE 6-25 FSR Fields Reserved Bits

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt 0 — fcc0 aexc cexc
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Reserved Bits

Bits 63–38, 29–28, 21–20, and 12 are reserved. When read by an STXFSR instruction, these

bits shall read as zero. Software should issue LDXFSR instructions only with zero values in

these bits, unless the values of these bits are exactly those derived from a previous STXFSR.

The subsections on pages page 123 through page 131 describe the remaining fields in the

FSR.

6.9.1.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)

The four sets of floating-point condition code fields are labeled fcc0, fcc1, fcc2, and

fcc3.

Compatibility Note – SPARC V9 architecture’s fcc0 is the same as SPARC V8

architecture’s fcc.

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32,

fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a

floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields in the

FSR, as selected by the instruction. The fccn fields can be read and written by STXFSR and

LDXFSR instructions, respectively. The fcc0 field can also be read and written by STFSR
and LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers on

these fields. The MOVcc and FMOVcc instructions can conditionally copy a register, based on

the state of these fields.

In TABLE 6-20, frs1 and frs2 correspond to the single, double, or quad values in the

floating-point registers specified by a floating-point compare instruction’s rs1 and rs2
fields. The question mark (?) indicates an unordered relation, which is true if either frs1 or frs2
is a signalling NaN (SNaN) or a quiet NaN (QNaN). If FCMP or FCMPE generates a

fp_exception_ieee_754 exception, then fccn is unchanged. TABLE 6-20 shows the

floating-point condition codes Fields of FSR.

TABLE 6-20 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)
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6.9.1.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to

IEEE Std 754-1985. TABLE 6-21 shows the rounding direction fields.

If GSR.IM = 1, then the value of FSR.RD is ignored and floating-point results are instead

rounded according to GSR.IRND.

6.9.1.3 FSR_nonstandard_fp (NS)

The NS bit allows the processor to flush a subnormal floating-point value to zero. If a

floating-point add/subtract operation results in a subnormal value and FSR.NS = 1, the value

is replaced by a floating-point zero value of the same sign. This replacement is usually

performed in hardware. However, for the following cases when a subnormal value is

generated in the course of the instruction and FSR.NS = 1, a fp_exception_other exception

with FSR.ftt = 2 (unfinished_FPop) is taken and trap handler software is expected to

replace the subnormal value with a zero value of the appropriate sign:

• FADD of numbers with opposite signs

• FSUB of numbers with the same signs

• FDTOS

The effects of FSR.NS = 1 are as follows:

• If a floating-point source operand is subnormal, it is replaced by a floating-point zero

value of the same sign (instead of causing an exception).

• If a floating-point operation generates a subnormal value, the value is replaced with a

floating-point zero value of the same sign.

• This is implemented by performing the replacement in hardware, and sometimes cause a

fp_exception_other exception with FSR.ftt = 2 (unfinished_FPop) so that trap handler

software can perform the replacement.

If GSR.IM = 1, then the value of FSR.NS is ignored and the processor operates as if

FSR.NS = 0.

TABLE 6-21 Rounding Direction (RD) Field of FSR

RD Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞
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6.9.1.4 FSR_version (ver)

For the UltraSPARC III family of processors, the value in FSR.ver is zero.

Version number 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

6.9.1.5 FSR_floating-point_trap_type (ftt)

When a floating-point exception trap occurs, ftt (bits 16 through 14 of the FSR) identifies

the cause of the exception, the “floating-point trap type.” Several conditions can cause a

floating-point exception trap. After a floating-point exception occurs, the ftt field encodes

the type of the floating-point exception until an STFSR or FPop is executed.

The ftt field can be read by the LDFSR and LDXFSR instructions. The STFSR and STXFSR
instructions do not affect ftt because this field is read-only.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to

determine the floating-point trap type. STFSR and STXFSR clears the ftt bit after the store

completes without error. If the store generates an error and does not complete, ftt remains

unchanged.

Programming Note – Neither LDFSR nor LDXFSR can be used for the purpose of

clearing ftt, since both leave ftt unchanged. However, executing a non-trapping FPop,

such as “fmovs %f0,%f0,” prior to returning to non-privileged mode will zero ftt. The

ftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to TABLE 6-22.

Note – The value “7” is reserved for future expansion.

TABLE 6-22 Floating-Point Trap Type (ftt) Field of FSR

ftt Trap Type Trap Vector

0 None No trap taken

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop fp_exception_other

3 unimplemented_FPop fp_exception_other

4 sequence_error Reserved, unimplemented
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IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise

occasionally in the normal course of computation and must be recoverable by system

software.

When a floating-point trap occurs, the following results are observed by user software:

1. The value of aexc is unchanged. See Section 6.9.1.6 for details of aexc.

2. The value of cexc is unchanged, except for an IEEE_754_exception, where a bit

corresponding to the trapping exception is set. The unfinished_FPop,

unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap types

do not affect cexc. See Section 6.9.1.6 for details of cexc.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is

signalled, either immediately from an IEEE_754_exception or after recovery from an

unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler

reflects the exception causing the trap.

In the cases of fp_exception_other exceptions with unfinished_FPop or unimplemented_FPop
trap types that do not subsequently generate IEEE traps, the recovery software should define

cexc, aexc, and the destination registers or fccs, as appropriate.

ftt = IEEE_754_exception. The IEEE_754_exception floating-point trap type indicates

the occurrence of a floating-point exception conforming to IEEE Std 754-1985. The

exception type is encoded in the cexc field.

The aexc and fccs fields and the destination f register are not affected by an

IEEE_754_exception trap.

ftt = unfinished_FPop. The unfinished_FPop floating-point trap type indicates that the

processor was unable to generate correct results or that exceptions as defined by

IEEE Std 754-1985 have occurred. Where exceptions have occurred, the cexc field is

unchanged.

5 hardware_error Reserved, unimplemented

6 invalid_fp_register Reserved, unimplemented

7 Reserved Reserved, unimplemented

TABLE 6-22 Floating-Point Trap Type (ftt) Field of FSR (Continued)

ftt Trap Type Trap Vector
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The conditions under which a fp_exception_other exception with floating-point trap type of

unfinished_FPop can occur are implementation dependent. The standard (recommended) set

of conditions is listed in TABLE 6-23. An implementation may cause fp_exception_other with

unfinished_FPop under a different (but specified) set of conditions.

TABLE 6-23 Standard Conditions in Which unfinished_FPop Trap Type Can Occur

FPU Operation
1 Subnormal (SBN) Operand
IM = 1 or NS = 0

2 Subnormal (SBN) Operands
IM = 1 or NS = 0

Result/Non-SBN Operand
IM = 1 or NS = 0

fadds Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)

NaN (either operand)

fsubs Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)

NaN (either operand)

faddd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)

NaN (either operand)

fsubd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)

NaN (either operand)

fmuls Unfinished trap if

− result not zero

Unfinished trap

− result not zero

-25 < Er <= 1

fdivs Unfinished trap Unfinished trap -25 < Er <= 1

fsmuld Unfinished trap Unfinished trap None

fmuld Unfinished trap if

− result not zero

Unfinished trap if

− result not zero

-54 < Er <= 1

fdivd Unfinished trap Unfinished trap -54 < Er <= 1

fsqrts Unfinished trap N/A None

fsqrtd Unfinished trap N/A None

fstoi Unfinished trap N/A - 231 <= res < 231, Infinity, NaN

fdtoi Unfinished trap N/A - 231 <= res < 231, Infinity, NaN

fstox Unfinished trap N/A |result| >= -252, Infinity, NaN

fdtox Unfinished trap N/A |result| >= -252, Infinity, NaN

fitos N/A N/A - 222 <= operand < 222

fxtos N/A N/A - 222 <= operand < 222

fitod N/A N/A None

fxtod N/A N/A - 251 <= operand < 251
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ftt = unimplemented_FPop. The unimplemented_FPop floating-point trap type indicates

that the processor decoded an FPop that it does not implement. In this case, the cexc field

is unchanged.

All quad FPops variations set ftt = unimplemented_FPop.

6.9.1.6 Floating-Point Exceptions Control and Status

There are three FSR register fields used to control and status the events associated with

floating-point exceptions.

FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions

that can be indicated in the current_exception field (cexc). See FIGURE 6-26 for an

illustration. If a floating-point operate instruction generates one or more exceptions and the

TEM bit corresponding to any of the exceptions is one, then this condition causes a

fp_exception_ieee_754 trap. A TEM bit value of zero prevents the corresponding exception

type from generating a trap.

FIGURE 6-26 Trap Enable Mask (TEM) Fields of FSR

FSTOD Unfinished trap N/A NaN

FDTOS Unfinished trap N/A fi fv, fu, sbn (IM = NS = x), NaN

Note:Er <- Biased Exponent of the result before rounding

Ei <- Biased Exponent of input operand

fi <- Invalid(Infinity - Infinity, Infinity*0, 0/0, Infinity/Infinity)

fv <- OverflowEr >= 2047(DP) or 255(SP) but not exact infinity

fu <- Underflow0 < |result| < 2-1022(DP) or 2-126(SP)

sbnormal(sbn): |number| = 2-1022 * (significand x 2-52) (DP) or 2-126 * (significand x 2-23) (SP)

{-54 < Er < 1 (DP) or -25 < Er < 1 (SP)}

TABLE 6-23 Standard Conditions in Which unfinished_FPop Trap Type Can Occur (Continued)

FPU Operation
1 Subnormal (SBN) Operand
IM = 1 or NS = 0

2 Subnormal (SBN) Operands
IM = 1 or NS = 0

Result/Non-SBN Operand
IM = 1 or NS = 0

24 2327 26 25

NVM OFM UFM DZM NXM
6-128 UltraSPARC III Cu User’s Manual • January 2004



FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-point

exception traps are disabled through the TEM field. See FIGURE 6-27 for an illustration. After

an FPop completes with ftt = 0, the TEM and cexc fields are logically ANDed together. If

the result is nonzero, aexc is left unchanged and a fp_exception_ieee_754 trap is generated;

otherwise, the new cexc field is ORed into the aexc field and no trap is generated. Thus,

while (and only while) traps are masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR instruction

is executed.

FIGURE 6-27 Accrued Exception Bits (aexc) Fields of FSR

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were

generated by the most recently executed FPop instruction. The absence of an exception

causes the corresponding bit to be cleared. See FIGURE 6-28 for an illustration.

FIGURE 6-28 Current Exception Bits (cexc) Fields of FSR

Note – If the FPop traps and software emulate or finish the instruction, the system software

in the trap handler is responsible for creating a correct FSR.cexc value before returning to

a non-privileged program.

The cexc bits are set as described in Section 6.9.1.7, “Floating-Point Exception Fields” by

the execution of an FPop that either does not cause a trap or causes a fp_exception_ieee_754
exception with FSR.ftt = IEEE_754_exception. An IEEE_754_exception that traps shall

cause exactly one bit in FSR.cexc to be set, corresponding to the detected IEEE Std

754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also cause an

"inexact" condition. For overflow and underflow conditions, FSR.cexc bits are set and

trapping occurs as follows:

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc
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• An IEEE 754 overflow condition (of) occurs:

■ If OFM = 0 and NXM = 0, the cexc.ofc and cexc.nxc bits are both set to one, the

other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

■ If OFM = 0 and NXM = 1,the cexc.nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

■ If OFM = 1, the cexc.ofc bit is set to one, the other four bits of cexc are set to zero,

and a fp_exception_ieee_754 trap does occur.

• An IEEE 754 underflow condition (uf) occurs:

■ If UFM = 0 and NXM = 0, the cexc.ufc and cexc.nxc bits are both set to one, the

other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

■ If UFM = 0 and NXM = 1, the cexc.nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

■ If UFM = 1, the cexc.ufc bit is set to one, the other four bits of cexc are set to zero,

and a fp_exception_ieee_754 trap does occur.

The behavior is summarized in TABLE 6-24 (where “x” indicates “don’t care”):

TABLE 6-24 Setting of FSR.cexc Bits

Exception(s)
Detected in FP
Operation

Trap Enable
Mask bits
(in FSR.TEM) fp_exception_

ieee_754
Trap Occurs?

Current
Exception
bits (in
FSR.cexc)

Notesof uf nx OFM UFM NXM ofc ufc nxc

- - - x x x No 0 0 0

- - 1 x x 0 No 0 0 1

- 1 1 x 0 0 No 0 1 1 (1)

1 - 1 0 x 0 No 1 0 1 (2)

- - 1 x x 1 Yes 0 0 1

- 1 1 x 0 1 Yes 0 0 1

- 1 - x 1 x Yes 0 1 0

- 1 1 x 1 x Yes 0 0 0

1 - 1 1 x x Yes 1 0 0 (2)

1 - 1 0 x 1 Yes 0 0 1 (2)

Notes:

(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by

inexact.

(2) Overflow is always accompanied by inexact.
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If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is

left unchanged.

6.9.1.7 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following

definitions of the floating-point exception conditions (per IEEE Std 754-1985):

FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 ÷ 0.0 and ∞ – ∞
are invalid; 1 = invalid operand(s), 0 = valid operand(s).

FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitude

than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest

normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

• If UFM = 0, underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

• If UFM = 1,underflow occurs if a nonzero result is tiny.

SPARC V9 allows underflow to be detected either before or after rounding. The

UltraSPARC III Cu processor detects underflow before rounding.

FSR_division-by-zero (dzc, dza)

X ÷ 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Note – 0.0 ÷ 0.0 does not set the dzc or dza bits.
Chapter 6 Registers 6-131



FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result;

1 = inexact result, 0 = exact result.

Programming Note – Software must be capable of simulating the operation of the FPU

in order to properly handle the unimplemented_FPop, unfinished_FPop, and

IEEE_754_exception floating-point trap types. Thus, a user application program always sees

an FSR that is fully compliant with IEEE Std 754-1985.

6.10 ASI Mapped Registers

In this section, we describe the Data Cache Unit Control Register and Data Watchpoint

registers (virtual address data watchpoint and physical address data watchpoint).

6.10.1 Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016

The DCUCR contains fields that control several memory related hardware functions. The

functions include instruction, prefetch, write and data caches, MMUs, and watchpoint

setting.

After a power-on reset (POR), all fields of DCUCR are set to zero. After a WDR, XIR, or

SIR, all fields of DCUCR defined in this section are set to zero.

The DCUCR is illustrated in FIGURE 6-29 and described in TABLE 6-25. In the table, the field

definitions and bits are grouped by function rather than by strict bit sequence.
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FIGURE 6-29 DCU Control Register Access Data Format (ASI 4516)

TABLE 6-25 DCUCR Bit Field Descriptions (1 of 3)

Bits Field Type Description Note

63:50,

20:4

reserved RW

MMU Control

49 CP RW Cacheability of PA. CP determines the physical cacheability of memory

accesses when the I-MMU or D-MMU is disabled (IM = 0 or DM = 0).

The TTE.E (side-effect) bit is set to the complement of CP when MMUs

are enabled; 1 = cacheable, 0 = non-cacheable.

1

48 CV RW Cacheability of VA. CV determines the virtual cacheability of memory

accesses when the D-MMU is disabled (DM = 0);

1 = cacheable, 0 = non-cacheable.

3 DM D-MMU Enable. If DM = 0, the D-MMU is disabled (pass-through mode).

Note: When the MMU/TLB is disabled, a virtual address is passed

through as a physical address.

2 IM I-MMU Enable. If IM = 0, the I-MMU is disabled (pass-through mode).

Store Queue Control

47 ME RW Non-cacheable Store Merging Enable. If cleared, no merging of

non-cacheable, non-side-effect store data will occur. Each non-cacheable

store will generate a system bus transaction.

46 RE RAW Bypass Enable. If cleared, no bypassing of data from the store

queue to a dependent load instruction will occur. All load instructions

will have their RAW predict field cleared.

Prefetch Control 2

45 PE Prefetch Cache Enable. If prefetch is disabled by clearing the PE bit, all

references to the P-cache are handled as P-cache misses. If cleared, the

P-cache does not generate any hardware prefetch requests to the

L2-cache. Software prefetch instructions are not affected by this bit.

44 HPE Prefetch Cache Hardware Prefetch Enable. 3

43 SPE Software Prefetch Enable. Clear to disable prefetch instructions. When

disabled, software prefetch instructions do no generate a request to the

L2-cache or the system interface. They will continue to be issued to the

pipeline, where they will be treated as NOPs.

SLME RE PE HPE SPE WE PM VM PR PW VR DM DC

012342122234041 20

VW

24253233424647 434445

IM ICCP

4849

CV

5063

——
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Second Load Control

42 SL Second Load Steering Enable. If cleared, all load type instructions will be

steered to the MS pipeline and no floating-point load type instructions

will be issued to the A0 or A1 pipelines.

I-cache, D-cache, and W-cache Control

41 WE Write Cache Enable. If zero, all W-cache references will be handled as

W-cache misses. Each store queue entry will perform an RMW

transaction to the L2-cache, and the W-cache will be maintained in a

clean state. Software is required to flush the W-cache (force it to a clean

state) before setting this bit to zero.

1 DC Data Cache Enable. The DC is used to enable/disable the operation of the

data cache closest to the processor (D-cache); DC = 1 enables the

D-cache and DC = 0 disables it. When DC = 0, memory accesses (loads,

stores, atomic load-stores) are satisfied by caches lower in the cache

hierarchy.

When the data cache is disabled, its contents are not updated. When the

D-cache is re-enabled, any D-cache lines still marked as “valid” may be

inconsistent with the state of memory or other caches. In that case,

software must handle any inconsistencies by flushing the inconsistent

lines from the D-cache.

0 IC Instruction Cache Enable. The IC is used to enable/disable the operation

of the instruction cache closest to the processor (I-cache); IC = 1 enables

the I-cache and IC = 0 disables it. When IC = 0, instruction fetches are

satisfied by caches lower in the cache hierarchy.

When the instruction cache is disabled, its contents are not updated.

When the I-cache is re-enabled, any I-cache lines still marked as “valid”

may be inconsistent with the state of memory or other caches. In that

case, software must handle any inconsistencies by invalidating the

inconsistent lines in the I-cache.

Watchpoint Control

40:33 PM<7:0> DCU Physical Address Data Watchpoint Mask. The Physical Address

Data Watchpoint Register contains the physical address of a 64-bit

word to be watched. The 8-bit Physical Address Data Watch Point

Mask controls which byte(s) within the 64-bit word should be

watched. If all eight bits are cleared, the physical watchpoint is

disabled. If the watchpoint is enabled and a data reference overlaps

any of the watched bytes in the watchpoint mask, then a physical

watchpoint trap is generated. Watchpoint behavior for a Partial Store

instruction may differ.

Please see the VM field description in the table.

4

TABLE 6-25 DCUCR Bit Field Descriptions (2 of 3)

Bits Field Type Description Note
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32:25 VM<7:0> DCU Virtual Address Data Watchpoint Mask. The Virtual Address Data

Watchpoint Register contains the virtual address of a 64-bit word to be

watched. This 8-bit mask controls which byte(s) within the 64-bit word

should be watched. If all eight bits are cleared, then the virtual

watchpoint is disabled. If watchpoint is enabled and a data reference

overlaps any of the watched bytes in the watchpoint mask, then a virtual

watchpoint trap is generated.

VA/PA data watchpoint byte mask examples are shown below.

4

24, 23 PR, PW DCU Physical Address Data Watchpoint Enable. If PR (PW) is one, then

a data read (write) that matches the range of addresses in the Physical

Watchpoint Register causes a watchpoint trap. If both PR and PW are set,

a watchpoint trap will occur on either a read or write access.

22, 21 VR, VW DCU Virtual Address Data Watchpoint Enable. If VR (VW) is one, then a

data read (write) that matches the range of addresses in the Virtual

Watchpoint Register causes a watchpoint trap. If both VR and VW are set,

a watchpoint trap will occur on either a read or write access.

1. The CP and CV bits of DCUCR must be changed with care. It is recommended that a MEMBAR #Sync be executed before and after

CP or CV is changed. Also, software must manage cache states to be consistent before and after CP or CV is changed.

2. Prefetch is enabled in the UltraSPARC III Cu processor. Both hardware prefetch and software prefetch for data to the P-cache are valid only

for floating-point load instructions and are not valid for integer load instructions.

3. Both hardware prefetch and second load unit may not be enabled at the same time. Enabling both may cause incorrect program behavior.

4. Watchpoint exceptions on Partial Store instruction occur conservatively. The DCUCR.VM masks are only checked for nonzero value

(watchpoint disabled). The byte store mask (r[rs2]) in the Partial Store instruction is ignored, and a watchpoint exception can occur even if

the mask is zero (that is, no store will take place).

TABLE 6-25 DCUCR Bit Field Descriptions (3 of 3)

Bits Field Type Description Note

Watchpoint Mask
(PM and VM)

Least Significant 3 Bits of
Address of Bytes Watched
7654 3210

0016 Watchpoint disabled

0116 0000 0001

3216 0011 0010

FF16 1111 1111
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6.10.2 Data Watchpoint Registers

UltraSPARC III Cu processors implement “break-before” watchpoint traps. When the address

of a data access matches a preset physical or virtual watchpoint address, instruction

execution is stopped immediately before the watched memory location is accessed.

TABLE 6-26 lists ASIs that are affected by the two watchpoint traps.

For 128-bit (quad) atomic load and 64-byte block load and store instructions, a watchpoint

trap is generated only if the watchpoint overlaps the lowest address eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the trap and

return from the trap by using a DONE instruction or turn off the watchpoint before returning

from a watchpoint trap handler.

Two 64-bit data watchpoint registers provide the means to monitor data accesses during

program execution. When Virtual/Physical Data Watchpoint is enabled, the virtual/physical

addresses of all data references are compared against the content of the corresponding

watchpoint register. If a match occurs, a VA_watchpoint or PA_watchpoint trap is signalled

before the data reference instruction is completed. The virtual address watchpoint trap has

higher priority than the physical address watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each zero bit

in the byte mask causes the comparison to ignore the corresponding byte in the address.

These watchpoint byte masks and the watchpoint enable bits reside in the DCUCR.

Virtual Address Data Watchpoint Register

ASI 5816, VA = 3816

Name: VA Data Watchpoint Register

FIGURE 6-30 illustrates the Virtual Address Watchpoint Register,

where: DB_VA is the most significant 61 bits of the 64-bit virtual data watchpoint address.

TABLE 6-26 ASIs Affected by Watchpoint Traps

ASI Type ASI Range
Data
MMU

Watchpoint If
Matching VA

Watchpoint If
Matching PA

Translating ASIs 0416 –1116, 1816–1916, 2416 –

2C16,

7016–7116, 7816–7916, 8016–

FF16

On

Off

Y

N

Y

Y

Bypass ASIs 1416–1516, 1C16 –1D16 — N Y

Non-translating ASIs 3016–6F16, 7216–7716, 7A16–

7F16

— N N
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FIGURE 6-30 VA Data Watchpoint Register Format

Physical Address Data Watchpoint Register

ASI 5816, VA=4016

Name: PA Data Watchpoint Register

FIGURE 6-31 illustrates the PA Data Watchpoint Register,

where: DB_PA is the most significant 61 bits of the physical data watchpoint address. The

width of an UltraSPARC III Cu physical address is 43 bits.

FIGURE 6-31 PA Data Watchpoint Register Format

Compatibility Note – The UltraSPARC III Cu processor supports a 43-bit physical

address space. Software is responsible for writing a zero-extended 64-bit address into the PA

Data Watchpoint register.

Data Watchpoint Reliability

The processor supports watchpoint comparison on the MS (memory) pipeline; any second

issue (Ax pipeline) floating-point loads will not trigger a watchpoint. For reliable use of the

watchpoint mechanism, the second floating-point load feature must be disabled using

DCUCR.SL.

63 23 0

—DB_VA

63 23 0

—DB_PA
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CHAPTER 7

Instruction Types

Instructions are accessed by the processor from memory and are executed, annulled, or

trapped. Instructions are discussed in seven general categories. The processor instructions are

described in the following sections:

Learning the Instructions

• Introduction

• Memory Addressing for Load and Store Instructions

• Integer Execution Environment

• Floating-Point Execution Environment

• VIS Execution Environment

• Data Coherency Instructions

• Register Window Management Instructions

• Program Control Transfer Instructions

• Trap Base Address (TBA) Register

• Prefetch Instructions

Reference Section

• Instruction Summary Table by Category

• Integer Execution Environment Instructions

• Floating-Point Execution Environment Instructions

• VIS Execution Environment Instructions

• Data Coherency Instructions

• Register-Window Management Instructions

• Program Control Transfer Instructions
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• Data Prefetch Instructions

• Instruction Formats and Fields

• Reserved Opcodes and Instruction Fields

• Big/Little-endian Addressing

7.1 Introduction

The processor’s RISC architecture is defined primarily by the SPARC V9 architecture. The

UltraSPARC II processors were the first to extend the SPARC V9 architecture with new

instructions and additional logic units. The UltraSPARC III Cu processor further extends this

instruction execution environment.

The UltraSPARC III Cu processor provides backward compatibility for SPARC application

programs. Upgraded system software is required. Noteworthy enhancements to the processor

include greater capability in the execution units to improved instruction scheduling, new VIS

instructions to reduce the length of code sequences, and data prefetch instructions to provide

the compiler with ways to improve cache hit rates.

Our compiler and other software development tools take advantage of the new instruction

features to increase parallel execution, reduce code size, and achieve shorter instruction

execution latencies.

7.2 Memory Addressing for Load and Store

Instructions

The SPARC V9 architecture uses big-endian byte order by default; the address of a

quadword, doubleword, word, or halfword is the address of its most significant byte.

Increasing the address means decreasing the significance of the unit being accessed. All

instruction accesses are performed using big-endian byte order. The SPARC V9 architecture

also can support little-endian byte order for data accesses only; the address of a quadword,

doubleword, word, or halfword is the address of its least significant byte. Increasing the

address means increasing the significance of the unit being accessed.
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7.2.1 Integer Unit Memory Alignment Requirements

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include

instruction fetches) are aligned on 4-byte boundaries; extended-word and doubleword

accesses are aligned on 8-byte boundaries. An improperly aligned address in a load, store, or

load-store instruction causes a trap to occur, with possible exceptions.

Programming Note – By setting i = 1 and rs1 = 0, you can access any location in the

lowest or highest 4 KB of an address space without using a register to hold part of the

address.

7.2.2 FP/VIS Memory Alignment Requirements

Extended word and doubleword (64-bit) accesses must be aligned on 8-byte boundaries,

quadword accesses must be aligned on 16-byte boundaries, and Block load (BLD) and Block

store (BST) accesses must be aligned on 64-byte boundaries.

All references are 32, 64, or 128 bits. They must be naturally aligned to their data width in

memory except for double-precision floating-point values, which may be aligned on word

boundaries. However, if so aligned, doubleword loads/stores may not be used to access them,

resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a

mem_address_not_aligned exception to occur, with the following exceptions:

• A LDDF or LDDFA instruction accessing an address that is word aligned but not

doubleword aligned causes a LDDF_mem_address_not_aligned exception.

• A STDF or STDFA instruction accessing an address that is word aligned but not

doubleword aligned causes a STDF_mem_address_not_aligned exception.

7.2.3 Byte Order Addressing Conventions (Endianess)

The processor uses big-endian byte order for all instruction accesses and, by default, for data

accesses. It is possible to access data in little-endian format by using load and store alternate

instructions that support little-endian data structures. It is also possible to change the default

byte order for implicit data accesses.

See Section 7.13, “Big/Little-endian Addressing” for details.
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7.2.4 Address Space Identifiers

Versions of load/store instructions, the load and store alternate instructions, can specify an

8-bit address space identifier (ASI) to go along with the load/store data instruction.

The load and store alternate instructions have three sources of ASIs:

• Explicit immediate of instruction

• ASI Register reference

• Hardcode to the instruction

Supervisor software (privileged mode) uses ASIs to access special, protected registers, such

as MMU, cache control, and processor state registers, and other processor or

system-dependent values.

ASIs are also used to modify the function of many instructions. This overloading of load/

store instructions provide partial store, block load/store, and atomic memory access

operations.

Chapter 8, “Address Space Identifiers” describes the ASIs in more detail. The chapter

summary table associates ASI values to specific instructions.

Implicit ASI Value

Load and store instructions provide an implicit ASI value of ASI_PRIMARY,

ASI_PRIMARY_LITTLE, ASI_NUCLEUS, or ASI_NUCLEUS_LITTLE. Load and store

alternate instructions provide an explicit ASI, specified by the imm_asi instruction field

when i = 0, or the contents of the ASI register when i = 1.

Privileged and Non-privileged ASIs

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access them. An

attempt to access a restricted ASI by non-privileged software results in a privileged_action
exception. ASIs 8016 through FF16 are unrestricted; software is allowed to access them

whether the processor is operating in privileged or non-privileged mode.

Compatibility Note – The SPARC V9 architecture provides the basic framework and

defines the required ASIs for the processor. Other ASIs are defined (and sometimes

redefined) for a specific processor or family of processors as allowed by the SPARC V9

architecture.
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Implementation Note – The processor decodes all eight bits of each ASI specifier. In

addition, the processors redefine certain ASIs as appropriate for a specific processor.

7.2.5 Maintaining Data Coherency

The processor’s memory architecture requires some software intervention to provide data

coherency during program execution. These requirements are discussed in Chapter 9,

“Memory Models” using the FLUSH and Section 7.6, “Data Coherency Instructions”

describes MEMBAR instructions.

The two types of data coherency instructions are needed to flush the cache for self-modifying

code and to write data buffers out to memory.

7.3 Integer Execution Environment

7.3.1 IU Data Access Instructions

Load, store, and atomic instructions are the only instructions that access memory. All the IU

data access instructions, except the compare and store (CASx) use either two r registers or

SIMM13, a signed 13-bit immediate value, to calculate a 64-bit, byte-aligned memory

address. Compare and Swap uses a single r register to specify a 64-bit memory address.

Section 7.4.2, “FPU/VIS Data Access Instructions” discusses floating-point register load and

store instructions.

The CPU appends an ASI to the 64-bit address used with all the data access instructions.

Note – In addition to the large physical main memory, the processor has many memory

mapped control, status, and diagnostic registers that are accessed using load and store

instructions with an appropriate ASI value.

The destination field of the data access instruction specifies an r or f (single, double/

extended, or quadword) register that supplies the data for a store or that receives the data

from a load.
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7.3.1.1 Load and Store Instructions

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and

doubleword (64-bit) accesses. Some versions of integer load instructions perform sign

extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.

7.3.1.2 Move Instruction

There is no explicit integer move instruction. A move instruction can be easily synthesized

by adding, subtracting or ORing a zero with a register and pointing the result to another

register. The zero can come as a register input (such as %r0 that has a value zero in

SPARC V9) or as an immediate input to the instruction.

7.3.1.3 Conditional Move Instructions

Based on Integer (icc/xcc) and Floating-point (fcc) Condition Codes

This subsection describes two instructions that copy the contents of one register to another

register within the same register file: one instruction for moving within the integer register

file and another for moving within the floating-point register file.

• MOVcc Instruction

If a specified icc/xcc or fcc condition is satisfied, then the MOVcc instruction copies the

contents of any integer to a destination integer register.

• FMOVcc Instruction

If a specified icc/xcc or fcc condition is satisfied, then the FMOVcc instruction copies the

contents of any floating-point register to a destination floating-point register.

(A similar set of conditional move instructions are based on an integer register value. These

conditional move instructions are described in the next section).

The condition code to test is specified in the instruction and may be any of the conditions

allowed in conditional delayed control transfer instructions. This condition is tested against

1 of the 6 sets of condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified

by the instruction.

For example:

fmovdg %fcc2, %f20, %f22
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moves the contents of the double-precision floating-point register %f20 to register %f22 if

floating-point condition code number 2 (fcc2) indicates a greater-than relation

(FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation (FSR.fcc2 ≠ 2), then

the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs.

In most situations, branches will take more clock cycles than the MOVcc or FMOVcc
instructions.

For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as

cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

Based on Integer Register Value

There are separate versions for the IU and floating-point unit (FPU) register files:

• MOVr Instruction

If the contents of an integer register satisfy a specified condition, then the MOVr instruction

copies the contents of any integer register to a destination integer register.

• FMOVr Instruction

If the contents of an integer register satisfy a specified condition, then the FMOVr instruction

copies the contents of any floating-point register to a destination floating-point register.

The conditions to test are enumerated in TABLE 7-1.

Any of the integer registers may be tested for one of the conditions, and the result used to

control the move. For example,

TABLE 7-1 MOVr and FMOVr Test Conditions

Condition Symbol Description

NZ ≠ 0 Nonzero

Z = 0 Zero

LZ < 0 Less than zero

LEZ ≤ 0 Less than or equal to zero

GZ > 0 Greater than zero

GEZ ≥ 0 Greater than or equal to zero
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movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a nonzero

value.

MOVr and FMOVr can be used to eliminate some branches in programs or can emulate

multiple unsigned condition codes by using an integer register to hold the result of a

comparison.

7.3.1.4 Atomic Instructions

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that

concurrent processes use for synchronization and memory updates.

The SWAP and LDSTUB instructions can optionally access alternate space. (The CASA

instruction always accesses alternate memory spaces). If the ASI specified for any alternate

form of these instructions is a privileged ASI (value 8016), then the processor must be in

privileged mode to access it.

Atomic Quad Load Instruction (LDDA with ASI xx)

The atomic quad load instruction supplies an indivisible quadword (16-byte) load that is

important in system software programs.

Compare and Swap Atomic Instruction (CASA)

An r register specifies the value that is compared with the value in memory at the computed

address. CASA accesses words, and CASXA accesses doublewords.

If the values are equal (memory location and r register), then the destination field specifies

the r register that is to be exchanged atomically with the addressed memory location.

If the values are unequal, then the destination field specifies the r register that was to receive

the value at the addressed memory location; in this case, the addressed memory location

remains unchanged.

Swap Atomic Instruction (SWAPD)

The destination register identifies the r register to be exchanged atomically with the

calculated memory location. SWAP accesses words.
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Load-Store Unsigned Byte (LDSTUB)

The LDSTUB instruction reads a byte from memory and writes ones to the location read.

LDSTUB accesses bytes.

7.3.2 IU Arithmetic Instructions

The integer arithmetic instructions are generally triadic register address instructions that

compute a result of a function of two source operands. They either write the result into the

destination register r[rd] or discard it. One of the source operands is always r[rs1]. The

other source operand depends on the i bit in the instruction. If i = 0, then the operand is

r[rs2]. If i = 1, then the operand is the immediate constant simm10, simm11, or

simm13 sign-extended to 64 bits.

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and

shift operations. One exception is the SETHI instruction that can be used in combination with

another arithmetic or logical instruction to create a 32-bit constant in an r register.

Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes

(icc and xcc) as a side-effect; the other does not affect the condition codes.

7.3.2.1 Integer Add and Subtract Instructions

Sixty-four bit arithmetic is performed on two r registers to generate a 64-bit result. The icc
and xcc condition codes can optionally be set.

7.3.2.2 Tagged Integer Add and Subtract Instructions

The tagged arithmetic instructions assume that the least significant two bits of each operand

are a data-type tag. These instructions set the integer condition code (icc) and extended

integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc) arithmetic

overflow.

Appendix A “Instruction Definitions” describes the tagged instructions.

If either of the two operands has a nonzero tag or if 32-bit arithmetic overflow occurs, tag

overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the CCR.icc.V
bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.V bit.

The xcc overflow bit is not affected by the tag bits.
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The trapping versions (TADDccTV, TSUBccTV) are deprecated. See Section A.70.16,

“Tagged Add and Trap on Overflow” and Section A.70.17, “Tagged Subtract and Trap on

Overflow” for details.

7.3.2.3 Integer Multiply and Divide Instructions

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer divide

instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with SPARC V8,

32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide instructions, and the

multiply step instruction are provided. Division by zero causes a division_by_zero exception.

Some versions of the 32-bit multiply and divide instructions set the condition codes.

7.3.2.4 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit

constant from the instruction into bits 31 through 10 of the destination register. It clears the

low-order 10 bits and high-order 32 bits, and it does not affect the condition codes. It is

primarily used to construct constants in registers.

7.3.2.5 Integer Shift Instructions

Shift logical instructions (SLL, SRL) shift an r register left or right by an immediate

constant in the instruction or by the amount pre-loaded in an r register.

7.3.3 IU Logic Instructions

7.3.3.1 ADD, ANDN, OR, ORN, XOR, XNOR Instructions

These are standard logic operations that work on all 64 bits of the register. The instructions

can optionally set the integer condition codes (icc/xcc).

7.3.4 IU Compare Instructions

A special comparison instruction for integer values is not needed since it is easily

synthesized with the “subtract and set condition codes” (SUBcc) instruction.
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7.3.5 IU Miscellaneous Instructions

7.3.5.1 Interval Arithmetic Mode Instruction (SIAM) (VIS II)

The Set Interval Arithmetic Mode (SIAM) instruction sets the interval arithmetic mode fields

in the GSR.

7.3.5.2 Align Address Instruction

The ALIGNADDR instruction takes two r registers and adds them together. The three least

significant bits are forced to zero.

The ALIGNADDRL instruction supports little-endian data structures by taking the two

r registers, adding them together, and placing the two’s-complement of the three least

significant bits of the result and storing them in the 3-bit GSR.ALIGN field.

7.3.5.3 Population of Ones Count

A population opcode is defined but not implemented in hardware; instead, a trap is generated.

7.3.5.4 Privileged Register Access Instructions

The privileged register access instructions read and write another group of state and status

registers called privileged registers. These registers are visible only to privileged software.

The read privileged register instruction moves the privileged register contents into an

r register. The write privileged register instruction moves the contents of an r register into

the selected privileged register.

7.3.5.5 State Register Access Instructions

The state register instructions access program-visible state and status registers. The read state

register instruction moves the state register contents into an r register. The write state

register instruction moves the contents of an r register into the selected state register.

Some state registers can only be accessed in privileged mode, others in either privileged or

non-privileged mode. Some registers have access bits to restrict their availability as desired

by the privileged software.
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7.4 Floating-Point Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for

floating-point and fixed-point data formats and the execution pipelines for floating-point and

VIS instructions.

This execution unit is a single unit that may be referred to any one of the following,

depending on the textual context:

• Floating-point Unit (FPU)

• Floating-point and Graphics Unit (FGU)

• VIS Execution Unit (VIS)

• FPU/VIS

Note – The instructions associated with the FPU/VIS execution unit are divided between

floating-point and VIS execution environments, but otherwise uses the same hardware

pipelines.

7.4.1 Floating-Point Operate Instructions

Floating-point operate (FPop) instructions perform all floating-point calculations; they are

register-to-register instructions that operate on the floating-point registers. Like arithmetic,

logical, and shift instructions, FPops compute a result that is a function of one or two source

operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

FPops are generally triadic register address instructions. They compute a result that is a

function of one or two source operands and place the result in one or more destination

f registers, with two exceptions:

• Floating-point convert operations, which use one source and one destination operand.

• Floating-point compare operations, which do not write to an f register but update one of

the fccn fields of the FSR instead.

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes and

does not include branches based on the floating-point condition codes (FBfccD and

FBPfcc) or the load/store floating-point instructions.

If PSTATE.PEF = 0 or FPRS.FEF = 0, then any instruction, including an FPop instruction,

that attempts to access an FPU register generates a fp_disabled exception.
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All FPop instructions clear the ftt field and set the cexc field unless they generate an

exception. Floating-point compare instructions also write one of the fccn fields. All FPop

instructions that can generate IEEE exceptions set the cexc and aexc fields unless they

generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and

FNEG(s,d,q) cannot generate IEEE exceptions; therefore, they clear cexc and leave aexc
unchanged.

Note – The processor may indicate that a floating-point instruction did not produce a

correct IEEE Std 754-1985 result by generating a fp_exception_other exception with

FSR.ftt = unfinished_FPop or unimplemented FPop. In this case, privileged software must

emulate any functionality not present in the hardware.

The processor does not implement quad-precision floating-point operations in hardware.

Instead, these operations cause a fp_exception_other trap with

FSR.ftt = unimplemented_FPop, and the system software emulates quad operations.

7.4.2 FPU/VIS Data Access Instructions

Floating-point load and store instructions support word, doubleword, and quadword memory

accesses.

There are no move instructions to move data directly between the integer and floating-point

register files.

7.4.2.1 Load Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to

alternate address spaces. Data loaded into a register that is not 64 bits is filled with zeroes in

the high-order bits.

7.4.2.2 Store Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to

alternate address spaces.
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7.4.2.3 Block Load and Store Instructions

Block load and store access eight consecutive doublewords. The LDDFA instruction is used

with the various ASIs to specify a type of block transaction. The LDDFA instruction is

specified with ASIs 70, 71, 78, 79, F0, F1, F8, F9, E0, and E1 to select between primary and

secondary D-MMU contexts, little-endian and big-endian, privileged and non-privileged, and

a set of block commit store ASIs.

7.4.2.4 Conditional Move Instructions

The FP/VIS conditional move instructions are described with the IU conditional move

instructions, Section 7.3.1.3.

7.4.3 FP Arithmetic Instructions

Single-precision and double-precision FP is executed in hardware. Quad precision (128-bit)

instructions are recognized by the CPU and trapped so they can be emulated in software.

7.4.3.1 Absolute Value and Negate Instructions

These instructions modify the sign of the floating-point operand.

7.4.3.2 Add and Subtract Instructions

These instruction use standard IEEE operation.

7.4.3.3 Multiply Instructions

These instructions use standard IEEE operation with some exceptions.

7.4.3.4 Square Root and Divide Instructions

The square root and divide instructions begin their execution in the FGM pipeline and block

new instructions from entering until the result is nearly ready to leave the pipeline and be

written to the register file.
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7.4.4 FP Conversion Instructions

The following FP conversions are supported. Conversions do not generate fcc condition

codes.

7.4.4.1 Floating-Point to Integer

All floating-point precision to word and double/extended word integer conversions are

supported.

7.4.4.2 Integer to Floating-Point

Word and double/extended word integer to all floating-point precision number conversions

are supported.

7.4.4.3 Floating-Point to Floating-Point

All floating-point precision to all floating-point precision number conversions are supported.

7.4.5 FP Compare Instructions

The same precision operands are compared and the fcc condition codes are set.

7.4.6 FP Miscellaneous Instructions

7.4.6.1 Load and Store FSR Register

The FSR register is accessed by load and store instructions into and out of the floating-point

register file.

7.4.6.2 Data Alignment Instruction

The data alignment instruction FALIGNDATA concatenates two registers (16 bytes) and

stores a contiguous block of eight of these bytes starting at the offset stored in the

GSR.ALIGN field.
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7.5 VIS Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for

floating-point and fixed-point data formats and the execution pipelines for floating-point and

VIS instructions.

This execution unit is a single unit that may be referred to any one of the following,

depending on the textual context:

• Floating-point Unit (FPU)

• Floating-point and Graphics Unit (FGU)

• VIS Execution Unit (VIS)

• FPU/VIS

Note – The instructions associated with the FPU/VIS execution unit are divided between

floating-point and VIS execution environments, but otherwise uses the same hardware

pipelines.

7.5.1 VIS Pixel Data Instructions

7.5.1.1 Array Instruction

These instructions convert three-dimensional (3D) fixed-point addresses to a blocked byte

address.

7.5.1.2 Byte Mask and Shuffle Instructions

Byte Mask instruction adds two integer registers and stores the result in the integer register.

The least significant 32 bits of the result are stored in a special field.

Byte Shuffle concatenates the two 64-bit floating-point registers to form a 16-byte value.

Bytes in the concatenated value are numbered from most significant to least significant, with

the most significant byte being byte 0.
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7.5.1.3 Edge Handling Instructions

These instructions handle the boundary conditions for parallel pixel scan line loops, where

the address of the next pixel to render and the address of the last pixel in the scan line is

provided.

7.5.1.4 Pixel Packing Instructions

These instructions convert multiple values in a source register to a lower precision fixed or

pixel format and store the resulting values in the destination register. Input values are clipped

to the dynamic range of the output format. Packing applies a scale factor to allow flexible

positioning of the binary point.

7.5.1.5 Expand and Merge Instructions

Expand takes four 8-bit unsigned integers, converts each integer to a 16-bit fixed-point value,

and stores the four resulting 16-bit values in a 64-bit floating-point register.

Merge interleaves four corresponding 8-bit unsigned values to produce a 64-bit value in the

64-bit floating-point destination register. This instruction converts from packed to planar

representation when it is applied twice in succession.

7.5.1.6 Pixel Distance Instruction

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers. The

corresponding 8-bit values in the source registers are subtracted. The sum of the absolute

value of each difference is added to the integer in the 64-bit floating-point destination

register. The result is stored in the destination register. Typically, this instruction is used for

motion estimation in video compression algorithms.

7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructions

7.5.2.1 Partitioned Add and Subtract Instructions

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds

or subtracts between the corresponding fixed-point values contained in the source operands.

The single-precision versions of these instructions perform two 16-bit or one 32-bit

partitioned add(s) or subtract(s); only the low 32 bits of the destination register are affected.
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7.5.2.2 Partitioned Multiply Instructions

These instructions multiply signed and unsigned registers of different sizes and place the

results in different types of destination registers.

7.5.2.3 Pixel Compare Instruction

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers

are compared. The 4-bit or 2-bit results are stored in the least significant bits in the integer

destination register. Signed comparisons are used.

7.5.3 VIS Logic Instructions

7.5.3.1 Fill with Ones and Zeroes Instruction

These instructions perform a zero fill or a one fill.

7.5.3.2 Source Copy

These instructions perform a source copy.

7.5.3.3 AND, OR, NAND, NOR, and XNOR Instructions

These instructions perform the logical operations.

7.6 Data Coherency Instructions

The processor implements a Total Store Ordering (TSO) that provides the majority of data

coherency support in hardware. Two instructions are used with this model to synchronize the

data for memory operations to insure the latest data is accessed for load instructions and

DMA activity.

Chapter 9, “Memory Models” discusses TSO in detail.
7-156 UltraSPARC III Cu User’s Manual • January 2004



7.6.1 FLUSH Instruction Cache Instruction

The FLUSH instruction is used to flush the caches out to main memory. The MEMBAR
instruction is used to flush the various data buffers in the CPU out to data coherent domain.

Self-modifying code (storable in the unified L2-cache) requires the use of the FLUSH
instruction.

Note – The FLUSHW instruction flushes the window registers and is not related to the

FLUSH command for the instruction cache.

7.6.2 MEMBAR (Memory Synchronization) Instruction

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order

and completion of memory references. Ordering MEMBARs induce a partial ordering between

sets of loads and stores and future loads and stores. Sequencing MEMBARs exert explicit

control over completion of loads and stores (or other instructions). Both barrier forms are

encoded in a single instruction, with subfunctions bit encoded in an immediate field.

7.6.3 Store Barrier Instruction

Note – STBARP is also supported, but this instruction is deprecated and should not be used

in newly developed software.

7.7 Register Window Management Instructions

Register window instructions manage the register windows. SAVE and RESTORE are

non-privileged and cause a register window to be pushed or popped. FLUSHW is

non-privileged and causes all of the windows except the current one to be flushed to memory.

SAVED and RESTORED are used by privileged software to end a window spill or fill trap

handler.

The instructions that manage register windows include:
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SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window

by incrementing the CWP register.

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP
register.

SAVEDP Instruction

The SAVED instruction is used by a spill trap handler to indicate that a window spill has

completed successfully. It increments CANSAVE.

RESTOREDP Instruction

The RESTORED instruction is used by a fill trap handler to indicate that a window has been

filled successfully. It increments CANRESTORE.

Flush Register Windows Instruction

The FLUSHW instruction cleans register windows of the data from other processes to insure

a secure execution environment.

7.8 Program Control Transfer Instructions

Control transfer instructions (CTIs) include PC-relative branches and calls, register-indirect

jumps, and conditional traps. Most of the CTIs are delayed; that is, the instruction

immediately following a CTI in logical sequence is dispatched before the control transfer to

the target address is completed. Note that the next instruction in logical sequence may not be

the instruction following the CTI in memory.

The instruction following a delayed CTI is called a delay instruction. A bit in a delayed CTI

(the annul bit) can cause the delay instruction to be annulled (that is, to have no effect) if the

branch is not taken (or in the “branch always” case if the branch is taken).
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Compatibility Note – SPARC V8 specified that the delay instruction was always fetched,

even if annulled, and an annulled instruction could not cause any traps. SPARC V9 does not

require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and

return (RETURN) instructions use a register-indirect target address. They compute their target

addresses either as the sum of two r registers or as the sum of an r register and a 13-bit

signed immediate value. The “branch on condition codes without prediction” instruction

provides a displacement of ±8 MB; the “branch on condition codes with prediction”

instruction provides a displacement of ±1 MB; the “branch on register contents” instruction

provides a displacement of ±128 KB; and the CALL instruction’s 30-bit word displacement

allows a control transfer to any address within ±2 GB (±231 bytes).

Note – The return from privileged trap instructions (DONE and RETRY) get their target

address from the appropriate TPC or TNPC register.

7.8.1 Control Transfer Instructions (CTIs)

The following are the basic CTI types:

• Conditional branch (BiccD, BPcc, BPr, FBfccD, FBPfcc)

• Unconditional branch

• Call and link (CALL)

• Jump and link (JMPL, RETURN)

• Return from trap (DONEP, RETRYP)

• Trap (Tcc, ILLTRAP)

• No Operation (NOP, SIR when in non-privileged mode)

A CTI functions by changing the value of the next program counter (nPC) or by changing

the value of both the program counter (PC) and the nPC. When only the nPC is changed, the

effect of the transfer of control is delayed by one instruction. Most control transfers are of

delayed variety. The instruction following a delayed CTI is said to be in the delay slot of the

CTI. Some CTI (branches) can optionally annul, that is, not execute, the instruction in the

delay slot, depending upon whether the transfer is taken or not taken. Annulled instructions

have no effect upon the program-visible state, nor can they cause a trap.
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Programming Note – The annul bit increases the likelihood that a compiler can find a

useful instruction to fill the delay slot after a branch, thereby reducing the number of

instructions executed by a program. For example, the annul bit can be used to move an

instruction from within a loop to fill the delay slot of the branch that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or “then”

branch of an “if-then-else” program block to the delay slot of the branch that selects between

them. Since a full set of conditions is provided, a compiler can arrange the code (possibly

reversing the sense of the condition) so that an instruction from either the “else” branch or

the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC

implementations. The UltraSPARC III Cu processor is a superscalar SPARC implementation

in which the only benefit of annulled branches might be a slight reduction in code size.

Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 7-2 defines the value of the PC and the value of the nPC after execution of each

instruction. Conditional branches have two forms: branches that test a condition (including

branch-on-register), represented in the table by Bcc (same as Bicc), and branches that are

unconditional, that is, always or never taken, represented in the table by B. The effect of an

annulled branch is shown in the table through explicit transfers of control, rather than

fetching and annulling the instruction.
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The effective address (EA) in TABLE 7-2, specifies the target of the control transfer

instruction. The EA is computed in different ways, depending on the particular instruction.

• PC-relative effective address — A PC-relative EA is computed by sign extending the

instruction’s immediate field to 64 bits, left-shifting the word displacement by two bits to

create a byte displacement, and adding the result to the contents of the PC.

• Register-indirect effective address — A register-indirect EA computes its target address

as either r[rs1] + r[rs2] if i = 0, or r[rs1] + sign_ext(simm13) if i = 1.

• Trap vector effective address — A trap vector EA first computes the software trap

number as the least significant 7 bits of r[rs1] + r[rs2] if

i = 0, or as the least significant 7 bits of r[rs1] + sw_trap# if i = 1. The trap level,

TL, is incremented. The hardware trap type is computed as 256 + sw_trap# and stored in

TT[TL]. The EA is generated by concatenation of the contents of the TBA register, the

“TL > 0” bit, and the contents of TT[TL].

• Trap state effective address — A trap state EA is not computed but is taken directly from

either TPC[TL] or TNPC[TL].

TABLE 7-2 Control Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New nPC

Non-CTIs — — — — nPC nPC + 4

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA + 4

B PC-relative Yes No 1 nPC + 4 nPC + 8

CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-indirect Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — nPC nPC + 4
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Compatibility Note – The SPARC V8 architecture specified that the delay instruction

was always fetched, even if annulled, and that an annulled instruction could not cause any

traps. The SPARC V9 architecture does not require the delay instruction to be fetched if it is

annulled.

The SPARC V8 architecture left undefined the result of executing a delayed conditional

branch that had a delayed control transfer in its delay slot. For this reason, programmers

should avoid such constructs when backward compatibility is an issue.

7.8.1.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is

zero, the instruction in the delay slot is always executed. If the annul bit is one, the

instruction in the delay slot is not executed unless the conditional branch is taken.

Note – The annul behavior of a taken conditional branch is different from that of an

unconditional branch.

7.8.1.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is

“always”; it never transfers control if its specified condition is “never.” If the annul bit is

zero, then the instruction in the delay slot is always executed. If the annul bit is one, then the

instruction in the delay slot is never executed.

Note – The annul behavior of an unconditional branch is different from that of a taken

conditional branch.

7.8.1.3 CALL/JMPL and RETURN Instructions

CALL

The CALL instruction writes the contents of the PC, which points to the CALL instruction

itself, into r[15] (out register 7) and then causes a delayed transfer of control to a

PC-relative effective address. The value written into r[15] is visible to the instruction in the

delay slot.
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When PSTATE.AM = 1, the value of the high-order 32 bits is transmitted to r[15] by the

CALL instruction.

Jump and Link

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction

itself, into r[rd] and then causes a register-indirect delayed transfer of control to the

address given by “r[rs1] + r[rs2]” or “r[rs1] + a signed immediate value.” The

value written into r[rd] is visible to the instruction in the delay slot.

When PSTATE.AM = 1, the value of the high-order 32 bits transmitted to r[rd] by the

JMPL instruction is zero.

RETURN

The RETURN instruction is used to return from a trap handler executing in non-privileged

mode. RETURN combines the control transfer characteristics of a JMPL instruction with r[0]

specified as the destination register and the register-window semantics of a RESTORE
instruction.

7.8.1.4 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.

These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to re-execute it. DONE returns

to the instruction pointed to by the value of nPC associated with the instruction that caused

the trap, that is, the next logical instruction in the program. DONE presumes that the trap

handler did whatever was requested by the program and that execution should continue.

7.8.1.5 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the

current state of the condition code register specified by its cc field; otherwise, it executes as

a NOP. If the trap is taken, it increments the TL register, computes a trap type that is stored

in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.

A Tcc instruction can specify 1 of 128 software trap types. When a Tcc is taken, 256 plus

the seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL].

The only visible difference between a software trap generated by a Tcc instruction and a

hardware trap is the trap number in the TT register. See Chapter 12, “Traps and Trap

Handling” for more information.
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Programming Note – Tcc can be used to implement breakpointing, tracing, and calls to

supervisor software. Tcc can also be used for runtime checks, such as out-of-range array

index checks or integer overflow checks.

7.8.1.6 ILLTRAP

The ILLTRAP instruction causes an illegal_instruction exception.

7.8.1.7 NOP

A NOP instruction occupies the entire (single) instruction group and performs no visible

work.

• NOP Instruction

There are other instructions that also result in an operation that has no visible effect:

• SIR instruction executed in non-privileged mode

• SHUTDOWN instruction executed in privileged mode

There are other instructions that appear to be a NOP as long as they do not affect the

condition codes.

7.9 Prefetch Instructions

The prefetch instruction is used to request that data be fetched from memory and put into the

cache(s) if not already there for use in the floating-point and VIS execution environment. A

subsequent load, if properly scheduled, can expect the data to more likely be in the cache,

reducing the number of times the pipeline must recycle and thus improving performance.

The destination field of a PREFETCH instruction (fcn) is used to encode the prefetch type.

The PREFETCHA instruction supports accesses to alternate space.

PREFETCH accesses at least 64 bytes. Refer to Appendix A, “Prefetch Data” on page 560

for further details.
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7.10 Instruction Summary Table by Category

A summary of instructions are categorized in TABLE 7-3.

7.10.1 Instruction Superscripts

INSTRUCTIONP Instruction must execute in privileged mode.

INSTRUCTION Instruction can execute in privileged or non-privileged mode

7.10.2 Instruction Mnemonics Expansion

INSTRUCTION{_A} means INSTRUCTION, INSTRUCTION_A

INSTRUCTION_(A,B,C) means INSTRUCTION_A, INSTRUCTION_B, and

INSTRUCTION_C

7.10.3 Instruction Grouping Rules

Chapter 4, “Instruction Execution” explains instruction grouping rules in detail.

Execution Latency

All instructions execute within the pipeline except the following:

• FSQRT (floating-point square root)

• FPDIVx (floating-point divide)

The latency of these instructions depend on the precision of the floating-point values. Some

instructions execute early in the pipeline and have special bypass abilities. Chapter 4,

“Instruction Execution” explains execution latencies in detail.

7.10.4 Table Organization

The Instruction Summary Table has the following main sections:

• Integer Execution Environment (TABLE 7-3)

■ Data access, Arithmetic, Logic, Compare, Miscellaneous instructions
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• Floating-point Execution Environment (TABLE 7-4)

■ FP/VIS data access, FP arithmetic/logic/compare/miscellaneous

• VIS Execution Environment (TABLE 7-5)

■ VIS pixel and fixed-point arithmetic/logic

• Data Coherency Instructions (TABLE 7-6)

• Register-window Management Instructions (TABLE 7-7)

• Program Control Transfer Instructions (TABLE 7-8)

• Prefetch Instructions (TABLE 7-9)

Shaded areas indicate instructions that are completely deprecated (entire row) or always

privileged (cell holding instruction name). Deprecated and privilege status is identified with

a D or P superscript, respectively.

7.10.5 Integer Execution Environment Instructions

TABLE 7-3 Instruction Summary for the Integer Execution Environment (1 of 3)

Instruction Description Notes

Integer Execution Environment

IU Data Access Instructions
B= byte; H= halfword; W=word;

ASI Load
(hex)

LDDD Load integer double word No

LDDAD, PASI Load integer double word from alternate

space

LDDAPASI Atomic quad load 24, 2C

LDS(B,H,W) Load signed extended byte, halfword, or

word:

Memory → IU register

No

LDX Load extended (double) word No

LDXAPASI Load extended (double) word from

alternate space

LDS(B,H,W)APASI Load signed extended byte, halfword, or

word from alternate space

LDSTUB Load-store (atomic) unsigned byte:

Memory → IU register & Compare logic;

IU register → Memory (conditional)

No

LDSTUBAPASI Load-store (atomic) unsigned byte (see

LDSTUB) in alternate space

LDU(B,H,W) Load unsigned byte, halfword, word:

Memory → IU register
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LDU(B,H,W)APASI Load unsigned byte, halfword, word from

alternate space

ST(B,H,W,DD,X) Store byte, halfword, word, double, or

extended word:

IU register → Memory

ST(B,H,W,DD,X)APASI Store byte, halfword, word, double, or

extended word in alternate space

MOVcc Conditional move based on icc/fcc:

IU register → IU register

1

MOVr Conditional move based on IU register

value:

IU register → IU register

2

CASAPASI, CASXAPASI Atomic Compare and Swap word/double

word in alternate space:

Memory → Compare logic

Memory ↔ (conditional) Working

register

3, 4, 5

SWAPD{AD, PASI} Atomically swap optionally with alternate

space:

IU register ↔ Memory

IU Arithmetic Instructions
S= signed; U= unsigned; X= 64-bit (otherwise 32)

ADD{cc} Integer add

ADDC{cc} Integer add with carry

SUB{cc} Integer subtract, optionally setting icc/xcc

SUBC{cc} Integer subtract with carry optionally

setting icc/xcc

MULX Signed or unsigned 64-bit multiply

(S,U)MUL{cc}D Signed/unsigned integer multiply

optionally setting icc/xcc

UDIVX Unsigned 64-bit integer divide

SDIVX Signed 64-bit integer divide

(S,U)DIV{cc}D Signed/unsigned 32-bit integer divide

optionally setting icc/xcc

SETHI Modify highest 22 bits of low word in IU

register:

Immediate → IU register (partial)

SLL{X} Shift left logical (32/64-bit)

SRL{X} Shift right logical (32/64-bit)

SRA{X} Shift right arithmetic (32/64-bit)

TADDcc{TVD} Tagged add and modify icc optionally

trap on overflow

TABLE 7-3 Instruction Summary for the Integer Execution Environment (2 of 3)

Instruction Description Notes
Chapter 7 Instruction Types 7-167



TSUBcc{TVD} Tagged subtract and modify icc optionally

trap on overflow

IU Logic Instructions

AND{cc} Logical AND, optionally setting icc/xcc

ANDN{cc} Logical AND-not, optionally setting icc/

xcc

OR{cc} Logical OR, optionally setting icc/xcc

ORN{cc} Logical OR-not, optionally setting icc/xcc

XOR{cc} Logical XOR, optionally setting icc/xcc

XNOR{cc} Logical XNOR, optionally setting icc/xcc

IU Miscellaneous Instructions

SIAM

ALIGNADDRESS{_LITTLE} Calculates aligned address

POPC Defined to count the number of ones in

register, unimplemented (causes an illegal

instruction execution which traps to

software for emulation)

RDPRP Read privileged register

WRPRP Write privileged register

RDASRPASR Read ancillary state register (ASR) - see

below. Privileged mode required for

privileged ASRs.

RDYD, RDCCR, RDASI, RDPC,

RDFPRS, RDPCRP,

RDPICPPCR.PRIV, RDDCRP,

RDGSR, RDSOFTINTP,

RDTICKPNPT, RDSTICKPNPT,

RDTICK_CMPRP,

RDSTICK_CMPRP

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC

register access requires privileged mode.

- If {TICK|STICK}.NPT field is zero,

then TICK/STICK register reads require

privileged mode.

WRASRPASR Write ancillary state register (ASR);

Privileged mode required for privileged

ASRs.

WRYD, WRCCR, WRASI,

WRFPRS, WRPCRP,

WRPICPPCR.PRIV, WRDCRP,

WRGSR, WRSOFTINTP,

WRSOFTINT_CLRP,

WRSOFTINT_SETP,

WRSTICKPNPT, WRTICK_CMPRP,

WRSTICK_CMPRP

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC

register access requires privileged mode.

- If STICK.NPT field is zero, then STICK

register writes require privileged mode.

1. A simple register-to-register move is accomplished by using the OR instruction with r[0].

TABLE 7-3 Instruction Summary for the Integer Execution Environment (3 of 3)

Instruction Description Notes
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2. Load (LD) and store (ST) instructions are provided with many size formats (byte, word, double word, etc.) and most can be

specified with an alternate space identifier (ASI).

3. The “r” refers to value in r registers.

4. The cc refers to settings of the integer condition codes.

5. The conditional move instructions (integer and floating-point) are influenced by the condition codes of either execution unit to

facilitate moves in one type of execution unit based on the condition codes of the other or of those within the execution unit.
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7.10.6 Floating-Point Execution Environment Instructions

TABLE 7-4 Instruction Summary for the Floating-Point Execution Environment

Instruction Description
Reference
Pages Notes

FP/VIS Data Access Instruction
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)

ASI Load
(hex)

LD{D}F Load word (or double word):

Memory → FPU register

No

LD{D}FAPASI Load word (or double word) from

alternate space:

Memory → FPU register

LDDFA Block load 64 bytes:

Memory → FPU registers

LDDFA Load short:

Memory → FPU register

LDQF Load quadword:

Memory → FPU register

No

LDQFAPASI Load quadword from alternate space:

Memory → FPU register

No

ST(F,DF,QF) Store word, double, or quad word to

memory:

FPU register → Memory

No

ST(F,DF,QF)APASI Store word, double, or quad word to

memory using alternate memory space.

STDFA Block store 64 bytes: uses ASIs 70, 71, 78, 79,

F0, F1, F8, F9,

E0, E1

STDFA Short FP store: uses ASIs D(0:3)16,

D(8:B)16

STDFA Partial store FPU: uses ASIs C(0:5)16,

C(8:D)16

FMOV(s,d,q) FPU → FPU register No

FMOV(s,d,q)cc Conditional move, IU or FPU condition

codes:

FPU → FPU register

No

FMOV(s,d,q)r Conditional move, IU or FPU register

value: FPU → FPU register

No

FP Arithmetic Instructions
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)

FABS(s,d,q) FP absolute value

FNEG(s,d,q) Change FP sign

FADD(s,d,q) FP add

FSUB(s,d,q) FP subtract
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FMUL(s,d,q) FP multiply

FdMULq FP multiple doubles to quadword

FsMULd FP multiple singles to doubleword

FDIV(s,d,q) FP division

FSQRT(s,d,q) FP square root

FP Conversion Instructions
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped); i= integer word; x= double

(or extended) word

F(s,d,q)TOi Floating-point to integer word

F(s,d,q)TOx Floating-point to integer double word

F(s,d,q)TO(s,d,q) Floating-point to floating-point

FiTO(s,d,q) Integer word to floating-point

FxTO(s,d,q) Integer double (or extended) word to

floating-point

FP Compare Instructions

FCMP(s,d,q) FP compare of like precision, sets fcc

condition codes

FCMPE(s,d,q) Same as FCMP, but an exception is

generated if unordered

FP Miscellaneous Instructions

LDFSRD Load FSR into FP reg file:

FSR → FPU register (lower 32-bit)

LDXFSR Load FSR into FP reg file:

FSR → FPU register (64-bit)

STFSRD Store FSR register:

FPU (lower 32-bit) → FSR register

STXFSR Store FSR register:

FPU → FSR register

FALIGNDATA Concatenates two 64-bit registers into one

based on GSR.ALIGN

TABLE 7-4 Instruction Summary for the Floating-Point Execution Environment (Continued)

Instruction Description
Reference
Pages Notes
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7.10.7 VIS Execution Environment Instructions

TABLE 7-5 Instruction Summary for the VIS Execution Environment

Instruction Description
Reference
Pages Notes

VIS Data Access Instructions

Refer to Section 7.10.6, “Floating-Point Execution Environment Instructions”

of the Instruction Summary Table.

VIS Pixel Data Instructions
L= little-endian; N= fcc not modified; S= 32-bit (otherwise 64-bit);

ARRAY(8,16,32) 3D-array addressing

BMASK Writes the GSR.MASK field

BSHUFFLE Permute bytes as specified by

GSR.MASK field.

EDGE(8,16,32)

( L,N,LN)

Edge handling instructions

FEXPAND Pixel data expansion

FPMERGE Pixel merge

FPACK(16,32,FIX) Pixel packing

PDIST Pixel component distance

VIS Fixed-point 16/32-bit Data Instructions

FPADD(16,32){S} Fixed-point add, 16- or 32-bit operands,

32/64-bit register

FPSUB(16,32){S} Fixed-point subtract, 16- or 32-bit

operands, 32/64-bit register

FMUL8x16 8x16 partitioned multiply

FMUL8x16(AU,AL) 8x16 Upper/Lower α partitioned multiply

FMUL8(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FMULD8(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FCMP(GT,LE,NE,EQ)(16,32) Fixed-point compare (also known as

“pixel compare”)

VIS Logic Instructions
S= 32-bit (otherwise 64-bit)

FSRC(1,2){S} Copy source

FONE{S} Fill with ones (32/64-bit)

FZERO{S} Fill with zeroes (32/64-bit)

FAND{S} Logical AND (32/64-bit)

FANDNOT(1,2){S} Logical AND with a source inverted

(32/64-bit)

FOR{S} Logical OR (32/64-bit)

FNAND{S} Logical NAND (32/64-bit)

FNOR{S} Logical NOR (32/64-bit)
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7.10.8 Data Coherency Instructions

7.10.9 Register-Window Management Instructions

FORNOT(1,2){S} Logical OR with a source inverted

(32/64-bit)

FNOT(1,2){S} Logical inversion of source bits

(32/64-bit)

FXNOR{S} Logical XNOR (32/64-bit)

FXOR{S} Logical XOR (32/64-bit)

TABLE 7-6 Instruction Summary for Data Coherency

Instruction Description
Reference
Pages Notes

Data Coherency Instructions

FLUSH Flush instruction cache

MEMBAR Memory barrier

STBARD Store barrier

TABLE 7-7 Instruction Summary for Register-Window Management

Instruction Description
Reference
Pages Notes

Register-Window Management Instructions

SAVE Save caller’s window

SAVEDP Window has been saved

RESTORE Restore caller’s window

RESTOREDP Window has been restored

FLUSHW Flush register windows

TABLE 7-5 Instruction Summary for the VIS Execution Environment (Continued)

Instruction Description
Reference
Pages Notes
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7.10.10 Program Control Transfer Instructions

7.10.11 Data Prefetch Instructions

TABLE 7-8 Instruction Summary for Program Control Transfer

Instruction Description
Reference
Pages Notes

Program Control Transfer Instructions
icc/xcc= integer condition codes (32/64-bit); fcc= FP condition codes

BiccD Conditional branch on icc/xcc

BPcc Conditional branch on icc/xcc with

branch prediction

BPr Conditional branch on IU reg value with

branch prediction

CALL Call and link

DONEP Return from Trap

FBfccD Conditional branch on fcc

FBPfcc Conditional branch on fcc with branch

prediction

ILLTRAP Causes illegal_instruction trap

JMPL Jump and link

NOP No operation

RETRYP Return from trap entry

RETURN Return (jump and link)

SHUTDOWNP Intended for low power mode, but is a

NOP in the processor

SIRPNOP Software initiated reset: a NOP when

executed in non-privileged mode

Tcc Trap on icc/xcc

TABLE 7-9 Instruction Summary Table

Instruction Description
Reference
Pages Notes

Prefetch Instructions

PREFETCH Tells processor to fetch data

PREFETCHAPASI Tells processor to fetch data from

alternate memory space
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7.11 Instruction Formats and Fields

Instructions are encoded in four major 32-bit formats and several minor formats, as shown in

FIGURE 7-1, FIGURE 7-2, and FIGURE 7-3.

FIGURE 7-1 Summary of Instruction Formats: Formats 1 and 2

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI and Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

31 2224 21 02530 29

disp22op2condop a

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1 cc0 p

pd16hi

14 13

rs1

imm22op2rdop
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FIGURE 7-2 Summary of Instruction Formats: Format 3

op3rdop rs1 i=1 mmask

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Prefetch, Load, and Store

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10rcond

—

—

op3rdop rs1 i=1 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

cmask

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

op3fcnop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs20 0 0 rs1 opfcc1 cc0

10 9
8

7 3

op3fcnop —rs1 i=0 rs2

op3fcnop rs1 i=1 simm13
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FIGURE 7-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 7-10.

TABLE 7-10 Instruction Field Interpretation (1 of 3)

Field Description

a The a bit annuls the execution of the following instruction if the branch is conditional and not

taken, or if it is unconditional and taken.

cc2, cc1, cc0 cc2, cc1, and cc0 specify the condition codes (icc, xcc, fcc0, fcc1, fcc2, fcc3) to be

used in the following instructions:

• Branch on Floating-point Condition Codes with Prediction Instructions (FBPfcc)

• Branch on Integer Condition Codes with Prediction (BPcc)

• Floating-point Compare Instructions (FCMP and FCMPE)

• Move Integer Register If Condition Is Satisfied (MOVcc)

• Move Floating-point Register If Condition Is Satisfied (FMOVcc)

• Trap on Integer Condition Codes (Tcc)

In instructions such as Tcc that do not contain the cc2 bit, the missing cc2 bit takes on a

default value.

cmask This 3-bit field specifies sequencing constraints on the order of memory references and the

processing of instructions before and after a MEMBAR instruction.

cond This 4-bit field selects the condition tested by a branch instruction.

d16hi, d16lo These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-relative

displacement for a branch-on-register-contents with prediction (BPr) instruction.

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 cc0sw_trap#

cc1 cc0 —

cc1 cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1 cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0
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disp19 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an integer

branch-with-prediction (BPcc) instruction or a floating-point branch-with-prediction (FBPfcc)

instruction.

disp22, disp30 These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacements for a

branch or call, respectively.

fcn This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and PREFETCH(A)

instructions.

i The i bit selects the second operand for integer arithmetic and load/store instructions. If i = 0,

then the operand is r[rs2]. If i = 1, then the operand is simm10, simm11, or simm13,

depending on the instruction, sign-extended to 64 bits.

imm22 This 22-bit field is a constant that SETHI places in bits 31:10 of a destination register.

imm_asi This 8-bit field is the ASI in instructions that access alternate space.

mmask This 4-bit field imposes order constraints on memory references appearing before and after a

MEMBAR instruction.

op, op2 These 2-bit and 3-bit fields encode the three major formats and the Format 2 instructions.

op3 This 6-bit field (together with one bit from op) encodes the Format 3 instructions.

opf This 9-bit field encodes the operation for a floating-point operate (FPop) instruction.

opf_cc Specifies the condition codes to be used in FMOVcc instructions. See field cc0, cc1, and cc2
for details.

opf_low This 6-bit field encodes the specific operation for a Move Floating-Point Register if condition is

satisfied (FMOVcc) or Move Floating-Point Register if contents of integer register match

condition (FMOVr) instruction.

p This 1-bit field encodes static prediction for BPcc and FBPfcc instructions; branch prediction

bit (p) encodings are shown below.

rcond This 3-bit field selects the register-contents condition to test for a move, based on register

contents (MOVr or FMOVr) instruction or a Branch on Register Contents with Prediction (BPr)

instruction.

rd This 5-bit field is the address of the destination (or source) r or f register(s) for a load,

arithmetic, or store instruction.

rs1 This 5-bit field is the address of the first r or f register(s) source operand.

rs2 This 5-bit field is the address of the second r or f register(s) source operand with i = 0.

shcnt32 This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64 This 6-bit field provides the shift count for 64-bit shift instructions.

simm10 This 10-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for a MOVr instruction when i = 1.

simm11 This 11-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for a MOVcc instruction when i = 1.

TABLE 7-10 Instruction Field Interpretation (2 of 3)

Field Description

p Branch Prediction

0 Predict that branch will not be taken

1 Predict that branch will be taken
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7.12 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap,

specifically:

• Attempting to execute a reserved FPop (floating-point opcode) causes a

fp_exception_other exception (with FSR.ftt = unimplemented_FPop).

• Attempting to execute any other reserved opcode causes an illegal_instruction exception.

• Attempting to execute an FPop with a nonzero value in a reserved instruction field causes

a fp_exception_other exception (with FSR.ftt = unimplemented_FPop).1

• Attempting to execute a Tcc instruction with a nonzero value in a reserved instruction

field causes an illegal_instruction exception.

• Attempting to execute any other instruction with a nonzero value in a reserved instruction

field causes an illegal_instruction exception.1

7.12.1 Summary of Unimplemented Instructions

Certain SPARC V9 instructions are not implemented in hardware in the processor. Executing

any of these instructions results in the behavior described in TABLE 7-11.

simm13 This 13-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for an integer arithmetic instruction or for a load/store instruction when i = 1.

sw_trap# This 7-bit field is an immediate value that is used as the second ALU operand for a Trap on

Condition Code instruction.

x The x bit selects whether a 32-bit or 64-bit shift will be performed.

1. Although it is recommended that this exception is generated, an UltraSPARC III Cu User’s Manual implementation may

ignore the contents of reserved instruction fields (in instructions other than Tcc).

TABLE 7-11 Processor Actions on Unimplemented Instructions

Instructions Trap Taken Processor-Specific Behavior Operating System Response

Quad FPops (including

FdMULq)

fp_exception_other FSR.ftt = unimplemented_F
Pop

Emulates Instruction

POPC illegal_instruction None Emulates Instruction

RDPR FQ illegal_instruction None Skips instruction and returns

LDQF illegal_instruction None Emulates Instruction

STQF illegal_instruction None Emulates Instruction

TABLE 7-10 Instruction Field Interpretation (3 of 3)

Field Description
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If a trap does not occur and the instruction is not a control transfer, the next program

counter (nPC) is copied into the PC, and the nPC is incremented by four (ignoring overflow,

if any). If the instruction is a control transfer instruction, the nPC is copied into the PC and

the target address is written to nPC. Thus, the two program counters provide for a

delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address

space identifier (ASI) to the 64-bit memory address. Load/store alternate instructions (see

Section 7.2.4, “Address Space Identifiers”) can provide an arbitrary ASI with their data

addresses or can use the ASI value currently contained in the ASI register.

7.13 Big/Little-endian Addressing

The processor uses big-endian byte order for all instruction accesses and, by default, for data

accesses.

It is possible to access data in little-endian format by using selected ASIs. See Chapter 8,

“Address Space Identifiers” for details.

It is also possible to change the default byte order for implicit data accesses.

7.13.1 Big-endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a

byte’s significance decreases as its address increases. The big-endian addressing conventions

are illustrated in FIGURE 7-4 and described below the figure.
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FIGURE 7-4 Big-endian Addressing Conventions

big-endian byte A load/store byte instruction accesses the addressed byte in both big-endian and

little-endian modes.

big-endian halfword For a load/store halfword instruction, 2 bytes are accessed. The most significant byte

(bits 15–8) is accessed at the address specified in the instruction; the least significant

byte (bits 7–0) is accessed at the address + 1.

big-endian word For a load/store word instruction, 4 bytes are accessed. The most significant byte

(bits 31–24) is accessed at the address specified in the instruction; the least significant

byte (bits 7–0) is accessed at the address + 3.

big-endian doubleword
or extended word For a load/store extended or floating-point load/store double instruction, 8 bytes are

accessed. The most significant byte (bits 63–56) is accessed at the address specified in

the instruction; the least significant byte (bits 7–0) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-endian

words are accessed. The word at the address specified in the instruction corresponds to

the even register specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.

Byte
7 0

Halfword
15 0

Word

Doubleword/

78

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

31 015 78162324

63 3247 3940485556

31 015 78162324
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big-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The most significant byte

(bits 127 –120) is accessed at the address specified in the instruction; the least

significant byte (bits 7–0) is accessed at the address + 15.

7.13.2 Little-endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a

byte’s significance increases as its address increases. The little-endian addressing

conventions are illustrated in FIGURE 7-5 and defined below the figure.

FIGURE 7-5 Little-endian Addressing Conventions

little-endian byte A load/store byte instruction accesses the addressed byte in both big-endian and

little-endian modes.

little-endian halfword For a load/store halfword instruction, 2 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 15–8) is accessed at the address + 1.

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword/

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

103 120119 12711210411196

71 8887 9580727964

Extended word 7 2423 31168150

39 5655 6348404732

7 2423 31168150
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little-endian word For a load/store word instruction, 4 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 31–24) is accessed at the address + 3.

little-endian doubleword
or extended word For a load/store extended or floating-point load/store double instruction, 8 bytes are

accessed. The least significant byte (bits 7–0) is accessed at the address specified in the

instruction; the most significant byte (bits 63–56) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two little-endian

words are accessed. The word at the address specified in the instruction corresponds to

the even register in the instruction; the word at the address specified in the instruction

plus four corresponds to the following odd-numbered register. With respect to

little-endian memory, an LDD (STD) instruction behaves as if it is composed of two

32-bit loads (stores), each of which is byte-swapped independently before being

written into each destination register (memory word).

little-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 127–120) is accessed at the address + 15.
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CHAPTER 8

Address Space Identifiers

The address space identifiers (ASIs) are described in the following sections:

• ASI Introduction

• ASI Heredity

• ASI Groups

• Instructions Associated with the ASIs

• Using ASIs

• List of ASI Definitions

• Special Memory Access ASIs

8.1 ASI Introduction

Every instruction fetch, data load, or data store operation is specified by a 64-bit virtual

address. In the SPARC architecture, there is always an ASI along with the virtual address. In

most cases the ASI is implicit, but can be explicitly specified when appropriate. The ASI can

provide rules for how the Memory Management Unit (MMU) should translate a virtual

address to a physical address. The ASI can provide attributes for how an operation should be

performed. The ASI can also be used to address internal state of the processor.

SPARC Compatibility Note – The SPARC V9 architecture has also extended the limit

of virtual addresses from 32-bit (SPARC V8) to 64-bit for each address space. The

SPARC V9 architecture supports 32-bit addressing through masking of the upper 32 bits to

zero when the address mask (AM) bit in the PSTATE register is set.

Every instruction fetch, load or store address in the processor has an 8-bit ASI appended to

the virtual address (VA). The VA plus the ASI fully specify the address. These address

spaces map to main memory, the processor subsystems, and internal control, status, and
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diagnostics registers (CSRs) within a processor. These ASIs are internal to the processor and

are not visible outside. ASIs can create special transactions on internal processor busses and

assert special internal control signals.

For instruction fetches and data loads or stores that do not use the load or store alternate

instructions, the ASI is an implicit ASI generated by the hardware. If a load alternate or store

alternate instruction is used, the value of the ASI can be specified in the %asi register or as

an immediate value in the instruction.

8.1.1 Load/Store Instructions

Not all load/store instructions have explicit ASIs.

8.1.2 Processor State

Privileged versus non-privileged mode affects the way some ASIs are interpreted.

8.1.3 Default ASIs

Default ASIs are precoded. They are selected based on privileged/non-privileged mode.

8.1.4 Non-Translating and Bypassing ASIs

Non-translating and bypassing ASIs use the VA for the PA. The bypassing ASIs select the

processor control, status, and diagnostic registers and RAM arrays for diagnostic purposes.

Non-translating ASIs essentially use the VA to address main memory, the system, and

memory mapped control, status, and diagnostic registers.

Sometimes, bypassing ASIs are included when referring to non-translating ASIs.

8.1.5 Datapath

The datapath supports byte swapping for endianess and variable length data sizes from single

bytes (partial store) to 64-byte blocks (block load/store). FIGURE 8-1 shows the datapath and

logic for ASIs.
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FIGURE 8-1 ASI Source and Function Conceptual Diagram

Load/Store

Virtual

D-MMU

ASI

Translating

Non-translating/Bypass

i

Instruction

ASI value

Control, Status, and

Cache/Memory
and
Memory Mapped

Diagnostic

Datapath

Data

%asi register

logic

Default ASI

OPcode
logic

Privileged/

Address

Context
Nucleus

Primary

Secondary

logic

logic

TLB

CPU Mode

VA

RAM array access
for diagnostics.

I/O

PA

PA

logic

CPU
IU/FPU
Working
Registers

Data

Operands CONCEPTUAL
DIAGRAM

EMU

Registers;

CSRs

(in-pipeline)

endianess/
size

Mode
Non-Privileged
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8.2 ASI Heredity

FIGURE 8-2, illustrates how the ASIs are defined at different processor architectural levels.

The most universal ASIs are defined by the SPARC V9 architecture. The next level is defined

for all processors based on the UltraSPARC III Family of processors. The last level defines

ASIs belonging to a particular processor.

FIGURE 8-2 ASI Groups

ASIs defined by common architecture definitions should work across the processors within

that family. All SPARC V9 architecture defined ASIs will work on all processors defined by

the SPARC V9 architecture including all UltraSPARC processors, but an ASI defined for a

specific processor will not necessarily work on other SPARC V9 processors.

8.2.1 SPARC V9 ASIs

The SPARC V9 architecture defines a set of required ASIs for SPARC V9 processors. These

ASIs are supported in all UltraSPARC processors. Some of the ASIs have been deprecated in

favor of newer ASIs that take advantage of the 64-bit architecture.

8.2.2 UltraSPARC UltraSPARC III Family ASIs

The UltraSPARC UltraSPARC III Family currently contains processors similar to the

UltraSPARC III Cu processor. All SPARC V9 ASIs will work for the

UltraSPARC UltraSPARC III Family of processors.

UltraSPARC III Family
ASIs

SPARC V9
ASIs

+ UltraSPARC III Cu Specific ASIs
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8.2.3 UltraSPARC III Cu Specific ASIs

The UltraSPARC III Cu processor specific ASIs are also defined. ASI 4A16 is an example of

how one ASI is defined differently for the Sun Fireplane interconnect in the

UltraSPARC III Cu processor. All UltraSPARC UltraSPARC III Family ASIs will work with

the UltraSPARC III Cu processor. TABLE 8-1 lists processor specific ASIs.

8.3 ASI Groups

The ASI is evenly divided into restricted and unrestricted halves, defined by the SPARC V9.

ASIs in the range 0016–7F16 are restricted. ASIs in the range 8016–FF16 are unrestricted. An

attempt to access a restricted ASI in non-privileged mode causes a privileged_action trap.

Normal or translating ASIs cause the CPU’s VA to be translated to a physical one by the

MMU. Non-translating, or bypassing ASIs, cause the CPU to not translate the VA; instead,

the MMU passes the lower 43 bits of the CPU’s virtual addresses as 43-bit physical

addresses.

Access restrictions and translating abilities are summarized in TABLE 8-2.

ASIs can be grouped together to help understand the nature of the ASIs. The ASIs that map

to a PA are targeted toward physical memory, memory mapped CSRs, and the processor’s

subsystem, depending on the VA and the ASI value.

The UltraSPARC III Cu processor implements the standard SPARC V9 ASIs and many

processor specific ASIs for endian support and address CSR registers.

TABLE 8-1 Processor Specific ASIs

ASI
Value UltraSPARC III Cu

4A Fireplane Interconnect CSRs

72 Memory Control Unit CSRs
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Processor Compatibility Note – In TABLE 8-2, text in bold means the ASI was not

implemented in UltraSPARC I or UltraSPARC II. Text with strike through means the ASI

was implemented in UltraSPARC I or UltraSPARC II but not in the UltraSPARC III Family.

TABLE 8-2 ASI Summary Table

ASI Values Destination
Translating VA to
PA

Special
Operations

Architecture
Definition

Restricted, Accessible in Privileged Mode Only

04h, 0Ch

Physical Address

Translating

SPARC V9 and

UltraSPARC III

Family

10h, 11h SPARC V9

14h, 15h Bypassing
UltraSPARC III

Family

18h, 19h Translating SPARC V9

1Ch, 1Dh Bypassing

UltraSPARC III

Family

24h, 2Ch Translating

30-34h, 38-3Ch, 40-44h,

45-49h
CSR

Non-translating4Ah CSR (Bus i/f)
UltraSPARC III

Cu

4B-4Eh, 50-5Fh, 60h, 66h,

67h, 68h, 6Eh, 6Fh
CSR

UltraSPARC III

Family
70h, 71h Physical Address Translating

Block

Load/Store

72h CSR (MCU) Non-translating
UltraSPARC III

Cu

74-75h, 76h, 77h CSR Non-translating

78h, 79h Physical Address Translating
Block

Load/Store

7Eh, 7Fh CSR Non-translating

Non-Restricted, Accessible in Privileged or Non-privileged Mode

80h, 81h, 82h, 83h, 88h,

89h, 8Ah, 8Bh

Physical Address Translating

SPARC V9

C0-C5h, C8-CDh Partial Store

UltraSPARC III

Family

D0-D3h, D8-DBh
Short FP

Load/Store

E0h, E1h, F0h, F1h, F8h,

F9h

Block

Load/Store
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8.4 Instructions Associated with the ASIs

ASIs are used with load and store instructions. Their usage and restrictions are described in

TABLE 8-4. Additional information is described in Section 8.5, “Using ASIs.”

8.4.1 Block Load and Block Store ASIs

Block load (BLD) and block store (BST) operations are generated by using the LDDFA and

STDFA instructions with the 7016, 7116, 7816, 7916, E016, E116, F016, F116, F816, and F916 ASIs.

If the operand address is not 64-byte aligned, then a mem_address_not_aligned exception is

generated.

If these ASIs are used with any other instruction, then a data_access_exception is generated

and mem_address_not_aligned is not generated.

8.4.2 Partial Store ASIs

Partial store operations are generated by using the STDFA instruction with the C016–C516

and C816–CD16 ASIs.

If the operand address is not 8-byte aligned, then a mem_address_not_aligned exception is

generated and if i = 1 in the instruction, then an illegal_instruction exception is generated

instead.

If these ASIs are used with any other instruction, then a data_access_exception exception is

generated and neither a mem_address_not_aligned nor a illegal_instruction (for i = 1) is

generated.

8.4.3 Short Floating-Point Load and Store ASIs

Short floating-point load and store operations are generated by using the LDDFA and STDFA
instructions with the D016–D316 and D816–DB16 ASIs to load and store byte and halfword

values in the floating-point registers.

If the data is not aligned, then a mem_address_not_aligned is generated.

If these ASIs are used with any other instruction, a data_access_exception is generated and

mem_address_not_aligned will not be generated.
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8.4.3.1 Halfword Alignment

If the operand address for a D216, D316, DA16, or DB16 ASI (halfword) is not halfword

aligned, then a mem_address_not_aligned exception is generated.

8.5 Using ASIs

8.5.1 Data Widths

The ASIs for the UltraSPARC III Cu processor and the entire UltraSPARC UltraSPARC III

Family of processors are accessible using 64-bit LDXA, STXA, LDDFA, and STDFA
instructions, except where noted. SPARC V9 ASIs are accessible using aligned 8-, 16-, 32-

and 64-bit load and store (read and write) instructions, except where noted. The

UltraSPARC UltraSPARC III Family of processors and specific implementations require

64-bit aligned accesses, except where noted.

8.5.2 Operand Alignment

Addresses must align to the boundary of the data width. TABLE 8-3 shows the data size and

address offset for operand alignment.

8.5.3 Common Exceptions

Using ASIs improperly will generate one of the following exceptions in the CPU.

TABLE 8-3 Operand Alignment

Data Size Address Offset (binary)

Halfword xxxx.xxx0

Word xxxx.xx00

Double word (8 bytes) xxxx.x000

Quad word (16 bytes) xxxx.0000

Block (64 bytes) xx00.0000
8-192 UltraSPARC III Cu User’s Manual • January 2004



s

8.5.3.1 data_access_exception

When the wrong instruction is used with an ASI, a data_access_exception is generated. This

is sometimes referred to as the invalid_ASI_exception.

8.5.3.2 mem_address_not_aligned

When the address operand does not align to the boundary of the data size, a

mem_address_not_aligned exception is generated.

8.5.3.3 privileged_action

If a restricted, privileged mode only ASI is accessed in non-privileged mode, then a

privileged_mode_exception is generated.

8.6 List of ASI Definitions

TABLE 8-4 lists all the ASIs in the UltraSPARC III Cu processor.

TABLE 8-4 ASI Definitions (1 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note

00-7F Restricted, Accessible in Privileged Mode only

00–

03

— — Implementation-dependent,

Unassigned

1

04 SPARC V9 and

UltraSPARC III

Family

ASI_NUCLEUS (ASI_N) RW Implicit address space, nucleus

privilege, TL>0

05–

0B

— — Implementation-dependent,

Unassigned

1

0C SPARC V9 and

UltraSPARC III

Family

ASI_NUCLEUS_LITTLE (ASI_NL) RW Implicit address space, nucleus

privilege, TL>0, little-endian

0D–

0F

— — Implementation-dependent,

Unassigned

1

10 SPARC V9 ASI_AS_IF_USER_PRIMARY
(ASI_AIUP)

RW Primary address space, user

privilege

2, 3
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11 SPARC V9 ASI_AS_IF_USER_SECONDARY
(ASI_AIUS)

RW Secondary address space, user

privilege

2, 3

12–

13

— — Implementation-dependent,

Unassigned

1

14 UltraSPARC III

Family

ASI_PHYS_USE_EC RW Physical address external

cacheable only

4, 5

15 UltraSPARC III

Family

ASI_PHYS_BYPASS_EC_WITH_EBIT RW Physical address, non-cacheable,

with side-effect

4

16–

17

— — Implementation-dependent,

Unassigned

1

18 SPARC V9 ASI_AS_IF_USER_PRIMARY_LIT
TLE (ASI_AIUPL)

RW Primary address space, user

privilege, little-endian

3

19 SPARC V9 ASI_AS_IF_USER_SECONDARY_LIT
TLE (ASI_AIUSL)

RW Secondary address space, user

privilege, little-endian

3

1A–

1B

— — Implementation-dependent,

Unassigned

1

1C UltraSPARC III

Family

ASI_PHYS_USE_EC_LITTLE
(ASI_PHYS_USE_EC_L)

RW Physical address, external

cacheable only, little-endian

4, 5

1D UltraSPARC III

Family

ASI_PHYS_BYPASS_EC_WITH_EBIT
_LITTLE
(ASI_PHYS_BYPASS_EC_WITH_EBI
T_L)

RW Physical address, non-cacheable,

with side-effect, little-endian

4

1E–

23

— — Implementation-dependent,

Unassigned

1

24 UltraSPARC III

Family

ASI_NUCLEUS_QUAD_LDD R Cacheable, 128-bit atomic LDDA 6, 7

25–

2B

— — Implementation-dependent,

Unassigned

1

2C UltraSPARC III

Family

ASI_NUCLEUS_QUAD_LDD_LITTLE
(ASI_NUCLEUS_QUAD_LDD_L)

R Cacheable, 128-bit atomic

LDDA, little-endian

6, 7

2D–

2F

— — Implementation-dependent,

Unassigned

1

30 UltraSPARC III

Cu

ASI_PCACHE_STATUS_DATA RW P-cache data status RAM

diagnostic access

31 UltraSPARC III

Cu

ASI_PCACHE_DATA RW P-cache data RAM diagnostic

access

TABLE 8-4 ASI Definitions (2 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note
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32 UltraSPARC III

Cu

ASI_PCACHE_TAG RW P-cache tag RAM diagnostic

access

33 UltraSPARC III

Cu

ASI_PCACHE_SNOOP_TAG RW P-cache snoop tag RAM

diagnostic access

34 UltraSPARC III

Cu

ASI_ATOMIC_QUAD_LDD_PHYS

35–

37

— — Implementation-dependent,

Unassigned

1

38 UltraSPARC III

Cu

ASI_WCACHE_VALID_BITS W-cache Valid Bits diagnostic

access

39 UltraSPARC III

Cu

ASI_WCACHE_DATA RW W-cache data RAM diagnostic

access

3A UltraSPARC III

Cu

ASI_WCACHE_TAG RW W-cache tag RAM diagnostic

access

3B UltraSPARC III

Cu

ASI_WCACHE_SNOOP_TAG RW W-cache snoop tag RAM

diagnostic access

3C UltraSPARC III

Cu

ASI_ATOMIC_QUAD_LDD_PHYS_L 1

3D–

3F

— — Implementation-dependent,

Unassigned

1

40 UltraSPARC III

Cu

ASI_SRAM_FAST_INIT W Interface to clean all major

SRAM arrays on chip

9

41 Reserved.

42 UltraSPARC III

Cu

ASI_DCACHE_INVALIDATE W D-cache Invalidate diagnostic

access

43 UltraSPARC III

Cu

ASI_DCACHE_UTAG RW D-cache uTag diagnostic access

44 UltraSPARC III

Cu

ASI_DCACHE_SNOOP_TAG RW D-cache snoop tag RAM

diagnostic access

45 UltraSPARC III

Family

ASI_DCU_CONTROL_REGISTER
(ASI_DCUCR)

RW 0 D-cache Unit Control Register

46 UltraSPARC III

Cu

ASI_DCACHE_DATA RW D-cache data RAM diagnostic

access

47 UltraSPARC III

Cu

ASI_DCACHE_TAG RW D-cache tag/valid RAM

diagnostic access

TABLE 8-4 ASI Definitions (3 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note
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48 UltraSPARC III

Family

ASI_INTR_DISPATCH_STATUS
(ASI_MONDO_SEND_CTRL)

R 0 Interrupt vector dispatch status 6

49 UltraSPARC III

Family

ASI_INTR_RECEIVE
(ASI_MONDO_RECEIVE_CTRL)

RW 0 Interrupt vector receive status

4A UltraSPARC III

Cu

ASI_FIREPLANE_CONFIG_REG RW 0 Fireplane interconnect

configuration register for the

UltraSPARC III processor

ASI_FIREPLANE_ADDRESS_REG RW 08 Fireplane interconnect

configuration register for the

UltraSPARC III processor

4B UltraSPARC III

Cu

ASI_ESTATE_ERROR_EN_REG RW 0 E-state error enable register

4C UltraSPARC III

Family

ASI_ASYNC_FAULT_STATUS
(ASI_AFSR)

RW 0 Asynchronous fault status

register

4D UltraSPARC III

Family

ASI_ASYNC_FAULT_ADDR
(ASI_AFAR)

R 0 Asynchronous fault address

register

4E UltraSPARC III

Cu

ASI_ECACHE_TAG (ASI_EC_TAG) RW <22:6

>

L2-cache tag state RAM data

diagnostic access

ASI_ECACHE_FLUSH R [31]

=1

4F — — Implementation-dependent,

Unassigned

1

50 UltraSPARC III

Family

ASI_IMMU_TAG_TARGET R 0 I-MMU tag target register 6

ASI_IMMU_SFSR RW 18 I-MMU sync fault status register

ASI_IMMU_TSB_BASE RW 28 I-MMU TSB base register

ASI_IMMU_TAG_ACCESS RW 30 I-MMU TLB tag access register

ASI_IMMU_TSB_PEXT_REG RW 48 I-MMU TSB primary extension

register

ASI_IMMU_TSB_SEXT_REG R 50 I-MMU TSB secondary

extension register (hardwired to

zero)

ASI_IMMU_TSB_NEXT_REG RW 58 I-MMU TSB nucleus extension

register

51 UltraSPARC III

Family

ASI_IMMU_TSB_8KB_PTR_REG R 0 I-MMU TSB 8 KB pointer

register

6

TABLE 8-4 ASI Definitions (4 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
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52 UltraSPARC III

Family

ASI_IMMU_TSB_64KB_PTR_REG R 0 I-MMU TSB 64 KB pointer

register

6

53 UltraSPARC III

Family

ASI_SERIAL_ID R Internal testability7

(also known as

ASI_DEVICE_ID+SERIAL_I
D)

6, 8

54 UltraSPARC III

Family

ASI_ITLB_DATA_IN_REG W 0 I-MMU TLB data in register 9

55 UltraSPARC III

Family

ASI_ITLB_DATA_ACCESS_REG RW 0 –

2.0F

F8

I-MMU TLB data access register

UltraSPARC III

Cu

ASI_ITLB_CAM_ADDRESS_REG RW 4.000

0 –

6.0F

F8

I-MMU TLB CAM diagnostic

register

56 UltraSPARC III

Family

ASI_ITLB_TAG_READ_REG R 0 –

2.0F

F8

I-MMU TLB tag read register;

data access port to RAM array

6

57 UltraSPARC III

Family

ASI_IMMU_DEMAP W I-MMU TLB demap operations 9

TABLE 8-4 ASI Definitions (5 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note
Chapter 8 Address Space Identifiers 8-197



s

58 UltraSPARC III

Family

ASI_DMMU_TAG_TARGET_REG R 0 D-MMU TSB tag target register

ASI_PRIMARY_CONTEXT_REG RW 8 I/D-MMU primary context

register (this ASI register is

shared between I-MMU and

MMU)

ASI_SECONDARY_CONTEXT_REG RW 10 D-MMU secondary context

register

ASI_DMMU_SFSR RW 18 D-MMU sync fault status

register (D-SFSR)

ASI_DMMU_SFAR R 20 D-MMU sync fault address

register (D-SFAR)

ASI_DMMU_TSB_BASE RW 28 D-MMU TSB base address

register

ASI_DMMU_TAG_ACCESS RW 30 D-MMU TLB tag access register

ASI_DMMU_VA_WATCHPOINT_REG RW 38 D-MMU VA data watchpoint

register

ASI_DMMU_PA_WATCHPOINT_REG RW 40 D-MMU PA data watchpoint

register

ASI_DMMU_TSB_PEXT_REG RW 48 D-MMU TSB primary extension

register

ASI_DMMU_TSB_SEXT_REG RW 50 D-MMU TSB secondary

extension register

ASI_DMMU_TSB_NEXT_REG RW 58 D-MMU TSB nucleus extension

register

59 UltraSPARC III

Family

ASI_DMMU_TSB_8KB_PTR_REG R 0 D-MMU TSB 8 KB pointer

register

6

5A UltraSPARC III

Family

ASI_DMMU_TSB_64KB_PTR_REG R 0 D-MMU TSB 64 KB pointer

register

6

5B UltraSPARC III

Family

ASI_DMMU_TSB_DIRECT_PTR_REG R 0 D-MMU TSB direct pointer

register

6

5C UltraSPARC III

Family

ASI_DTLB_DATA_IN_REG W 0 D-MMU TLB data in register 9

TABLE 8-4 ASI Definitions (6 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
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5D UltraSPARC III

Family

ASI_DTLB_DATA_ACCESS_REG RW 0 to

2.0F

F8

D-MMU TLB data access

register; Data access port to

RAM array

ASI_TLB_CAM_ACCESS_REG RW 4.000

0 to

6.0F

F8

D-MMU TLB CAM diagnostic

registers

5E UltraSPARC III

Family

ASI_DTLB_TAG_READ_REG R <17:0

>

D-MMU TLB tag read register 6

5F UltraSPARC III

Family

ASI_DMMU_DEMAP W D-MMU TLB demap operations 9

60 UltraSPARC III

Family

ASI_IIU_INST_TRAP RW 0 Instruction breakpoint register

61–

65

— — Implementation-dependent,

Unassigned

1

66 UltraSPARC III

Cu

ASI_ICACHE_INSTR
(ASI_IC_INSTR)

RW I-cache data RAM diagnostics

access

67 UltraSPARC III

Cu

ASI_ICACHE_TAG (ASI_IC_TAG) RW I-cache tag/valid RAM

diagnostics access

68 UltraSPARC III

Cu

ASI_ICACHE_SNOOP_TAG
(ASI_IC_STAG)

RW I-cache snoop tag RAM

diagnostics access

69–

6E

— — Implementation-dependent,

Unassigned

1

6F Future (Reserved for

ASI_BRANCH_PREDICTION_ARRAY)
RW Planned for future processor

70 UltraSPARC III

Family

ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW Primary address space, block

load/store, user privilege

3, 10

71 UltraSPARC III

Family

ASI_BLOCK_AS_IF_USER_SECONDA
RY (ASI_BLK_AIUS)

RW Secondary address space, block

load/store, user privilege

3, 10

72 UltraSPARC III

Cu

ASI_MCU_TIMING[1:4]_REG RW 0, 8,

10,

18

Memory Control Unit (MCU)

programming registers; these

registers are also memory

mapped
ASI_MCU_ADR_DEC[1:4]_REG RW 20,

28,

30,

38

ASI_MCU_ADR_CNTL_REG RW 40

TABLE 8-4 ASI Definitions (7 of 12)
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(hex) Processor

ASI Name
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VA
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73 — — Implementation-dependent,

Unassigned

74 UltraSPARC III

Cu

ASI_ECACHE_DATA RW L2-cache data staging register

75 UltraSPARC III

Cu

ASI_ECACHE_CONTROL

(ASI_EC_CTRL)

RW 0 L2-cache control register

76 UltraSPARC III

Cu

ASI_ECACHE_W (ASI_EC_W) W L2-cache data RAM diagnostic

write access

77 UltraSPARC III

Family

ASI_INTR_DATA0_W W 40 Outgoing interrupt vector data

Register 0 H

9

ASI_INTR_DATA1_W W 48 Outgoing interrupt vector data

Register 0 L

9

ASI_INTR_DATA2_W W 50 Outgoing interrupt vector data

Register 1 H

9

ASI_INTR_DATA3_W W 58 Outgoing interrupt vector data

Register 1 L

9

ASI_INTR_DATA4_W W 60 Outgoing interrupt vector data

Register 2 H

9

ASI_INTR_DATA5_W W 68 Outgoing interrupt vector data

Register 2 L

9

ASI_INTR_DISPATCH_W W 70 Interrupt vector dispatch 9

ASI_INTR_DATA6_W W 80 Outgoing interrupt vector data

Register 3 H

9

ASI_INTR_DATA7_W W 88 Outgoing interrupt vector data

Register 3 L

9

ASI_INTR_DISPATCH_W W Interrupt vector dispatch:

01.0000.0070–8F.FFFF.C070

9

78 UltraSPARC III

Family

ASI_BLOCK_AS_IF_USER_PRIMARY
_LITTLE
(ASI_BLK_AIUPL)

RW 0 Primary address space, block

load/store, user privilege,

little-endian

3, 10

79 UltraSPARC III

Family

ASI_BLOCK_AS_IF_USER_SECONDA
RY_LITTLE (ASI_BLK_AIUSL)

RW 0 Secondary address space, block

load/store, user privilege,

little-endian

3, 10

7A–

7D

— — Implementation-dependent,

Unassigned

1

TABLE 8-4 ASI Definitions (8 of 12)
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ASI Name
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7E UltraSPARC III

Cu

ASI_ECACHE_R (ASI_EC_R) R 0 L2-cache data RAM diagnostic

read access

7F UltraSPARC III

Family

ASI_INTR_DATA0_R R 40 Incoming interrupt vector data

Register 0 H

6

ASI_INTR_DATA1_R R 48 Incoming interrupt vector data

Register 0 L

6

ASI_INTR_DATA2_R R 50 Incoming interrupt vector data

Register 1 H

6

ASI_INTR_DATA3_R R 58 Incoming interrupt vector data

Register 1 L

6

ASI_INTR_DATA4_R R 60 Incoming interrupt vector data

Register 2 H

6

ASI_INTR_DATA5_R R 68 Incoming interrupt vector data

Register 2 L

6

ASI_INTR_DATA6_R R 80 Incoming interrupt vector data

Register 3 H

6

ASI_INTR_DATA7_R R 88 Incoming interrupt vector data

Register 3 L

6

80–

FF Non-Restricted, Accessible in Privileged or Non-privileged Mode

80 SPARC V9 ASI_PRIMARY (ASI_P) RW Implicit primary address space

81 SPARC V9 ASI_SECONDARY (ASI_S) RW Secondary address space

82 SPARC V9 ASI_PRIMARY_NO_FAULT
(ASI_PNF)

R Primary address space, no fault 4, 6,

11

83 SPARC V9 ASI_SECONDARY_NO_FAULT
(ASI_SNF)

R Secondary address space, no

fault

4, 6,

11

84–

87

— — Implementation-dependent,

Unassigned

1

88 SPARC V9 ASI_PRIMARY_LITTLE (ASI_PL) RW Implicit primary address space,

little-endian

89 SPARC V9 ASI_SECONDARY_LITTLE
(ASI_SL)

RW Secondary address space,

little-endian

8A SPARC V9 ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R Primary address space, no fault,

little-endian

4, 6,

11

TABLE 8-4 ASI Definitions (9 of 12)
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See
Foot
note
Chapter 8 Address Space Identifiers 8-201



s

8B SPARC V9 ASI_SECONDARY_NO_FAULT_
LITTLE (ASI_SNFL)

R Secondary address space, no

fault, little-endian

4, 6,

11

8C–

BF

— — Implementation-dependent,

Unassigned

1

C0 UltraSPARC III

Family

ASI_PST8_PRIMARY
(ASI_PST8_P)

W Primary address space,

8x8-bit partial store

12

C1 UltraSPARC III

Family

ASI_PST8_SECONDARY
(ASI_PST8_S)

W Secondary address space,

8x8-bit partial store

12

C2 UltraSPARC III

Family

ASI_PST16_PRIMARY
(ASI_PST16_P)

W Primary address space,

4x16-bit partial store

12

C3 UltraSPARC III

Family

ASI_PST16_SECONDARY
(ASI_PST16_S)

W Secondary address space,

4x16-bit partial store

12

C4 UltraSPARC III

Family

ASI_PST32_PRIMARY
(ASI_PST32_P)

W Primary address space,

2x32-bit partial store

12

C5 UltraSPARC III

Family

ASI_PST32_SECONDARY
(ASI_PST32_S)

W Secondary address space,

2x32-bit partial store

12

C6–

C7

— — Implementation-dependent,

Unassigned

1

C8 UltraSPARC III

Family

ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W Primary address space,

8x8-bit partial store,

little-endian

12

C9 UltraSPARC III

Family

ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W Secondary address space,

8x8-bit partial store,

little-endian

12

CA UltraSPARC III

Family

ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W Primary address space,

4x16-bit partial store,

little-endian

12

CB UltraSPARC III

Family

ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W Secondary address space,

4x16-bit partial store,

little-endian

12

CC UltraSPARC III

Family

ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W Primary address space,

2x32-bit partial store,

little-endian

12

CD UltraSPARC III

Family

ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W Second address space,

2x32-bit partial store,

little-endian

12
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CE–

CF

— — Implementation-dependent,

Unassigned

1

D0 UltraSPARC III

Family

ASI_FL8_PRIMARY (ASI_FL8_P) RW Primary address space,

one 8-bit floating-point load/

store

13

D1 UltraSPARC III

Family

ASI_FL8_SECONDARY
(ASI_FL8_S)

RW Second address space,

one 8-bit floating-point load/

store

13

D2 UltraSPARC III

Family

ASI_FL16_PRIMARY
(ASI_FL16_P)

RW Primary address space,

one 16-bit floating-point load/

store

13

D3 UltraSPARC III

Family

ASI_FL16_SECONDARY
(ASI_FL16_S)

RW Second address space, one 16-bit

floating-point load/store

13

D4–

D7

— — Implementation-dependent,

Unassigned

1

D8 UltraSPARC III

Family

ASI_FL8_PRIMARY_LITTLE
(ASI_FL8_PL)

RW Primary address space,

one 8-bit floating-point load/

store, little-endian

13

D9 UltraSPARC III

Family

ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW Second address space, one 8-bit

floating-point load/store,

little-endian

13

DA UltraSPARC III

Family

ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW Primary address space, one

16-bit floating-point load/store,

little-endian

13

DB UltraSPARC III

Family

ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW Second address space, one 16-bit

floating-point load/store,

little-endian

13

DC–

DF

— — Implementation-dependent,

Unassigned

1

E0 UltraSPARC III

Family

ASI_BLOCK_COMMIT_PRIMARY
(ASI_BLK_COMMIT_P)

W Primary address space,

8x8 - byte block store commit

operation

9

E1 UltraSPARC III

Family

ASI_BLOCK_COMMIT_SECONDARY
(ASI_BLK_COMMIT_S)

W Secondary address space,

8x8 - byte block store commit

operation

9

E2–

EE

— — Implementation-dependent,

Unassigned

1

EF Future (Reserved for ASI_BARRIER_SYNCH) Planned for future processor

TABLE 8-4 ASI Definitions (11 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note
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s

8.7 Special Memory Access ASIs

This section describes special memory access ASIs that are not specified in SPARC V9 and

are not described in other sections.

F0 UltraSPARC III

Family

ASI_BLOCK_PRIMARY
(ASI_BLK_P)

RW Primary address space,

8x8 - byte block load/store

9

F1 UltraSPARC III

Family

ASI_BLOCK_SECONDARY
(ASI_BLK_S)

RW Secondary address space, block

load/store

9

F2–

F7

— — Implementation-dependent,

Unassigned

1

F8 UltraSPARC III

Family

ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW Primary address space, block

load/store, little endian

9

F9 UltraSPARC III

Family

ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW Secondary address space, block

load/store, little endian

9

FA–

FF

— — Implementation-dependent,

Unassigned

1

1. Implementation-dependent, unassigned ASIs may be used in future architectures and processors.

2. Use of these ASIs causes access checks to be performed as if the memory access instruction were issued while PSTATE.PRIV = 0 (that is, in nonprivileged

mode) and directed towards the corresponding address space.

3. If the memory page being accessed is privileged, then a data_access_exception occurs.

4. Accessible as 8-bit, 16-bit, 32-bit, and 64-bit.

5. Use in LDSTUBA, SWAPA, and CAS(X)A instructions.

6. Use in load instructions only; others cause a data_access_exception.

7. Use in LDDA instruction only; others cause a data_access_exception.

8. Do not use; reserved for factory use (part number, laser programming).

9. Use in store instructions only; others cause a data_access_exception.

10. Use in LDDFA and STDFA instructions only; others cause a data_access_exception. Align to 64-byte boundary. See Section 8.4.1, “Block Load and Block

Store ASIs” for more details.

11.ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SEONDARY_NOFAULT{_LITTLE} refer to the same address spaces as ASI_PRIMARY{_LITTLE}

and ASI_SECONDARY{_LITTLE}, respectively.

12.Use in STDFA instruction only; others cause a data_access_exception. Align to 8-byte boundary. See Section 8.4.2, “Partial Store ASIs” for more details.

13.Use in LDDFA and STDFA instructions only; others cause a data_access_exception. Align to 8-bit or 16-bit boundary as required by Section 8.4.3, “Short

Floating-Point Load and Store ASIs.”

TABLE 8-4 ASI Definitions (12 of 12)

Value
(hex) Processor

ASI Name
(Suggested Macro Syntax) Type

VA
(hex) Description

See
Foot
note
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8.7.1 ASI 0x14 (ASI_PHYS_USE_EC)

When this ASI is specified in any memory access instructions, hardware does the following:

• VA is passed to PA, and CONTEXT values are disregarded.

• Address masking is ignored (PSTATE.AM) and the VA is used. The I-MMU passes the

lower 43 bits of the VA through to create a 43-bit PA.

• Memory access behaves as if its byte order is big-endian.

Even if data address translation is disabled, the access with this ASI is still a cacheable

access.

8.7.2 ASI 0x15 (ASI_PHYS_BYPASS_EC_WITH_EBIT)

Accesses with this ASI bypass the L2-cache and behave as if the side-effect bit (E bit) is set.

When this ASI is specified in any memory access instructions, hardware does the following:

• VA is passed to PA, and CONTEXT values are disregarded.

• Address masking is ignored(PSTATE.AM) and the VA is used. The I-MMU passes the

lower 43 bits of the VA through to create a 43-bit PA.

• Memory access behaves as if its byte order is big-endian.

8.7.3 ASI 0x1C (ASI_PHYS_USE_EC_LITTLE)

Accesses with this ASI are cacheable. This ASI is a little-endian version of ASI 1416. When

this ASI is specified in any memory access instructions, hardware does the following:

• VA is passed to PA, and CONTEXT values are disregarded.

• Address masking is ignored (PSTATE.AM) and the VA is used. The I-MMU passes the

lower 43 bits of the VA through to create a 43-bit PA.

• Memory access behaves as if its byte order is little-endian.

8.7.4 ASI 0x1D (ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE)

Accesses with this ASI bypass the L2-cache and behave as if the side-effect bit (E bit) is set.

This ASI is a little-endian version of ASI 1516. When this ASI is specified in any memory

access instructions, hardware does the following:

• VA is passed to PA, and CONTEXT values are disregarded.

• Address masking is ignored (PSTATE.AM) and the VA is used. The I-MMU passes the

lower 43 bits of the VA through to create a 43-bit PA.
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• Memory access behaves as if its byte order is little-endian.

8.7.5 ASIs 0x24 and 0x2C (Load Quadword ASIs)

ASIs 2416 (ASI_NUCLEUS_QUAD_LDD) and 2C16 (ASI_NUCLEUS_QUAD_LDD_LITTLE)

exist for use with the LDDA instruction as Load Quadword operations.

When these ASIs are used with LDDA for Load Quadword, a mem_address_not_aligned
exception is generated if the operand address is not 16-byte aligned.

If these ASIs are used with any other Load Alternate instruction or any Store Alternate

instruction, a data_access_exception is always generated and mem_address_not_aligned is

not generated.
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CHAPTER 9

Memory Models

The SPARC V9 architecture is a model that specifies the behavior observable by software on

SPARC V9 systems. Therefore, access to memory can be implemented in any manner, as

long as the behavior observed by software conforms to that of the models described in the

following:

• Chapter 8 of The SPARC Architecture Manual, Version 9

• Appendix D of The SPARC Architecture Manual, Version 9

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). UltraSPARC III Cu

processors implements TSO, the strongest of the memory models defined by SPARC V9. By

implementing TSO, software written for any memory model (TSO, PSO, and RMO) executes

correctly on the UltraSPARC III Cu processor.

This chapter departs from the organization of the memory models described in The SPARC
Architecture Manual, Version 9. It describes the characteristics of the memory models for the

UltraSPARC III Cu processor in sections organized as follows:

• UltraSPARC III Cu TSO Behavior

• Memory Location Identification

• Memory Accesses and Cacheability

• Memory Synchronization

• Atomic Operations

• Non-Faulting Load

• Prefetch Instructions

• Block Loads and Stores

• I/O and Accesses with Side-Effects

• UltraSPARC III Cu Internal ASIs

• Store Compression

• Read-After-Write (RAW) Bypassing
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9-
9.1 UltraSPARC III Cu TSO Behavior

The UltraSPARC III Cu processor implements the TSO memory model. The current memory

model is indicated in the PSTATE.MM field and is set to TSO (PSTATE.MM = 0).

In some cases, the UltraSPARC III Cu processor implements stronger ordering than the TSO

requirements. The significant cases are listed below:

• A MEMBAR #Lookaside is not needed between a store and a subsequent load to the

same non-cacheable address.

• Accesses with the TTE.E bit set, such as those that have side-effects, are all strongly

ordered with respect to each other.

• An L2-cache or write cache update is delayed on a store hit until all previous stores reach

global visibility. For example, a cacheable store following a non-cacheable store will not

appear globally visible until the non-cacheable store has become globally visible; there is

an implicit MEMBAR #MemIssue between them.

9.2 Memory Location Identification

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit

(virtual) address. The 8-bit ASI can be obtained from an ASI register or included in a

memory access instruction. The ASI distinguishes among and provides an attribute to

different 64-bit address spaces. For example, the ASI is used by the MMU and memory

access hardware for control of virtual-to-physical address translations, access to

implementation-dependent control and data registers, and access protection. Attempts by

non-privileged software (PSTATE.PRIV = 0) to access restricted ASIs (ASI<7> = 0) cause a

privileged_action exception. See Chapter 8 “Address Space Identifiers” for details on ASIs.

9.3 Memory Accesses and Cacheability

Memory is logically divided into real memory (cached) and I/O memory (noncached with

and without side-effects) spaces. Real memory spaces can be accessed without side-effects.

For example, a read from real memory space returns the information most recently written.

In addition, an access to real memory space does not result in program-visible side-effects. In

contrast, a read from I/O space may not return the most recently written information and may

result in program-visible side-effects.
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9.3.1 Coherence Domains

Two types of memory operations are supported in the UltraSPARC III Cu processor:

cacheable and non-cacheable accesses, as indicated by the page translation (TTE.CP,

TTE.CV) of the MMU or by an ASI override.

SPARC V9 does not specify memory ordering between cacheable and non-cacheable

accesses. The UltraSPARC III Cu processor maintains TSO ordering between memory

references regardless of their cacheability.

9.3.1.1 Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have the

following properties:

• Data reside in real memory locations.

• Accesses observe supported cache coherency protocol(s).

• The unit of coherence is 64 bytes.

9.3.1.2 Non-Cacheable and Side-Effect Accesses

Accesses outside of the coherence domain are called non-cacheable accesses. Some of these

memory-mapped locations may have side-effects when accessed. They have the following

properties:

• Data might not reside in real memory locations. Accesses may result in

programmer-visible side-effects. An example is memory-mapped I/O control registers,

such as those in a UART.

• Accesses do not observe supported cache coherency protocol(s).

• The smallest unit in each transaction is a single byte.

Non-cacheable accesses with the TTE.E bit set (those having side-effects) are all strongly

ordered with respect to other non-cacheable accesses with the E bit set. In addition, store

compression is disabled for these accesses. Speculative loads with the E bit set cause a

data_access_exception trap (with SFSR.FT = 2, speculative load to page marked with

E bit).

Note – TTE.E bit comes from the page translation of the MMU or an ASI override.

Non-cacheable accesses with the TTE.E bit cleared (non-side-effect accesses) are processor

consistent and obey TSO memory ordering. In particular, processor consistency ensures that

a non-cacheable load that references the same location as a previous non-cacheable store will

load the data of the previous store. Store compression is supported. See Section 9.11 “Store

Compression” for details.
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Note – Side-effect, as indicated in TTE.E, does not imply noncacheability.

9.3.2 Global Visibility

A memory access is considered globally visible when one of the following events occurs:

• Read or write permission is granted for a cacheable transaction in scalable shared

memory (SSM) mode.

• The transaction request is issued for a non-cacheable transaction in SSM mode.

• The transaction request is issued when not in SSM mode.

9.3.3 Memory Ordering

To ensure the correct ordering between cacheable and non-cacheable domains, explicit

memory synchronization is needed in the form of MEMBAR instructions. CODE EXAMPLE 9-1

illustrates the issues involved in mixing cacheable and non-cacheable accesses.

CODE EXAMPLE 9-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:

While (1)

{

Store D1:data produced

1 MEMBAR #StoreStore (needed in PSO, RMO for SPARC V9 compliance)

Store F1:set flag

While F1 is set (spin on flag)

Load F1

2 MEMBAR #LoadLoad, #LoadStore (needed in RMO for SPARC V9
compliance)

Load D2

}

Process B:

While (1)

{

While F1 is cleared (spin on flag)

Load F1

2 MEMBAR #LoadLoad, #LoadStore (needed in RMO for SPARC-V9
compliance)

Load D1

Store D2
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9.4 Memory Synchronization

Processors always see their own normal loads and stores performed in order. TSO defines

how other processors may see the ordering of the loads and stores of a particular processor.

Memory synchronizations are used to force the ordering that other processors see beyond the

rules of TSO.

In some cases, memory synchronizations are required for deterministic behavior, even with

respect to the program’s own operations. This applies to memory operations outside of

normal cacheable loads and stores.

The UltraSPARC III Cu processor achieves memory synchronization through MEMBAR and

FLUSH. It provides MEMBAR (STBAR in SPARC V8) and FLUSH instructions for explicit

control of memory ordering in program execution. MEMBAR has several variations. All

MEMBARs are implemented in one of two ways in the UltraSPARC III Cu processor:

• As a NOP

• With MEMBAR #Sync semantics

Since the processor always executes with TSO memory ordering semantics, three of the

ordering MEMBARs are implemented as NOPs. TABLE 9-1 lists the MEMBAR implementations.

1 MEMBAR #StoreStore (needed in PSO, RMO for SPARC-V9 compliance)

Store F1:clear flag

}

TABLE 9-1 MEMBAR Semantics

MEMBAR Semantics

#LoadLoad NOP. All loads wait for completion of all previous loads.

#LoadStore NOP. All stores wait for completion of all previous loads.

#Lookaside #Sync. Wait until store buffer is empty.

#StoreStore, STBAR NOP. All stores wait for completion of all previous stores.

#StoreLoad #Sync. All loads wait for completion of all previous stores.

#MemIssue #Sync. Wait until all outstanding memory accesses complete.

#Sync #Sync. Wait for all outstanding instructions and all deferred errors.

CODE EXAMPLE 9-1 Memory Ordering and MEMBAR Examples (Continued)
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9.4.1 MEMBAR #Sync

Membar #Sync forces all outstanding instructions and all deferred errors to be completed

before any instructions after the MEMBAR are issued.

9.4.2 MEMBAR Rules

TABLE 9-2 and TABLE 9-3 summarize the cases where the programmer must insert a MEMBAR
to ensure ordering between two memory operations on the UltraSPARC III Cu processor.

Use TABLE 9-2 and TABLE 9-3 for ordering purposes only. Be sure not to confuse memory

operation ordering with processor consistency or deterministic operation; MEMBARs are

required for deterministic operation of certain ASI register updates.

Caution – The MEMBAR requirements for the UltraSPARC III Cu processor are weaker

than the requirements of SPARC V9. To ensure code portability across systems, use the

stronger of the MEMBAR requirements of SPARC V9.

Read the tables as follows: Read from row to column; the first memory operation in program

order in a row is followed by the memory operation found in the column. Two symbols are

used as table entries:

• # — No intervening operation is required because Fireplane-compliant systems

automatically order R before C.

• M — MEMBAR #Sync or MEMBAR #MemIssue or MEMBAR #StoreLoad

For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a

strong ordering is desired, the MEMBAR rules summarized in TABLE 9-2 reflect the

UltraSPARC III Cu processor’s hardware implementation.

TABLE 9-2 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:
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load # # # # # # # # # M M # M M

load from internal ASI # # # # # # # # # # # # # #

store M # # # # M # M # M M # M M
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When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE 9-3 reflect the UltraSPARC III Cu processor’s hardware

implementation.

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # M M # M M

load_nc_e # # # # # # # # # M M # M M

store_nc_e M # # # # # # M # M M # M M

load_nc_ne # # # # # # # # # M M # M M

store_nc_ne M # # # # M # M # M M # M M

bload M # M # M M M M M M M # M M

bstore M # M # M M M M M M M # M M

bstore_commit M # M # M M M M M M M # M M

bload_nc M # M # M M M M M M M # M M

bstore_nc M # M # M M M M M M M # M M

TABLE 9-3 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:
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load # # # # # # # # # # # # # #

load from internal ASI # # # # # # # # # # # # # #

store # # # # # # # # # M # # # #

TABLE 9-2 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong

Ordering (Continued)

From Row
Operation R:

To Column Operation C:
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9.4.3 FLUSH

FLUSH behaves like a MEMBAR with further restrictions. MEMBAR blocks execution of

subsequent instructions until all memory operations and errors are resolved. FLUSH is

similar with further behavior that all instruction fetch and instruction buffering operations are

also blocked.

9.5 Atomic Operations

The SPARC V9 architecture provides three atomic instructions to support mutual exclusion,

including:

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # # # # # #

load_nc_e # # # # # # # # # # # # # #

store_nc_e # # # # # # # # # M # # M #

load_nc_ne # # # # # # # # # # # # # #

store_nc_ne # # # # # # # # # M # # M #

bload # # # # # # # # # # # # # #

bstore # # # # # # # # # M # # # #

bstore_commit M # M # M M M M M M M # M M

bload_nc # # # # # # # # # # # # # #

bstore_nc # # # # # # # # # # # # M #

TABLE 9-3 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering (Continued)

From Row
Operation R:

To Column Operation C:
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• SWAP — Atomically exchanges the lower 32 bits in an integer register with a word in

memory. This instruction is issued only after store buffers are empty. Subsequent loads

interlock on earlier SWAPs.

• If a page is marked as virtually non-cacheable but physically cacheable (TTE.CV = 0 and

TTE.CP = 1), allocation is done to the L2-cache and W-cache only. This includes all of

the atomic-access instructions.

• LDSTUB — Behaves like a SWAP except that it loads a byte from memory into an integer

register and atomically writes all ones (FF16) into the addressed byte.

• Compare and Swap (CAS(X)A) — Combines a load, compare, and store into a single

atomic instruction. It compares the value in an integer register to a value in memory. If

they are equal, the value in memory is swapped with the contents of a second integer

register. If they are not equal, the value in memory is still swapped with the contents of

the second integer register, but is not stored. The L2-cache will still go into M-state, even

if there is no store.

All of these operations are carried out atomically; in other words, no other memory

operation can be applied to the addressed memory location until the entire

compare-and-swap sequence is completed.

These instructions behave like both a load and store access, but the operation is carried out

indivisibly. These instructions can be used only in the cacheable domain (not in

non-cacheable I/O addresses).

These atomic instructions can be used with the ASIs listed in TABLE 9-4. Access with a

restricted ASI in unprivileged mode (PSTATE.PRIV = 0) results in a privileged_action trap.
Atomic accesses with non-cacheable addresses cause a data_access_exception trap (with

SFSR.FT = 4, atomic to page marked non-cacheable). Atomic accesses with unsupported

ASIs cause a data_access_exception trap (with SFSR.FT = 8, illegal ASI value or virtual

address).

Note – Atomic accesses with non-faulting ASIs are not allowed, because the latter have the

load-only attribute.

TABLE 9-4 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS (LITTLE) Restricted

ASI_AS_IF_USER_PRIMARY (LITTLE) Restricted

ASI_AS_IF_USER_SECONDARY (LITTLE) Restricted

ASI_PRIMARY (LITTLE) Unrestricted

ASI_SECONDARY (LITTLE) Unrestricted

ASI_PHYS_USE_EC (LITTLE) Restricted
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9.6 Non-Faulting Load

A non-faulting load behaves like a normal load, with the following exceptions:

• It does not allow side-effect access. An access with the TTE.E bit set causes a

data_access_exception trap (with SFSR.FT = 2, speculative load to page marked E bit).

• It can be applied to a page with the TTE.NFO (non-fault access only) bit set; other types

of accesses cause a data_access_exception trap (with SFSR.FT = 1016, normal access to

page marked NFO).

These loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE} or

ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a

data_access_exception trap (with SFSR.FT = 8, illegal RW).

When a non-faulting load encounters a TLB miss, the operating system should attempt to

translate the page. If the translation results in an error, then zero is returned and the load

completes silently.

Typically, optimizers use non-faulting loads to move loads across conditional control

structures that guard their use. This technique potentially increases the distance between a

load of data and the first use of that data, in order to hide latency. The technique allows more

flexibility in code scheduling and improves performance in certain algorithms by removing

address checking from the critical code path.

For example, when following a linked list, non-faulting loads allow the null pointer to be

accessed safely in a speculative, read-ahead fashion; the page at virtual address 016 can safely

be accessed with no penalty. The NFO bit in the MMU marks pages that are mapped for safe

access by non-faulting loads, but that can still cause a trap by other, normal accesses.

Thus, programmers can trap on wild pointer references — many programmers count on an

exception being generated when accessing address 016 to debug code — while benefiting

from the acceleration of non-faulting access in debugged library routines.

9.7 Prefetch Instructions

The UltraSPARC III Cu processor implements all SPARC V9 prefetch instructions except for

prefetch page. All prefetches check the L2-cache before issuing a system request for the

requested data. Prefetch instructions are a performance feature. Prefetch instructions do not

change the underlying memory model and do not have any effect from an architectural

standpoint.
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TABLE 9-5 describes different types of software prefetch instructions.

9.8 Block Loads and Stores

Block load and store instructions work like normal floating-point load and store instructions,

except that the data size (granularity) is 64 bytes per transfer.

Block loads and stores do not obey TSO. They do not even obey the processor’s consistency

rules without the correct use of MEMBARs. Section A.4 “Block Load and Block Store

(VIS I)” on page A-460 discusses block loads and stores in detail.

TABLE 9-5 Types of Software Prefetch Instructions

fcn
Value
(hex) Instruction Type

Prefetch (64 bytes of
data) into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC III Cu

00 Prefetch read many P-cache and

L2-cache

Weak No

01 Prefetch read once P-cache only Weak No

02 Prefetch write many L2-cache only Weak Yes

03 Prefetch write once1

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

L2-cache only Weak No

04 Reserved Undefined

05 −
0F

Reserved Undefined

10 Prefetch invalidate Invalidates a P-cache

line, no data is

prefetched.

N/A

11 −
13

Reserved Undefined

14 Same as fcn = 00 Weak2

2. These weak instructions may be implemented as strong in future implementations.

No

15 Same as fcn = 01 Weak2 No

16 Same as fcn = 02 Weak2 Yes

17 Same as fcn = 03 Weak2 No

18 −
1F

Reserved Undefined
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9.9 I/O and Accesses with Side-Effects

I/O locations might not behave with memory semantics. Loads and stores could have

side-effects; for example, a read access could clear a register or pop an entry off a FIFO. A

write access could set a register address port so that the next access to that address will read

or write a particular internal register. Such devices are considered order sensitive. Also, such

devices may only allow accesses of a fixed size, so store merging of adjacent stores or stores

within a 16-byte region would cause an error.

The UltraSPARC III Cu MMU includes an attribute bit in each page translation, TTE.E,

which when set signifies that this page has side-effects. Accesses other than block loads or

stores to pages that have this bit set exhibit the following behavior:

• Non-cacheable accesses are strongly ordered with respect to each other.

• Non-cacheable loads with the E bit set will not be issued to the system until all previous

control transfers are resolved.

• Non-cacheable store compression is disabled for E bit accesses.

• Exactly those E-bit accesses implied by the program are made in program order.

• Non-faulting loads are not allowed and cause a data_access_exception (with

SFSR.FT = 2, speculative load to page marked E bit).

• A MEMBAR may be needed between side-effect and non-side-effect accesses while in PSO

and RMO modes, for portability across SPARC V9 processors, as well as in some cases of

TSO.

9.9.1 Instruction Prefetch to Side-Effect Locations

The processor does instruction prefetching and follows branches that it predicts are taken.

Addresses mapped by the I-MMU can be accessed even though they are not actually

executed by the program. Normally, locations with side-effects or that generate timeouts or

bus errors are not mapped by the I-MMU, so prefetching will not cause problems.

When running with the I-MMU disabled, software must avoid placing data in the path of a

control transfer instruction target or sequentially following a trap or conditional branch

instruction. Data can be placed sequentially following the delay slot of a BA, BPA(p = 1),

CALL, or JMPL instruction. Instructions should not be placed closer than 256 bytes to

locations with side-effects.
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9.9.2 Instruction Prefetch Exiting Red State

Exiting RED_state by writing zero to PSTATE.RED in the delay slot of a JMPL
instruction is not recommended. A non-cacheable instruction prefetch may be made to the

JMPL target, which may be in a cacheable memory area. This situation can result in a bus

error on some systems and can cause an instruction access error trap. Programmers can mask

the trap by setting the NCEEN bit in the L2-cache Error Enable Register to zero, but doing so

will mask all uncorrectable error checking. Exiting RED_state with DONE, RETRY, or

with the destination of the JMPL non-cacheable will avoid the problem.

9.10 UltraSPARC III Cu Internal ASIs

ASIs in the ranges 3016–6F16 and 7216–7F16 are used for accessing internal states. Stores to

these ASIs do not follow the normal memory-model ordering rules. Correct operation can be

assured by adhering to the following requirements:

• A MEMBAR #Sync is needed after a store to an internal ASI other than MMU ASIs before

the point that side-effects must be visible. This MEMBAR must precede the next load or

non-internal store. To avoid data corruption, the MEMBAR must also occur before the delay

slot of a delayed control transfer instruction of any type.

• Alternatively, a MEMBAR #Sync could be inserted at the beginning of any vulnerable trap

handler. “Vulnerable” trap handlers are those which contain one or more LDXAs from any

internal ASI (ASIs 0x30-0x6F, 0x72-0x77, and 0x7A-0x7F). However, this may cause

unacceptable performance reduction in some trap handlers, so this is not the preferred

alternative.

• A FLUSH, DONE, or RETRY is needed after a store to an internal I-MMU ASI (ASI

5016 −5216, 5416–5F16), an I-cache ASI (6616–6F16), or the IC bit in the DCU Control

Register, prior to the point that side-effects must be visible. A store to D-MMU registers

other than the context ASIs can use a MEMBAR #Sync. To avoid data corruption, the

MEMBAR must also occur before the delay slot of a delayed control transfer instruction of

any type.

• If the store is to an I-MMU state register (ASI = 5016, virtual address = 1816), then the

FLUSH, DONE, or RETRY must immediately follow the store. Furthermore, one of the

following must be true, to prevent an intervening I-TLB miss from causing stale data to be

stored:

■ The code must be locked down in the I-TLB, or

■ The store and the subsequent FLUSH, DONE, or RETRY should be kept on the same

8 KB page of instruction memory.
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9.11 Store Compression

Consecutive non-side-effect, non-cacheable stores can be combined into aligned 16-byte

entries in the store buffer to improve store bandwidth. Cacheable stores will naturally

coalesce in the write cache rather than be compressed in the store buffer. Non-cacheable

stores can be compressed only with adjacent non-cacheable stores. To maintain strong

ordering for I/O accesses, stores with the side-effect attribute (E bit set) cannot be combined

with any other stores.

A 16-byte non-cacheable merge buffer is used to coalesce adjacent non-cacheable stores.

Non-cacheable stores will continue to coalesce into the 16-byte buffer until one of the

following conditions occurs:

• The data is pulled from the non-cacheable merge buffer by the target device.

• The store would overwrite a previously written entry (a valid bit is kept for each of the

16 bytes).

Caution – This behavior is unique to the UltraSPARC III Cu processor and differs from

previous UltraSPARC implementations.

• The store is not within the current address range of the merge buffer (within the 16-byte

aligned merge region).

• The store is a cacheable store.

• The store is to a side-effect page.

• MEMBAR #Sync

9.12 Read-After-Write (RAW) Bypassing

Load data can be bypassed from previous stores before they become globally visible (data for

load from the store queue). This is specifically allowed by the TSO memory model. Data for

all types of loads cannot be bypassed from all types of stores.

All types of load instructions can get data from the store queue, except the following load

instructions:

• Signed loads (ldsb, ldsh, ldsw)

• Atomics

• Load double to integer register file (ldd)

• Quad loads to integer register file
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• Load from FSR register

• Block loads

• Short floating-point loads

• Loads from internal ASIs

All types of store instructions can give data to a load, except the following store instructions:

• Floating-point partial stores

• Store double from integer register file (std)

• Store part of atomic

• Short FP stores

• Stores to pages with side-effect bit set

• Stores to non-cacheable pages

9.12.1 RAW Bypassing Algorithm

The algorithm used in the UltraSPARC III Cu processor for RAW bypassing is as follows:

if ( (Load/store access the same physical address) and
(Load/store endianness is the same) and
(Load/store size is the same) and
(Load data can get its data from store queue) and
(Store data in store can give its data to a load) and
(Load hits in either D-cache or P-cache)

)
then

Load will get its data from store queue

else
Load will get its data from the memory system

endif
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9.12.2 RAW Detection Algorithm

When data for a load cannot be bypassed from previous stores before they become globally

visible (store data is not yet retired from the store queue), the load is recirculated after the

RAW hazard is removed. The following conditions can cause this recirculation:

• Load data can be bypassed from more than one store in the store queue.

• The load’s VA<12:0> overlaps a store’s VA<12:0> and store data cannot be bypassed from

the store queue.

• The load’s VA<12:5> matches a store’s VA<12:5> and the load misses the D-cache.

• Load is from side-effect page (page attribute E = 1) when the store queue contains one or

more stores to side-effect pages.
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CHAPTER 10

Caches and Cache Coherency

This chapter describes the use of caches, and contains these sections:

• Cache Organization

• Cache Flushing

• Bypassing the D-Cache

• Controlling P-cache

• Coherence Tables

10.1 Cache Organization

In this section we describe two cache organizations: virtual indexed, physical tagged caches

and physical indexed, physical tagged caches.

10.1.1 Virtual Indexed, Physical Tagged Caches (VIPT)

The Data Cache (D-cache) is virtual-indexed, physical-tagged (VIPT). Virtual addresses are

used to index into the cache tag and data arrays while accessing the D-MMU, (i.e. D-TLBs).

The resulting tag is compared against the translated physical address to determine cache hit.

A side-effect inherent in a virtual-indexed cache is address aliasing. This issue is addressed

in Section 10.2.1 “Address Aliasing Flushing” on page 10-230.

10.1.1.1 Data Cache (D-Cache)

The Data Cache (D-cache) is a write-through, non-allocating on write miss, 64 KB, four-way

associative cache with a 32-byte line.
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Data accesses bypass the D-cache when the D-cache enable bit in the DCU Control Register

is clear. If the DM bit in the DCU Control Register is clear, the cacheability is determined by

the CP and CV bits. If the access is mapped by the D-MMU as non-virtual-cacheable, then

load misses will not allocate in the D-cache.

Note – A non-virtual-cacheable access may access data in the D-cache from an earlier

cacheable access to the same physical block, unless the D-cache is disabled. Software must

flush the D-cache when changing a physical page from cacheable to non-cacheable (see 10.2,

“Cache Flushing”).

10.1.2 Physical Indexed, Physical Tagged Caches (PIPT)

10.1.2.1 Instruction Cache (I-Cache)

The Instruction Cache (I-cache) is a 32KB pseudo four-way set-associative, write-invalidate

cache with 32-byte lines. Instruction fetches bypass the I-cache when any of the following

occur:

• I-cache enable or I-MMU enable bits in the DCU Control Register are clear

• CP bit in the DCU Control Register is clear

• Processor is in RED mode, or

• Fetch is mapped by the I-MMU as not physically cacheable.

The I-cache snoops stores from other processors or DMA transfers, as well as stores in the

same processor and block commit store.

The FLUSH instruction is not required to maintain coherency. Stores and block store

commits invalidate the I-cache, but do not flush instructions that have already been

prefetched into the pipeline. A FLUSH instruction should be used to flush the pipeline in the

case of self modifying code.

If a program changes I-cache mode to I-cache-ON from I-cache-OFF, then the next

instruction fetch always causes an I-cache miss even if it is supposed to hit. This rule applies

even when the DONE instruction turns on the I-cache by changing its status from

RED_state to normal mode (see CODE EXAMPLE 10-1).

CODE EXAMPLE 10-1 I-Cache Mode Example

(in RED_state)

setx 0x37e0000000007, %g1, %g2
stxa %g2,[%g0]0x45 // Turn on I-cache when processor

// returns normal mode.
done // Escape from RED_state.
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(back to normal mode)

nop // 1st instruction; this always causes an I-cache miss.

10.1.2.2 Prefetch Cache (P-Cache)

The Prefetch Cache (P-cache) is a write-invalidate, 2KB, 4-way associative cache with a 64-

byte line and two 32-byte sub-blocks. It is physically indexed and physically tagged and

never contains modified data. The P-cache is filled by the following:

• Floating Point (FP) Load Miss of D-cache and P-cache

• Hardware or Software Prefetch

The PREFETCH fcn=16 instruction can be used to invalidate, or flush a P-cache entry.

The cache line size is 64 bytes with 32-byte sub-blocks. Prefetches always generate 64-byte

fills. An FP Load Miss generates 32-byte fills. The P-cache is globally invalidated on context

changes and MMU updates. Individual lines are invalidated on store hits. There is a

diagnostic interface (ASI_PCACHE_TAG) that allows privileged software to invalidate

entries in P-cache.

The P-cache is globally invalidated if any of the following conditions occur:

• The context registers are written.

• There is a demap operation in the DMU.

• The DMU is turned on or off.

Individual lines are invalidated on any of the following conditions:

• A store hits

• An external snoop hit

• Use of software prefetch invalidate function (PREFETCH with fcn = 16)

The P-cache is used for software prefetch instructions as well as an autonomous hardware

prefetch from the L2-cache. This cache never needs to be flushed (not even for address

aliases).

Note – From a load’s perspective, the P-cache is a virtually indexed, virtually tagged

(VIVT) cache.

10.1.2.3 Second Level and Write Caches (L2-Cache, W-Cache)

The level-2 caches — the L2-cache and the W-cache — are physical indexed, physical

tagged (PIPT). These caches have no references to virtual address and context information.

The operating system needs no knowledge of such caches after initialization, except for

stable storage management and error handling.
Chapter 10 Caches and Cache Coherency 10-227



Instruction fetches bypass the L2-cache in the following cases:

• The I-MMU is disabled and the CP bit in the DCU Control Register is not set.

• The processor is in RED_state.

• The access is mapped by the I-MMU as not physically cacheable.

Data accesses bypass the L2-cache if the D-MMU enable bit in the DCU Control Register is

clear or if the access is mapped by the D-MMU as not physically cacheable (unless

ASI_PHYS_USE_EC is used).

The system must provide a non-cacheable scratch memory for use by the booting code until

the MMUs are enabled.

The L2-cache is a unified, write-back, allocating, one- or two-way set-associative cache. Its

size ranges from 1 MB to 8 MB. Its line size varies from 64 bytes to 512 bytes with 64-byte

sub-blocks. Fills are done at a sub-block/64-byte granularity. Allocations and evictions are

done at a line granularity. See TABLE 10-1 for description on sub-block and line sizes. L2-

cache uses a pseudo-random replacement policy. L2-cache cannot be disabled by software.

Block loads and block stores, which load or store a 64-byte block of data between memory

and the Floating Point Register file, do not allocate into the L2-cache, to avoid pollution.

Block store commits invalidate the L2-cache. Prefetch Read Once instructions, which load a

64-byte block of data into the P-cache, do not allocate into the L2-cache. All other level-1

cache fills also allocate in L2-cache.

The W-cache is a 2-KB, 4-way associative cache, with 64 bytes per line and 32-byte sub-

blocks. The W-cache is included in the L2-cache, and flushing the L2-cache ensures that the

W-cache has also been flushed. The W-cache only contains those bytes of data written by

stores and a per byte dirty (valid) bit is maintained. All cacheable stores allocate a 64-byte

line in the W-cache. W-cache may contain newer data than in L2-cache. All data accesses to

L2-cache must access the W-cache in parallel and merge at a byte granularity if the W-cache

has newer data. On eviction, the W-cache writes back to the L2-cache.

10.1.2.4 L2-cache Replacement Policy

CODE EXAMPLE 10-2 reflects the cache replacement algorithm when all 4 ways of the

L2-cache are active.

CODE EXAMPLE 10-2 L2-cache Replacement Policy

TABLE 10-1 External Cache Organizations

External Cache Size Line Size 64-Byte Sublines per line

1 MB 64 bytes 1

4 MB 256 bytes 4

8 MB 512 bytes 8
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module lfsr (rand_out, event_in, reset, clk);

output  [3:0]   rand_out;
input   event_in;
input   reset;
input   clk;

wire [4:0] lfsr_reg;

dffe #(5) ff_lfsr (lfsr_reg, lfsr_in, ~reset, event_in, clk);

// 01010 is the non-reachable state for this implementation.

wire [4:0] lfsr_in = {~lfsr_reg[0],

                       lfsr_reg[0] ^ lfsr_reg[4],

                       lfsr_reg[3],

                       lfsr_reg[0] ^ lfsr_reg[2],

                       lfsr_reg[0] ^ lfsr_reg[1]};

// update on reads that miss the L2-cache

assign event_in = ec_lt_cs_r_d1 & ~ec_lt_we_r_d1 &
~lt_ec_hit_miss_d1;

dffire #(5) f_lfsr (lfsr_reg, lfsr_in, reset, event_in, clk);

assign rand_out = { lfsr_reg[1] & lfsr_reg[0],

                    lfsr_reg[1] & ~lfsr_reg[0],

                   ~lfsr_reg[1] & lfsr_reg[0],

                   ~lfsr_reg[1] & ~lfsr_reg[0]};

endmodule

10.2 Cache Flushing

Data in the write-invalidate or write-through caches can be flushed by invalidating the entry

in the cache. Modified data in the L2-cache and W-cache must be written back to memory

when flushed.

Cache flushing is required in the following cases:
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• A D-cache flush is needed when a physical page is changed from (virtually) cacheable to

(virtually) non-cacheable, or an illegal address aliasing is created (see 10.2.1, “Address

Aliasing Flushing”). This is done using ASI 0x42, ASI_DCACHE_INVALIDATE, which

specifies a physical address to flush, like for a system bus snoop.

• L2-cache flush is needed for stable storage. This is done with either a displacement flush

(using ASI_ECACHE_TAG) or a store with ASI_BLK_COMMIT. Flushing the L2-cache

will flush the corresponding blocks from W-cache. (See 10.2.2, “Committing Block Store

Flushing”).

• L2-cache, D-cache, P-cache, and I-cache flushes may be required when an ECC error

occurs on a read from the memory or the L2-cache. When an ECC error occurs invalid

data may be written into one of the caches, the cache lines must be flushed to prevent

further corruption of data.

Note – When flushing a single 64-byte line, with a given PA, there are sixteen locations that

must be flushed in the D-cache. This is because it has 32-byte lines (2 places), one VA index

bit (2 places), and the PA can simultaneously exist in all 4 ways of a set (4 places).

10.2.1 Address Aliasing Flushing

A side-effect inherent in a virtual indexed cache is illegal address aliasing. Aliasing occurs

when multiple virtual addresses map to the same physical address.

Caution – Since the D-cache is indexed with the virtual address bits (specifically bit 13 of

the address) and is larger than the minimum page size, it is possible for the different aliased

virtual addresses to end up in different cache blocks. Such aliases are illegal because updates

to one cache block will not be reflected in aliased cache blocks. (There are corner cases

where the same cache block can end up in different ways, within the same set (index). The

hardware will update all ways within a set that have the line.)

Normally, software avoids illegal aliasing by forcing aliases to have the same address bits

(virtual color) up to an alias boundary. The minimum alias boundary is 16KB. This size may

increase in future designs.

When the alias boundary is violated, software must flush the D-cache if the page was virtual

cacheable. In this case, only one mapping of the physical page can be allowed in the D-MMU

at a time.

Alternatively, software can turn off virtual caching of illegally aliased pages. This allows

multiple mapping of the alias to be in the D-MMU and avoids flushing the D-cache each time

a different mapping is referenced.
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Note – A change in virtual color when allocating a free page does not require a D-cache

flush, since the D-cache is write-through.

10.2.2 Committing Block Store Flushing

Block store commit does a 64-byte store from Floating Point Registers directly to the

memory and invalidates any caches in the system. Block store commit exists outside Total
Store Order (TSO).

For example, stable storage must be implemented by software cache flush. Examples of

stable storage are battery-backed memory and a transaction log. Data which is present and

modified in the L2-cache or the Write Cache must be written back to the stable storage.

Two ASIs (ASI_BLK_COMMIT_PRIMARY and ASI_BLK_COMMIT_SECONDARY)

perform these writebacks efficiently when software can ensure exclusive write access to the

block being flushed. These ASIs writeback the data from the Floating Point Registers to

memory and invalidate the entry in the cache. The data in the Floating Point Registers must

first be loaded by a block load instruction. A MEMBAR #Sync instruction can be used to

ensure that the flush is complete.

10.2.3 Displacement Flushing

Cache flushing can also be accomplished by a displacement flush. This procedure reads a

range of addresses that map to the corresponding cache line being flushed, forcing out

modified entries in the local cache. Ensure that the range of read-only addresses is mapped in

the MMU before starting a displacement flush; otherwise, the TLB miss handler may put new

data into the caches.

Note – Diagnostic ASI accesses to the L2-cache can be used to invalidate a line, but they

are not an alternative to displacement flushing. Modified data in the L2-cache will not be

written back to memory when these ASI accesses are used.

10.3 Bypassing the D-Cache

D-cache can return stale data if CP==1, CV==0 is used to bypass the cache, after use of

CP==1 and CV==1, for loads and stores to a particular address.
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D-cache should be flushed, after mixing use of any CP/CV settings for a physical address,

including cacheable (DRAM) and non-cacheable (I/O) physical addresses.

The term "virtually non-cacheable" refers to the "non-D-cacheable" CP==1, CV==0 case, as

opposed to the more common use of “non-cacheable” to describe I/O or graphics related

physical addresses

• CP == 1, CV == 1: Cacheable, Virtually-cacheable

• CP == 1, CV == 0: Cacheable, Virtually-non-cacheable (ASI_PHYS_USE_EC has

this effect)

• CP == 0, CV == 1: P-cache only

• CP == 0, CV == 0: Non-cacheable

Only two indexes in the D-cache need be flushed for each 32-byte aligned physical address:

• {VA[13] == 0, PA[12:5]}, and

• {VA[13] == 1, PA[12:5]}

Note – The behavior of a load or store instruction using ASI 0x14 (ASI_PHYS_USE_EC)

that hits on the D-cache is not defined.

10.4 Controlling P-cache

This section clarifies the use of DCR.PE, DCR.HPE, and DCR.SPE bits.

Note – Block loads do not cause installs into the P-cache. They are also not allowed to hit

on the P-cache and, therefore, never trigger hardware prefetch.

Non-cacheable address space never installs in P-cache or L2-cache.

• PE = 0, HPE = x, SPE = x

- No Hardware prefetches, no Software prefetches.

- No FP load miss data (32 bytes) installed from L2-cache to P-cache.

- All P-cache references treated as miss.

• PE = 1, HPE = 0, SPE = 0

- No Hardware prefetch can work.

- None of the software prefetches work.

- No FP load miss data (32 bytes) installed in P-cache.

- FP loads will be checked for P-cache hit/miss.
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• PE = 1, HPE = 1, SPE = 0

- Hardware prefetches can work

- None of the software prefetches can work.

- FP load miss data (32 bytes) can be installed in P-cache.

- P-cache references (FP load) will be checked for hit/miss

• PE=1, HPE=0, SPE=1

- No Hardware prefetches.

- All Software prefetches can work.

- No FP load miss data (32 bytes) installed in P-cache.

- FP loads will be checked for P-cache hit/miss.

• PE = 1, HPE = 1, SPE = 1

- Hardware prefetches can work.

- All Software prefetches can work.

- FP load miss data (32 bytes) will be installed in P-cache.

- FP loads will checked for P-cache hit/miss.

Note – The configuration PE = 1, HPE = 1, and SPE=1 is not supported in the

UltraSPARC III Cu processor. The use of this mode may cause data in the P-cache to become

incoherent with the system.

10.5 Coherence Tables

The set of tables in this section describes the cache coherence protocol that governs the

behavior of the processor on the interface bus.

10.5.1 Processor State Transition and the Generated

Transaction

Tables in this section summarize the following:

• Hit/Miss, State Change, and Transaction Generated for Processor Action (TABLE 10-2)

• Combined Tag/MTag States (TABLE 10-3)

• Derivation of DTags, CTags, and MTags from Combined Tags (TABLE 10-4)
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TABLE 10-2 Hit/Miss, State Change, and Transaction Generated for Processor Action

Combined
State MODE

Processor action

Load
Store/
Swap

Block
Load

Block
Store

Block
Store
Commit

Write
Prefetch

I ~SSM Miss:

RTS

Miss:

RTO

Miss :

RS

Miss:

WS

Miss:

WS

Miss:

RTO

SSM &

LPA

Miss:

RTS

Miss:

RTO

Miss:

RS

Miss:

R_WS

Miss:

R_WS

Miss:

RTO

SSM &

LPA &

retry

Mtag

miss:

R_RTS

Mtag

miss:

R_RTO

Mtag

miss:

R_RS

Invalid Invalid

MTag

Miss:

R_RTO

SSM &

~LPA

Miss:

R_RTS

Miss:

R_RTO

Miss:

R_RS

Miss:

R_WS

Miss:

R_WS

Miss:

R_RTO

E ~SSM Hit Hit:

E→M

Hit Hit:

E→M

Hiss:

WS

Hit

SSM &

LPA

Hit Hit:

E→M

Hit Hit:

E→M

Miss:

R_WS

Hit

SSM &

LPA &

retry

Invalid

SSM &

~LPA

Hit Hit:

E→M

Hit Hit:

E→M

Miss:

R_WS

Hit

S ~SSM Hit Miss:

RTO

Hit Miss:

WS

Miss:

WS

Hit

SSM &

LPA

Hit MTag

miss:

RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit

SSM &

LPA &

retry

Invalid

MTag

Miss:

R_RTO

Invalid Invalid Invalid Invalid

SSM &

~LPA

Hit MTag

Miss:

R_RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit
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O ~SSM Hit Miss:

RTO

Hit Miss:

WS

Miss:

WS

Hit

SSM &

LPA

Hit MTag

Miss:

RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit

SSM &

LPA &

retry

Invalid

MTag

Miss:

R_RTO

Invalid Invalid Invalid Invalid

SSM &

~LPA

Hit MTag

Miss:

R_RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit

Os (Legal

only in SSM

mode)

~SSM

Invalid

SSM &

LPA

Hit MTag

Miss:

R_RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit

SSM &

LPA &

retry

Invalid

MTag

Miss:

R_RTO

Invalid Invalid Invalid Invalid

SSM &

~LPA

Hit MTag

Miss:

R_RTO

Hit Miss:

R_WS

Miss:

R_WS

Hit

M ~SSM Hit Hit Hit Hit Miss:

WS

Hit

SSM &

LPA

Hit Hit Hit Hit Miss:

R_WS

Hit

SSM &

LPA &

retry

Invalid

SSM &

~LPA

Hit Hit Hit Hit Miss:

R_WS

Hit

TABLE 10-2 Hit/Miss, State Change, and Transaction Generated for Processor Action

Combined
State MODE

Processor action

Load
Store/
Swap

Block
Load

Block
Store

Block
Store
Commit

Write
Prefetch
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10.5.2 Snoop Output and Input

TABLE 10-5 summarizes snoop output and DTag transition; TABLE 10-6 summarizes snoop

input and CIQ operation queueing.

TABLE 10-3 Combined Tag/MTag States

MTag State: CTag State gI gS gM

cM I Os M

cO I Os O

cE I S E

cS I S S

cI I I I

TABLE 10-4 Deriving DTags, CTags, and MTags from Combined Tags

Combined Tags (CCTags) DTag CTag MTag

I dI cI gI

E dS cE gM

S dS cS gS

O dO cO gM

Os dO cO gS

M dO cM gM

TABLE 10-5 Snoop Output and DTag Transition (1 of 4)

Snooped Request DTag State
Shared
Output

Owned
Output

Error
Output

Next
DTag
State Action for Snoop Pipeline

own RTS (for data) dI 0 0 0 dT Own RTS wait data

dS 1 0 1 dS Error

dO 1 0 1 dO Error

dT 1 0 1 dT Error

own RTS (for instructions) dI 0 0 0 dS Own RTS instruction wait data

dS 1 0 1 dS Error

dO 1 0 1 dO Error

dT 1 0 1 dT Error
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foreign RTS dI 0 0 dI None

dS 1 0 dS None

dO 1 1 dO Foreign RTS copyback

dT 1 0 dS None

own RTO dI 0 0 dO Own RTO wait data

dS & ~SSM 1 1 dO Own RTO no data

dS & SSM 0 0 dO Own RTO wait data

dO 1 1 dO Own RTO no data

dT 1 1 1 dO Error

foreign RTO dI 0 0 dI None

dS 0 0 dI Foreign RTO invalidate

dO 0 1 dI Foreign RTO copyback-invalidate

dT 0 0 dI Foreign RTO invalidate

own RS dI 0 0 dI Own RS wait data

dS 0 0 1 dS Error

dO 0 0 1 dO Error

dT 0 0 1 dT Error

foreign RS dI 0 0 dI None

dS 0 0 dS None

dO 0 1 dO Foreign RS copyback-discard

dT 0 0 dT None

own WB dI 0 1 dI Own WB (cancel)

dS 0 1 dI Own WB (cancel)

dO 0 0 dI Own WB

dT 0 1 1 dI Error

foreign WB dI 0 0 0 dI None

dS 0 0 0 dS None

dO 0 0 0 dO None

dT 0 0 0 dT None

TABLE 10-5 Snoop Output and DTag Transition (2 of 4)

Snooped Request DTag State
Shared
Output

Owned
Output

Error
Output

Next
DTag
State Action for Snoop Pipeline
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foreign RTSM dI 0 0 dI None

dS 0 0 dS Foreign RTSM

dO 0 1 dS fRTSM copyback (if cacheline is

not in the W-cache)

dO 0 1 dI fRTSM copyback (if cacheline is

in the W-cache)

dT 0 0 dS Foreign RTSM

own RTSR (issued by SSM

device)

dI 0 0 dO Own RTSR wait data

dS 0 0 0 dO Own RTSR wait data

dO 0 0 1 dO Own RTSR wait data, Error

dT 0 0 1 dT Own RTSR wait data, Error

foreign RTSR dI 0 0 dI None

dS 1 0 dS None

dO 1 1 dS Foreign RTSR

dT 1 0 dS None

own RTOR (issued by

SSM device)

dI 0 0 dO Own RTOR wait data

dS 0 0 dO Own RTOR wait data

dO 0 0 dO Own RTOR wait data

dT 0 0 1 dO Error

foreign RTOR dI 0 0 dI None

dS 0 0 dI Foreign RTOR invalidate

dO 0 0 dI Foreign RTOR invalidate

dT 0 0 dI Foreign RTOR invalidate

own RSR dI 0 0 dI Own RSR wait data

dS 0 0 1 dS Error

dO 0 0 1 dO Error

dT 0 0 1 dT Error

foreign RSR dI 0 0 dI None

dS 0 0 dS None

dO 0 0 dO None

dT 0 0 dT None

TABLE 10-5 Snoop Output and DTag Transition (3 of 4)

Snooped Request DTag State
Shared
Output

Owned
Output

Error
Output

Next
DTag
State Action for Snoop Pipeline
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own WS dI 0 0 dI Own WS

dS 0 0 dI Own invalidate WS

dO 0 0 dI Own invalidate WS

dT 0 0 dI Own invalidate WS

foreign WS dI 0 0 dI None

dS 0 0 dI Invalidate

dO 0 0 dI Invalidate

TABLE 10-6 Snoop Input and CIQ Operation Queued

Action from Snoop Pipeline
Shared
Input

Owned
Input Error (out) Operation Queued in CIQ

own RTS wait data 1 X RTS Shared

0 0 RTS ~Shared

0 1 1 RTS Shared, Error

own RTS inst wait data X X RTS Shared

foreign RTS copyback X 1 Copyback

X 0 1 Copyback, Error

own RTO no data 1 X RTO nodata

0 X 1 RTO nodata, error

own RTO wait data 1 X 1 RTO data, error

0 X RTO data

foreign RTO invalidate X X Invalidate

foreign RTO copyback-invalidate X 0 1 Copyback-invalidate, Error

0 1 Copyback-invalidate

1 1 Invalidate

own RS wait data X X RS data

foreign RS copyback-discard X 0 1 Error

X 1 Copyback-discard

foreign RTSM copyback X 0 1 RTSM copyback, Error

X 1 RTSM copyback

own RTSR wait data 1 X RTSR shared

TABLE 10-5 Snoop Output and DTag Transition (4 of 4)

Snooped Request DTag State
Shared
Output

Owned
Output

Error
Output

Next
DTag
State Action for Snoop Pipeline
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10.5.3 Transaction Handling

Tables in this section summarize handling of the following:

• Transactions at the head of CIQ (TABLE 10-7)

• No snoop transactions (TABLE 10-8)

• Transactions internal to the UltraSPARC III Cu processor (TABLE 10-9)

0 X RTSR~shared

own RTOR wait data X X RTOR data

foreign RTOR invalidate X X Invalidate

own RSR X X RS data

own WS X X Own WS

own WB X X Own WB

own invalidate WS X X Own invalidate WS

invalidate X X Invalidate

TABLE 10-7 Transaction Handling at Head of CIQ (1 of 3)

Operation at Head of CIQ CCTag MTag (in/out) Error Retry Next CCTag

RTS Shared I gM (in) S

gS (in) S

gI (in) 1 I

M,O, E,S,Os X 1

RTS ~ Shared I gM (in) E

gS (in) S

gI (in) 1 I

M,O, E,S,Os X (in) 1

RTSR Shared I gM (in) O

gS (in) Os

gI (in) 1 1 I

M,O, E,S,Os X 1

RTSR ~ Shared I gM (in) M

gS (in) Os

TABLE 10-6 Snoop Input and CIQ Operation Queued (Continued)

Action from Snoop Pipeline
Shared
Input

Owned
Input Error (out) Operation Queued in CIQ
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gI (in) 1 1 I

M, O, E, S, Os X (in) 1

RTO nodata I, M, E, Os None 1

O, S None M

RTO data and SSM M, E, O, Os, S X (in) 1

I gM (in) M

gS (in) 1 Os

gI (in) 1 I

RTO data and SSM M, E, Os, O X(in) 1

I, S gM(in) M

gS(in) 1 Os

gI(in) 1 I

RTOR data M, E X (in) 1

O gM (in) 1 O

S, Os, I gM (in) M

S, O, Os, I gS (in) 1 1 Os

gI (in) 1 1 I

Foreign RTSR I None I

M, O None 1 No change

E, Os, S None S

Foreign RTSM I X (in) 1

M, O, Os None 1 S

E, S none S

RTSM copyback M, O gM (out) S (if cacheline is not in

the W-cache)

M, O gM (out) I (if cacheline is in the

W-cache)

Os gS (out) S

E, S, I 1

Copyback M, O gM (out) O

Os gS (out) Os

I gI (out) I

E, S gM (out) 1 S

Invalidate X I

Copyback-invalidate M, O gM (out) I

TABLE 10-7 Transaction Handling at Head of CIQ (2 of 3)

Operation at Head of CIQ CCTag MTag (in/out) Error Retry Next CCTag
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Os gS (out) I

I gI (out) I

E, S gM (out) 1 I

Copyback-discard M, O gM (out) No change

Os gS (out) Os

I gI (out) I

E, S gM (out) 1 No change

RS data X

X

X

gM(in)

gS(in)

gI(in) 1

No change

No change

No change

Own WS X gM(out) I

Own WB M,O gM (out) I

Os gS (out) I

I gI (out) I

S, E gM (out) 1 I

Own invalidate WS X gM(out) I

TABLE 10-8 No Snoop Transaction Handling

Combined
State Mode

Processor Action

Load Store/ Swap Block Load Block Store
Block Store

Commit
Dirty
Victim

I No snoop Miss:

RTS_ns
Miss:

RTO_ns
Miss:

RS_ns
Miss:

WS

Miss:

WS

None

S No snoop Error

E No snoop Hit Hit

E→M

Hit Hit

E→M

Miss:

WS

None

M No snoop Hit Hit Hit Hit Miss:

WS

WB

O No snoop Error

Os No snoop Error

TABLE 10-7 Transaction Handling at Head of CIQ (3 of 3)

Operation at Head of CIQ CCTag MTag (in/out) Error Retry Next CCTag
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RTS_ns, RTO_ns, and RS_ns are transactions internal to the UltraSPARC III Cu processor

and are not visible on the Sun Fireplane interconnect.

TABLE 10-9 Internal Transaction Handling

Operation at Head of CIQ CCTag MTag (in/out) Error Next CCTag

RTS_ns I

S, E, M, O, Os

gM (in)

gS (in)

gI (in)

1

1

1

E

S

I

RTO_ns I

S, E, M, O, Os

gM (in)

gS (in)

gI (in)

1

1

1

M

O

I

RS_ns I

S, E, M, O, Os

gM (in)

gS (in)

gI (in)

1

1

1

I

I

I

WS X gM (out)

gS, gI (out) 1

I

I
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CHAPTER 11

Memory Management Unit

The Memory Management Unit (MMU) conforms to the requirements set forth in the

SPARC V9 Architecture Manual. In particular, it supports a 64-bit virtual address space,

software TLB miss processing only (no hardware page table walk), simplified protection

encoding, and multiple page sizes.

This chapter describes the MMU, as seen by the operating system software, in these sections:

• “Virtual Address Translation” on page 245

• “Translation Table Entry” on page 248

• “Translation Storage Buffer” on page 251

• “Hardware Support for TSB Access” on page 253

• “Faults and Traps” on page 259

• “ASI Value, Context, and Endianness Selection for Translation” on page 261

• “Reset, Disable, and RED_state Behavior” on page 263

• “SPARC V9 “MMU Requirements” Annex” on page 264

• “Data Translation Lookaside Buffer” on page 265

• “Instruction Translation Lookaside Buffer” on page 294

11.1 Virtual Address Translation

The MMUs support four page sizes: 8 KB, 64 KB, 512 KB, and 4 MB. Separate Instruction

and Data MMUs (I-MMU and D-MMU, respectively) are provided to enable concurrent

virtual-to-physical address translations for instruction and data. A 64-bit virtual address (VA)

space is supported, with 43 bits of physical address (PA). In each translation, the virtual page

number is replaced by a physical page number, which is concatenated with the page offset to

form the full physical address, as illustrated in FIGURE 11-1.
11-245



Each data and I-MMU consists of multiple Translation Lookaside Buffers (TLBs) that can be

accessed in parallel.

FIGURE 11-1 Virtual-to-Physical Address Translation for All Four Page Sizes

The operating system maintains translation information in an arbitrary data structure, called

the software translation table in this chapter. The I-MMU and D-MMU TLBs act as

independent, software managed caches of the software translation table, providing

appropriate concurrency for virtual-to-physical address translation.

In the D-MMU, there are two TLBs each of which have 512-entry two-way associative which

can be programmed to hold unlocked 8 KB, 64 KB, 512 KB, and 4 MB pages for

translations. Each TLB can hold any of the 4 page sizes, but are programmed to only one

page size at any given time. Each TLB can be programmed to the either same or different

page sizes. Also, a 16-entry fully associative TLB is used for 8 KB, 64 KB, 512 KB and

0

0
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1213

1363

42

8 KB Virtual Page Number

8 KB Physical Page Number

Page Offset

Page Offset

0

0

15

1516

1663

42

64 KB Virtual Page Number

64 KB Physical Page Number

Page Offset

Page Offset

0

0

18

1819

1963

42

512 KB Virtual Page Number

512 KB PPN

Page Offset

Page Offset

VA

PA

PA

PA

VA

VA

8 KB

64 KB

512 KB

0

0

21

2122

2263

42

4 MB Virtual Page Number

4 MB PPN

Page Offset

Page Offset
PA

VA

4 MB

MMU

MMU

MMU

MMU
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4 MB locked and unlocked pages. Specifically, it supports locked pages of the size supported

in 512-entry, 2-way TLBs and unlocked and locked pages of the other page sizes. This TLB

can hold any combination of page sizes that are locked/unlocked at a time.

In the I-MMU, a 128-entry, 2-way associative TLB is used exclusively for 8 KB page

translations, and a 16-entry fully associative TLB is used for 64 KB, 512 KB, and 4 MB page

translations and locked pages of all four sizes.

On a TLB miss, the MMU immediately traps to software for TLB miss processing. The TLB

miss handler can fill the TLB by any available means, but it is likely to take advantage of the

TLB miss support features provided by the MMU, since the TLB miss handler is time-critical

code.

A general software view of the MMU is shown in FIGURE 11-2. The TLBs, which are part of

the MMU hardware, are small and fast. The software translation table is likely to be large and

complex. The translation storage buffer (TSB), which acts like a direct-mapped cache, is the

interface between the two. The TSB can be shared by all processes running on a processor or

can be process specific. The hardware does not require any particular scheme.

FIGURE 11-2 Software View of the MMU

Aliasing between pages of different sizes (when multiple virtual addresses map to the same

physical address) can occur. However, the reverse case of multiple mappings from one virtual

address to multiple physical addresses producing a multiple TLB match is not necessarily

detected in hardware and may produce undefined results.

Note – The hardware ensures the physical reliability of the TLB on multiple matches.

Translation

Lookaside

Buffers

Translation

Buffer

Software

Translation

Table

MMU Memory OS Data Structure

Storage

(TLBs) (TSBs)
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11.2 Translation Table Entry

The Translation Table Entry (TTE) is the equivalent of a SPARC V8 page table entry; it holds

information for a single page mapping. The TTE is divided into two 64-bit words

representing the tag and data of the translation. Just as in a hardware cache, the tag is used to

determine whether there is a hit in the TSB; if there is a hit, the data is fetched by software.

The configuration of the TTE is illustrated in FIGURE 11-3 and described in TABLE 11-1.

FIGURE 11-3 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

TABLE 11-1 TSB and TTE Bit Description (1 of 4)

Bit Field Description

Tag – 63 G Global. If the Global bit is set, the Context field of the TLB entry is ignored during hit

detection. This behavior allows any page to be shared among all (user or supervisor)

contexts running in the same processor. The Global bit is duplicated in the TTE tag and

data to optimize the software miss handler.

Tag – 62:61 — Reserved.

Tag – 60:48 Context The 13-bit context identifier associated with the TTE.

Tag – 47:42 — Reserved.

Tag – 41:0 VA_tag
<63:22>

Virtual Address Tag. The virtual page number. Bits 21 through 13 are not maintained in

the tag because these bits index the minimally sized, direct-mapped TSB of 512 entries.

Data – 63 V Valid. If the Valid bit is set, then the remaining fields of the TTE are meaningful. Note

that the explicit Valid bit is redundant with the software convention of encoding an invalid

TTE with an unused context. The encoding of the context field is necessary to cause a

failure in the TTE tag comparison, and the explicit Valid bit in the TTE data simplifies the

TLB miss handler.

G VA_tag<63:22>Context

063
Tag

Data

414247

—

62 6061

—

PA<42:13>Size Soft

011363

CVCP

2312

WP

461 6062 5

GV E

6

L

7

Soft2

5059

NFO

49 43

IE

58

    Reserved

42

48
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Data – 62:61 Size The page size of this entry, encoded as shown below.

Data – 60 NFO No Fault Only. If the no-fault-only bit is set, loads with ASI_PRIMARY_NO_FAULT,

ASI_SECONDARY_NO_FAULT, and their *_LITTLE variations are translated. Any

other access will trap with a data_access_exception trap (FT = 1016). The NFO bit in the

I-MMU is read as 0 and ignored when written. The I-TLB miss handler should generate

an error if this bit is set before the TTE is loaded into the TLB.

Data – 59 IE Invert Endianness. If this bit is set for a page, accesses to the page are processed with

inverse endianness from that specified by the instruction (big for little, little for big). See

page 261 for details. The IE bit in the I-MMU is read as 0 and ignored when written.

Note: This bit is intended to be set primarily for non-cacheable accesses. The

performance of cacheable accesses will be degraded as if the access missed the D-cache.

Data – 58:50 Soft2 Software-defined field, provided for use by the operating system. The Soft2 field can be

written with any value in the TSB. Hardware is not required to maintain this field in the

TLB; therefore, when it is read from the TLB, it may read as zero.

Data – 49:43 Reserved Reserved. Value on read is undefined.

Data – 42:13 PA The physical page number. Page offset bits for larger page sizes (PA<15:13>, PA<18:13>,

and PA<21:13> for 64 KB, 512 KB, and 4 MB pages, respectively) are stored in the TLB

and returned for a Data Access read but are ignored during normal translation.

When page offset bits for larger page sizes (PA<15:13>, PA<18:13>, and PA<21:13> for

64 KB, 512 KB, and 4 MB pages, respectively) are stored in the TLB on the

UltraSPARC III Cu processor, the data returned from those fields by a Data Access read

are the data previously written to them.

Data – 12:7 Soft Software-defined field, provided for use by the operating system. The Soft field can be

written with any value in the TSB. Hardware is not required to maintain this field in the

TLB; therefore, when it is read from the TLB, it may read as zero.

TABLE 11-1 TSB and TTE Bit Description (2 of 4)

Bit Field Description

Size<1:0> Page Size

00 8 KB

01 64 KB

10 512 KB

11 4 MB
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Data – 6 L If the lock bit is set, then the TTE entry will be “locked down” when it is loaded into the

TLB; that is, if this entry is valid, it will not be replaced by the automatic replacement

algorithm invoked by an ASI store to the Data In Register. The lock bit has no meaning

for an invalid entry. Arbitrary entries can be locked down in the TLB. Software must

ensure that at least one entry is not locked when replacing a TLB entry; otherwise, a

locked entry will be replaced. Since the 16-entry, fully associative TLB is shared for all

locked entries as well as for 4 MB and 512 KB pages, the total number of locked pages is

limited to less than or equal to 15.

In the UltraSPARC III Cu processor, the TLB lock bit is implemented in the D-MMU

16-entry, fully associative TLB, and the I-MMU 16-entry, fully associative TLB. In the

D-MMU 512-entry, 2-way associative TLB and I-MMU 128-entry, 2-way associative

TLB, each TLB entry’s lock bit reads as 0 and writes to it are ignored.

The lock bit set for 8 KB page translation in both I-MMU and D-MMU is read as 0 and

ignored when written.

Data – 5

Data – 4

CP,

CV
The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-indexed-cache

bit determine the placement of data in the caches. The UltraSPARC III Cu processor fully

implements the CV bit. The following table describes how CP and CV control cacheability

in specific UltraSPARC III Cu processor caches.

The MMU does not operate on the cacheable bits but merely passes them through to the

cache subsystem. The CV bit in the I-MMU is read as zero and ignored when written.

Data – 3 E Side-effect. If the side-effect bit is set, non-faulting loads will trap for addresses within

the page, non-cacheable memory accesses other than block loads and stores are strongly

ordered against other E-bit accesses, and non-cacheable stores are not merged. This bit

should be set for pages that map I/O devices having side-effects. Note, however, that the

E bit does not prevent normal instruction prefetching. The E bit in the I-MMU is read as

0 and ignored when written.

Note: The E bit does not force a non-cacheable access. It is expected, but not required,

that the CP and CV bits will be set to 0 when the E bit is set. If both the CP and CV bits

are set to 1 along with the E bit, the result is undefined.

Note Also: The E bit and the NFO bit are mutually exclusive; both bits should never be set

in any TTE.

TABLE 11-1 TSB and TTE Bit Description (3 of 4)

Bit Field Description

Meaning of TTE when placed in:

Cacheable
(CP, CV) I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Non-cacheable Non-cacheable

10 Cacheable L2-cache, I-cache Cacheable L2-cache, W-cache,

and P-cache

11 Cacheable L2-cache, I-cache Cacheable L2-cache, D-cache,

W-cache, and P-cache
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11.3 Translation Storage Buffer

The Translation Storage Buffer (TSB) is an array of Translation Table Entries managed

entirely by software. It serves as a cache of the software translation table, used to quickly

reload the TLB in the event of a TLB miss. The discussion in this section assumes the use of

the hardware support for TSB access described in “Hardware Support for TSB Access” on

page 253, although the operating system is not required to make use of this support

hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation information that

is not present in the TSB can exist in the TLB.

A bit in the TSB register allows the TSB 64 KB pointer to be computed for the case of

common or split 8 KB/64 KB TSBs.

11.3.1 TSB Indexing Support

No hardware TSB indexing support is provided for the 512 KB and 4 MB page TTEs.

However, since the TSB is entirely software managed, the operating system may choose to

place these larger page TTEs in the TSB by forming the appropriate pointers. In addition,

simple modifications to the 8 KB and 64 KB index pointers provided by the hardware allow

formation of an M-way, set-associative TSB, multiple TSBs per page size, and multiple TSBs

per process.

Data – 2 P Privileged. If the P bit is set, only the supervisor can access the page mapped by the TTE.

If the P bit is set and an access to the page is attempted when PSTATE.PRIV = 0, then

the MMU signals an instruction_access_exception or data_access_exception trap (FT = 116).

Data – 1 W Writable. If the W bit is set, the page mapped by this TTE has write permission granted.

Otherwise, write permission is not granted, and the MMU causes a

fast_data_access_protection trap if a write is attempted. The W bit in the I-MMU is read as

0 and ignored when written.

Data – 0 G Global. This bit must be identical to the Global bit in the TTE tag. Like the Valid bit, the

Global bit in the TTE tag is necessary for the TSB hit comparison, and the Global bit in

the TTE data facilitates the loading of a TLB entry.

TABLE 11-1 TSB and TTE Bit Description (4 of 4)

Bit Field Description
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11.3.2 TSB Cacheability

The TSB exists as a normal data structure in memory and therefore can be cached. Indeed,

the speed of the TLB miss handler relies on the TSB accesses hitting the level-2 cache at a

substantial rate. This policy may result in some conflicts with normal instruction and data

accesses, but it is hoped that the dynamic sharing of the level-2 cache resource will provide

a better overall solution than that provided by a fixed partitioning.

11.3.3 TSB Organization

The TSB is arranged as a direct-mapped cache of TTEs. The MMU provides pre-computed

pointers into the TSB for the 8 KB and 64 KB page TTEs. In each case, n least significant

bits of the respective virtual page number are used as the offset from the TSB base address,

with n equal to log base 2 of the number of TTEs in the TSB.

The TSB organization is illustrated in FIGURE 11-4. The constant N is determined by the

Size field in the TSB Register. The Size Field is 3 bits and can have a value from 0 to 7.

For the UltraSPARC III Cu processor, the Size Field is set to 7. The constant N is equal to

512 × 2size. Therefore, for the UltraSPARC III Cu processor, the constant N is equal to 64K.

FIGURE 11-4 TSB Organization, Illustrated for Both Common and Shared Cases

Tag1 (8 bytes) Data1 (8 bytes)000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in Common TSB

Tag1 (8 bytes) Data1 (8 bytes)

TagN (8 bytes) DataN (8 bytes)

2N Lines in Split TSB
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11.4 Hardware Support for TSB Access

The MMU hardware provides services to allow the TLB miss handler to efficiently reload a

missing TLB entry for an 8 KB or 64 KB page. These services include:

• Formation of TSB Pointers, based on the missing virtual address and address space

identifier

• Formation of the TTE Tag Target used for the TSB tag comparison

• Efficient atomic write of a TLB entry with a single store ASI operation

• Alternate globals on MMU-signalled traps

11.4.1 Typical TLB Miss/Refill Sequence

The following is a typical TLB miss and TLB refill sequence:

1. A TLB miss causes either a fast_instruction_access_MMU_miss or a

fast_data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag Target with

loads from the MMU registers.

3. Using this information, the TLB miss handler checks to see if the desired TTE exists in

the TSB. If so, the TTE data is loaded into the TLB Data In Register to initiate an atomic

write of the TLB entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, then the TLB miss handler jumps to the more

sophisticated, and slower, TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the Tag

Access Register, which holds the virtual address and context of the load or store responsible

for the MMU exception.

Note – There are no separate physical registers in hardware for the pointer registers; rather,

they are implemented through a dynamic reordering of the data stored in the Tag Access and

the TSB registers.
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11.4.2 TSB Pointer Formation

Hardware provides pointers for the most common cases of 8 KB and 64 KB page miss

processing. These pointers give the virtual addresses where the 8 KB and 64 KB TTEs are

stored if either are present in the TSB.

11.4.2.1 Input Values for TSB Pointer Formation

The pointer to the TTE in the TSB is generated from the following parameters as inputs:

• TSB base address (TSB_Base)

• Virtual address (VA)

• TSB_size

• TSB_split

• TSB_Hash

The TSB base address is in either of I/D Primary/Secondary (provided only for data)/Nucleus

TSB Extension Registers. Depending on the context that generated the TLB miss, an

appropriate TSB Extension Register is selected (which may be combined with the

TSB_Base field from the TSB Base Register; see Note). Note that the context with the TLB

miss is logged in the I/D Synchronous Fault Status Register.

TSB_size and TSB_split are supplied also from the selected TSB Extension Register.

The virtual page number to be used for TSB pointer formation is in the I/D Tag Access

Register.

Note – TSB_Base address may be generated by exclusive-ORing TSB_Base register and

TSB Extension Register contents, for compatibility with the UltraSPARC I and

UltraSPARC II processor TSB pointer formation. In this case, if the TSB Extension Registers

hold 0 as TSB_Base, the value in TSB_Base register becomes the TSB_Base address,

thereby maintaining compatibility with the UltraSPARC I and UltraSPARC II processor TLB

miss handling software. In addition, TSB_Base may be taken directly from an appropriate

TSB Extension Register. In that case, the implementation should provide the way to maintain

compatibility with the UltraSPARC I and UltraSPARC II processor TLB miss handler

software.

The UltraSPARC III Cu processor generates the TSB_Base address by taking the

TSB_Base field directly from the TSB Extension Register.
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11.4.2.2 TSB Pointer Formation

Hardware uses the following equations to form TSB pointers for TLB misses. In the

equations, n is defined to be the TSB_Size field of the TSB register; it ranges from 0 to 7.

Note that TSB_Size refers to the size of each TSB when the TSB is split. The symbol

designates concatenation of bit vectors and ⊕ indicates an exclusive-OR operation.

Exclusive-ORed TSB_Base
• For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Base[63:13 + n] ⊕  TSB_Extension[63:13 + n]
VA[21+n:13]  0000

64K_POINTER = TSB_Base[63:13 + n] ⊕  TSB_Extension[63:13 + n]
VA[24+n:16]  0000

• For a split TSB (TSB Register split field = 1):

8K_POINTER = TSB_Base[63:14 + n] ⊕  TSB_Extension[63:14 + n]  0
VA[21 + n:13]  0000

64K_POINTER = TSB_Base[63:14 + n] ⊕  TSB_Extension[63:14 + n]  1
VA[24 + n:16]  0000

TSB_Base from TSB Extension Registers
• For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Extension[63:13 + n] (VA[21 + n:13] ⊕ TSB_Hash)
0000

64K_POINTER = TSB_Extension[63:13 + n] (VA[24 + n:16] ⊕ TSB_Hash)
0000

• For a split TSB (TSB Register split field = 1):

8K_POINTER = TSB_Extension[63:14 + n] 0 (VA[21 + n:13] ⊕ TSB_Hash)
 0000

64K_POINTER = TSB_Extension[63:14 + n] 1 (VA[24 + n:16] ⊕
TSB_Hash) 0000

The TSB Tag Target is formed by aligning the missing access VA (from the Tag Access

Register) and the current context to positions found above in the description of the TTE tag,

allowing a simple XOR instruction for TSB hit detection.
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11.4.3 TSB Pointer Logic Hardware Description

FIGURE 11-5 illustrates the generation of the 8 KB and 64 KB pointers; CODE EXAMPLE 11-1

presents pseudocode for D-MMU pointer logic.

FIGURE 11-5 Formation of TSB Pointers for 8 KB and 64 KB TTE
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CODE EXAMPLE 11-1 Pseudocode for D-MMU Pointer Logic

int64 GenerateTSBPointer(

int64 va, // Missing virtual address
PointerType type, // 8K_POINTER or 64K_POINTER
int64 TSBBase, // TSB Register<63:13> << 13
Boolean split, // TSB Register<12>
int TSBSize, // TSB Register<2:0>
int SpaceType space)

{
int64 vaPortion;
int64 TSBBaseMask;
int64 splitMask;

// Shift va towards lsb appropriately and
// zero out the original va page offset
vaPortion = (va >> ((type == 8K_POINTER)? 9: 12)) &

0xfffffffffffffff0;

switch (space) {
Primary:

TSBBASE ^=TSB_EXT_pri;
vaPortion ^= TSB_EXT_pri<<1 & 0x1ff0;
vaPortion ^= TSB_EXT_pri & 0x1fe000;
break;

Secondary:
TSBBASE ^=TSB_EXT_sec;
vaPortion ^= TSB_EXT_sec<<1 & 0x1ff0;
vaPortion ^= TSB_EXT_sec & 0x1fe000;
break;

Nucleus:
TSBBASE ^=TSB_EXT_nuc;
vaPortion ^= TSB_EXT_nuc<<1 & 0x1ff0;
vaPortion ^= TSB_EXT_nuc & 0x1fe000;
break;

}
// TSBBaseMask marks the bits from TSB Base Reg
TSBBaseMask = 0xffffffffffffe000 <<

(split? (TSBSize + 1) : TSBSize);

if (split) {
// There’s only one bit in question for split
splitMask = 1 << (13 + TSBSize);
if (type == 8K_POINTER)

// Make sure we’re in the lower half
vaPortion &= ~splitMask;

else
// Make sure we’re in the upper half
vaPortion |= splitMask;

}
return (TSBBase & TSBBaseMask) | (vaPortion & ~TSBBaseMask);

}
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11.4.4 Required TLB Conditions

The following items must be locked in the TLB to avoid an error condition:

• TLB miss handler and data

• TSB and linked data

• Asynchronous trap handlers and data

11.4.5 Required TSB Conditions

The following items must be locked in the TSB (not necessarily the TLB) to avoid an error

condition:

• TSB miss handler and data

• Interrupt-vector handler and data

11.4.6 MMU Global Registers Selection

In the SPARC V9 normal trap model, the software is presented with an alternate set of global

registers in the Integer Register file. An UltraSPARC III Cu processor provides an additional

feature to facilitate fast handling of TLB misses. For the following traps, the trap handler is

presented with a special set of MMU globals:

• fast_instruction_access_MMU_miss

• fast_data_access_MMU_miss

• instruction_access_exception

• data_access_exception

• fast_data_access_protection

Trap handlers for the privileged_action, mem_address_not_aligned, and

*_mem_address_not_aligned traps use the standard alternate global registers.

Compatibility Note – The MMU does not perform hardware tablewalking. The MMU

hardware never directly reads or writes the TSB.
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11.5 Faults and Traps

The traps recorded by the MMU are listed in TABLE 11-2 and described below the table, by

the reference number. All listed traps are precise traps.

† The contents of the context field of the D-MMU Tag Register are undefined after a data_access_exception.

Note – In an UltraSPARC III Cu processor, fast_instruction_access_MMU_miss,

fast_data_access_MMU_miss, and fast_data_access_protection traps are generated instead

of SPARC V9 instruction_access_MMU_miss, data_access_MMU_miss, and

data_access_protection traps, respectively.

1. fast_instruction_access_MMU_miss — Occurs when the MMU is unable to find a

translation for an instruction access; that is, when the appropriate TTE is not in the I-TLB.

In an UltraSPARC III Cu processor, the fast_instruction_access_MMU_miss exception is

generated instead of the SPARC V8 instruction_access_MMU_miss.

TABLE 11-2 MMU Trap Types, Causes, and Stored State Register Update Policy

Trap Name Trap Cause

Registers Updated
(Stored State in MMU)

Ref # I-SFSR

I-MMU
Tag
Access

D-SFSR,
SFAR

D-MMU
Tag
Access

Trap
Type

1. fast_instruction_access_MMU_miss I-TLB miss X X 6416–

6716

2. instruction_access_exception Privilege violation for

I-fetch

X X 0816

3. fast_data_access_MMU_miss D-TLB miss X X 6816–

6B16

4. data_access_exception Several (see below) X X† 3016

5. fast_data_access_protection Protection violation X X 6C16

–6F16

6. privileged_action Use of privileged ASI X 3716

7. watchpoints Watchpoint hit X 6116–

6216

8. mem_address_not_aligned,

*_mem_address_not_aligned
Misaligned mem op X 3516,

3616,

3816,

3916
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2. instruction_access_exception — Occurs when the I-MMU is enabled and detects a

privilege violation for an instruction fetch; that is, an attempted access to a privileged

page when PSTATE.PRIV = 0.

3. fast_data_access_MMU_miss — Occurs when the MMU is unable to find a translation

for a data access; that is, when the appropriate TTE is not in the D-TLB.

In an UltraSPARC III Cu processor, the fast_data_access_MMU_miss exception is

generated instead of the SPARC V9 data_access_MMU_miss trap.

4. data_access_exception — Signalled upon the detection of at least one of the following

exceptional conditions:

■ The D-MMU detects a privilege violation for a data access; that is, an attempted access

to a privileged page when PSTATE.PRIV = 0.

■ A speculative (non-faulting) load instruction issued to a page marked with the

side-effect (E bit) set to 1, including cases in which the D-MMU is disabled.

■ An atomic instruction (including 128-bit atomic load) issued to a memory address

marked non-cacheable in a physical cache; that is, with the CP bit set to 0, including

cases in which the D-MMU is disabled.

■ An invalid LDA/STA ASI value, read to write-only register, or write to read-only

register. Not for an attempted user access to a restricted ASI (see the privileged_action
trap described below).

■ An access with an ASI other than

“(PRIMARY,SECONDARY)_NO_FAULT(_LITTLE)” to a page marked with the

NFO (no-fault-only) bit.

5. fast_data_access_protection — Occurs when the MMU detects a protection violation for

a data access. A protection violation is defined to be an attempted store (including atomic

load-store operations) to a page that does not have write permission.

In an UltraSPARC III Cu processor, the fast_data_access_protection exception is

generated instead of the SPARC V9 data_access_protection trap.

6. privileged_action — Occurs when an access is attempted using a restricted ASI while in

non-privileged mode (PSTATE.PRIV = 0).

7. watchpoints — PA_watchpoint and VA_watchpoint traps are included in this category.

Watchpoint traps occur when watchpoints are enabled and the D-MMU detects a load or

store to the virtual or physical address specified by the watchpoint virtual or physical

registers, respectively. See Section 6.10.2 “Data Watchpoint Registers” on page 6-136.

The trap is precise and is signalled before the actual event, meaning that the contents of

the location are not modified when the trap is invoked.

8. mem_address_not_aligned — Occurs when a load, store, atomic, JMPL, or RETURN
instruction with a misaligned address is executed.
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On a mem_address_not_aligned trap that occurs during a JMPL or RETURN instruction, the

UltraSPARC III Cu processor updates the D-SFAR and D-SFSR registers with the fault

address and status, respectively.

11.6 ASI Value, Context, and Endianness

Selection for Translation

The selection of the context for a translation is the result of a two-step process:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction, ASI

register, trap level, and the processor endian mode (PSTATE.CLE).

2. The Context Register is determined directly from the ASI. The context value is read by

the Context Register selected by the ASI.

The ASI value and endianness (little or big) are determined for the I-MMU and D-MMU,

respectively, according to TABLE 11-3 through TABLE 11-5. Note that the secondary context is

never used to fetch instructions. The I-MMUs and D-MMUs, when using the Primary

Context identifier, use the value stored in the shared Primary Context Register.

The endianness of a data access is specified by the following three conditions:

• ASI specified in the opcode or ASI register

• PSTATE current little-endian bit (CLE)

• D-MMU invert endianness bit

The D-MMU invert endianness bit does not affect the ASI value recorded in the SFSR but

does invert the endianness that is otherwise specified for the access.

Note – The D-MMU invert endianness bit inverts the endianness for all accesses, including

load/store/atomic alternates that have specified an ASI. That is, LDXA [%g1]

ASI_PRIMARY_LITTLE will be _BIG if the IE bit is on.

TABLE 11-3 ASI Mapping for Instruction Access

Condition for Instruction Access Resulting Action

PSTATE.TL Endianness ASI Value (in SFSR)

0 BIG ASI_PRIMARY

> 0 BIG ASI_NUCLEUS
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The Context Register used by the D-MMUs and I-MMUs is determined according to

TABLE 11-5. The Context Register selection is not affected by the endianness of the access.

For a comprehensive list of ASI values in the ASI map, see Chapter 8 “Address Space

Identifiers.”

TABLE 11-4 ASI Mapping for Data Accesses

Condition for Data Access Access Processed with:

Opcode TL PSTATE.CLE DMMU.IE Endian ASI Value (Recorded in SFSR)

Load/Store/Atomic

0 0 0 BIG ASI_PRIMARY

1 LITTLE ASI_PRIMARY

1 0 LITTLE ASI_PRIMARY_LITTLE

1 BIG ASI_PRIMARY_LITTLE

> 0 0 0 BIG ASI_NUCLEUS

1 LITTLE ASI_NUCLEUS

1 0 LITTLE ASI_NUCLEUS_LITTLE

1 BIG ASI_NUCLEUS_LITTLE

Load/Store/Atomic

Alternate with specified ASI

not ending in _LITTLE

x x 0 BIG Specified ASI value from

immediate field in opcode or

ASI Register
1 LITTLE

Load/Store/Atomic

Alternate with specified ASI

ending in _LITTLE

x x 0 LITTLE Specified ASI value from

immediate field in opcode or

ASI Register
1 BIG

FLUSH 0

> 0

x

x

x

x

—

—

ASI_PRIMARY_*

ASI_NUCLEUS

TABLE 11-5 I-MMU and D-MMU Context Register Usage

ASI Value Context Register

ASI_*NUCLEUS* (any ASI name containing the string “NUCLEUS”) Nucleus (000016 hard-wired)

ASI_*PRIMARY* (any ASI name containing the string “PRIMARY”) Primary

ASI_*SECONDARY* (any ASI name containing the string “SECONDARY”) Secondary

All other ASI values (Not applicable, no translation)
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11.7 Reset, Disable, and RED_state Behavior

During global reset of the processor, the following statements apply:

• No change occurs in any block of the D-MMU.

• No change occurs in the datapath or TLB blocks of the I-MMU.

• The I-MMU resets its internal state machine to normal (nonsuspended) operation.

• The I-MMU and D-MMU Enable bits in the DCU Control Register are set to 0.

When the processor enters RED_state, the following statement applies:

• The I-MMU and D-MMU Enable bits in the DCU Control Register are set to 0.

Either of the MMUs is defined to be disabled when its respective MMU Enable bit equals 0

or, for the I-MMU only, whenever the processor is in RED_state. The D-MMU is enabled

or disabled solely by the state of the D-MMU Enable bit.

When the D-MMU is disabled:

• The D-MMU passes all addresses through without translation ("bypasses" them); each

address is truncated to the size of a physical address on the implementation, behaving as

if the ASI_PHYS_* ASI had been used for the access.

• The processor behaves as if the TTE bits were set as:

■ TTE.IE ← 0

■ TTE.P ← 0

■ TTE.W ← 1

■ TTE.NFO ← 0
■ If DCUCR.CP and DCUCR.CV are implemented:

◆ TTE.CP ← DCUCR.CP

◆ TTE.CV ← DCUCR.CV

◆ TTE.E ← not DCUCR.CP
■ If DCUCR.CP and DCUCR.CV are not implemented:

◆ TTE.E ← not TTE.CP

However, if a bypass ASI (ASI_PHYS_*) is used while the D-MMU is disabled, the bypass

operation behaves as it does when the D-MMU is enabled; that is, the access is processed

with the E, CP, and CV bits as specified by the bypass ASI (see TABLE 11-26 on page 11-294).

When the I-MMU is disabled, it truncates all instruction accesses to the physical address size

(43 bits) and passes the physically cacheable bit (Data Cache Unit Control Register CP bit)

to the cache system. The access does not generate an instruction_access_exception trap.
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Note – While the D-MMU is disabled and the default CV bit in the Data Cache Unit Control

Register is set to 0, data in the D-cache can be accessed only through load and store

alternates to the internal D-cache access ASI. Normal loads and stores bypass the D-cache.

Data in the D-cache cannot be accessed by load or store alternates that use ASI_PHYS_*.

Other caches are physically indexed or are still accessible.

When disabled, both the I-MMU and D-MMU correctly perform all LDXA and STXA
operations to internal registers, and traps are signalled just as if the MMU were enabled. For

instance, if a non-faulting load is issued when the D-MMU is disabled and DCUCR.CP is set

to 0 if the implementation has the bit, then the D-MMU signals a data_access_exception trap

(FT = 0216), since E is set to 1.

Note – A reset of the TLB is not performed by a chip reset or by entry into RED_state.

Before the MMUs are enabled, the operating system software must explicitly write each

entry with either a valid TLB entry or an entry with the valid bit set to 0. The operation of

the I-MMU or D-MMU in enabled mode is undefined if the TLB valid bits have not been set

explicitly beforehand.

11.8 SPARC V9 “MMU Requirements” Annex

The MMU complies completely with the SPARC V9 “MMU Requirements” Annex.

TABLE 11-6 shows how various protection modes can be achieved, if necessary, through the

presence or absence of a translation in the I-MMU or D-MMU. Note that this behavior

requires specialized TLB miss handler code to guarantee these conditions.

TABLE 11-6 MMU SPARC V9 Annex G Protection Mode Compliance

Condition

Resultant
Protection ModeTTE in D-MMU TTE in I-MMU

Writable Attribute
Bit

Yes No 0 Read-only

No Yes N/A Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute
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11.9 Data Translation Lookaside Buffer

In the D-MMU, there are two TLBs (dt512_0 and dt_512_1) each of which have 512-entry

two-way associative which can be programmed to hold unlocked 8 KB, 64 KB, 512 KB, and

4 MB pages for translations. Each TLB can hold any of the 4 page sizes, but are programmed

to only one page size at any given time. Each TLB can be programmed to either the same or

different page sizes. Also, a 16-entry fully associative TLB (dt16) is used for 8 KB, 64 KB,

and 4 MB locked and unlocked pages. This TLB can hold any combination of page sizes that

are locked/unlocked at a time.

Note – The UltraSPARC III Cu processor’s dt16 can support unlocked 8K pages. This is

necessary since if dt512_0 and dt512_1 were programmed to non-8K page size, then a

D-TLB fill of unlocked 8K page will not get dropped.

Note – When both large D-TLBs are configured with the same page size, then they behave

like a single D-TLB with 1024-entry 4-way associative (256 entries per way).

Each dt512’s page size (PgSz) is programmable independently, one PgSz per context

(Primary/Secondary/ Nucleus). Kernel can set the PgSz fields in

ASI_PRIMARY_CONTEXT_REG and ASI_SECONDARY_CONTEXT_REG as illustrated

in FIGURE 11-6 and FIGURE 11-7, respectively, and described in TABLE 11-7 and TABLE 11-8,

respectively.

FIGURE 11-6 D-MMU Primary Context Register

TABLE 11-7 D-MMU Primary Context Register

Bit Field Description

63:61 N_pgsz0 Nucleus context’s page size at the first large D-TLB (dt512_0).

60:58 N_pgsz1 Nucleus context’s page size at the second large D-TLB (dt512_1).

57:22 — Reserved.

21:19 P_pgsz1 Primary context’s page size at the second large D-TLB (dt512_0).

63 13 12 0

— PContext

15

—

1618

P_pgsz0

61 60

N_pgsz1

1921

P_pgsz1N_pgsz0

58 57 22
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FIGURE 11-7 D-MMU Secondary Context Register

The following is the page size bit encoding (most significant bit is reserved to 0):

• 000 = 8 KB

• 001 = 64 KB

• 010 = 512 KB

• 011 = 4 MB

11.9.1 D-TLB Access Operation

When a memory access is issued, its VA, Context, and Page Size are presented to the

D-MMU. All 3 D-TLBs (dt512_0, dt512_1, and dt16) are accessed in parallel. The fully

associative dt16 only needs VA and Context to CAM-match and output an entry (1 out of

16). Proper VA bits are compared based on the page size bits of each dt16 entry (fast 3-bit

encoding is used to define 8K, 64K, 512K, and 4M).

18:16 P_pgsz0 Primary context’s page size at the first large D-TLB (dt512_1).

15:13 — Reserved.

12:0 PContext Context identifier for the primary address space.

TABLE 11-8 D-MMU Primary Context Register

Bit Field Description

63:22 − Reserved.

21:19 S_pgsz1 Secondary context’s page size at the second large D-TLB

(dt512_1).

18:16 S_pgsz0 Secondary context’s page size at the first large D-TLB (dt512_0).

15:13 − Reserved.

12:0 SContext Context identifier for the secondary address space.

TABLE 11-7 D-MMU Primary Context Register (Continued)

Bit Field Description

63 13 12 0

— SContext

15

—

1618

S_pgsz0

1921

S_pgsz1

22
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Since dt512’s are not a fully associative structure, indexing the dt512 array requires

knowledge of page size to properly select VA bits as index. The 2-way dt512_0 and dt512_1

needs PgSz to mux select proper VA bits to index the dt512 arrays, as shown below:

• 8 KB page: index = VA[20:13]

• 64 KB page: index = VA[23:16]

• 512 KB page: index = VA[26:19]

• 4 MB page: index = VA[29:22]

Context bits are used later after the indexed entry comes out of each array bank/way, to

qualify the context hit.

Three possible Context numbers are active in the CPU: Primary (PContext field in

ASI_PRIMARY_CONTEXT_REG), Secondary (SContext field in

ASI_SECONDARY_CONTEXT_REG), and Nucleus (default to Context = 0). The Context

Register to send to D-MMU is determined based on the load/store’s ASI encoding of

Primary/Secondary/Nucleus.

Since all 3 D-TLBs are being accessed in parallel, software must guarantee that there are no

duplicate (stale) entry hits. Most of this responsibility lies in the software (operating system)

with the hardware providing some assistance to support full software control. A set of rules

on D-TLB replacement, demap and context switch must be followed to maintain consistent

and correct behavior.

11.9.2 Same Page Size on Both dt512_0 and dt512_1

When both dt512’s are programmed to have identical page size, the behavior is a “single”

4-way 1024-entry dt512. During TTE fill, if there is no invalid TLB entry to take, then dt512

selection and way selection are determined based on a new 10-bit LFSR (pseudo random

generator, the same one used on 2-way L2-cache). For 4-way pseudo random selection,

LFSR[1:0] bits (two least significant bits of LFSR) is described in TABLE 11-9 will be used.

Note – All LFSRs (in D-cache, I-cache, W-cache, L2-cache, and TLBs) get initialized on

Power-on Reset (Hard_POR) and System Reset (Soft_POR).

TABLE 11-9 Four-way Pseudo Random Selection

LFSR[1:0] TTE Fill to:

00 dt512_0, way 0

01 dt512_0, way 1

10 dt512_1, way 0

11 dt512_1, way 1
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This single LFSR is also shared among both dt512_0 and dt512_1 when they have different

page sizes. The least significant bit (LFSR[0]) is used for entry replacement. It selects the

same bank of both dt512’s, but only one dt512’s write-enable is eventually asserted at TTE

fill time.

Demap Context is needed when the same context changes Page Size. During context-in, if

the operating system decides to change any Page Size setting of dt512_0 or dt512_1

differently from the last context-out of the same Context (e.g., was both 8K at context-out,

now 8K and 4M at context-in), then the operating system will perform Demap Context

operation first. This avoids remnant entries in dt512_0 or dt512_1, which could cause

duplicate, possibly stale, hit.

11.9.3 D-TLB Automatic Replacement

A D-TLB miss fast trap handler utilizes the automatic (hardware) replacement write using

store ASI_DTLB_DATA_IN_REG. Section 11.9.4 will describe the D-TLB direct write using

store ASI_DTLB_DATA_ACCESS_REG, which is the kernel uses for initialization (e.g., in

OBP) and diagnostic.

When D-TLB miss, or DATA_ACCESS_EXCEPTION, or

FAST_DATA_ACCESS_PROTECTION is detected, hardware automatically saves the

missing VA and context to the Tag Access Register (ASI_DMMU_TAG_ACCESS). To ease

indexing of the dt512’s when the TTE data is presented (via STXA
ASI_DTLB_DATA_IN_REG), the missing page size information of dt512_0 and dt512_1 is

captured into a new Extension Register, called ASI_DMMU_TAG_ACCESS_EXT.

FIGURE 11-8 illustrates and TABLE 11-10 describes the format of the Tag Access Extension

Register for saving page sizes

ASI 0x58, VA<63:0> == 0x60

Name: ASI_DMMU_TAG_ACCESS_EXT

Access: RW

FIGURE 11-8 Tag Access Extension Register Format for Saving Page Sizes Information

63

—

1618

pgsz0

1921

pgsz1

0

—

22 15
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Note – Bit 21 and 18 are hardwired to zero since the most significant bit of the page size

fields in Primary and Secondary registers are reserved to 0.

Note – With the saved page sizes, hardware pre-computes in the background the index to

dt512_0 and dt512_1 for TTE fill. When the TTE data arrives, only one write enable to

dt512_0, dt512_1, and dt16 will get activated.

CODE EXAMPLE 11-2 shows the hardware D-TLB replacement algorithm.

Note – PgSz0 below is ASI_DMMU_TAG_ACCESS_EXT[18:16] bits; PgSz1 below is

ASI_DMMU_TAG_ACCESS_EXT[21:19] bits.

TABLE 11-10 Tag Access Extension Register for Saving Page Sizes Information

Bit(s) Field Description

63:22 — Reserved.

21:19 pgsz1 Page size of D-TLB miss’ context (Primary/Secondary/Nucleus) in

the second large D-TLB (dt512_0).

18:16 pgsz0 Page size of D-TLB miss’ context (Primary/Secondary/Nucleus) in

the first large D-TLB (dt512_1).

15:0 — Reserved.

CODE EXAMPLE 11-2 D-TLB Replacement Algorithm

 if (TTE to fill is a locked page, i.e., L bit is set) {
    fill TTE to dt16;
} else if (both dt512’s have same page size, PgSz0 == PgSz1) {
    if (TTE’s Size != PgSz0) {
        fill TTE to dt16;
    } else {
        if (one of the 4 same-index entries is invalid) {
          fill TTE to an invalid entry with selection order of

(dt512_0 way0, dt512_0 way1, dt512_1 way0, dt512_1 way1)
        } else {
            case (LFSR[1:0]) {
                00: fill TTE to dt512_0 way0;
                01: fill TTE to dt512_0 way1;
                10: fill TTE to dt512_1 way0
                11: fill TTE to dt512_1 way1;
        }
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11.9.4 D-TLB Directed Data Read/Write

Each D-TLB can be directly written using the store ASI_DTLB_DATA_ACCESS_REG

instruction. The kernel typically uses this method for initialization (e.g., in OBP) and

diagnostic.

Due to the addition of a second large D-TLB, in the UltraSPARC III Cu processor, a new

encoding value was added to the VA of ASI_DTLB_DATA_ACCESS_REG (0x5d), as listed

in TABLE 11-11.

    }
}
    } else {
        if (TTE’s Size == PgSz0) {
           if (one of the 2 same-index entries is invalid) {
            fill TTE to an invalid entry with selection order of
              (dt512_0 way0, dt512_0 way1)
        } else {
            case (LFSR[0]) {
                0: fill TTE to dt512_0 way0;
                1: fdt512ill TTE to dt512_0 way1;
            }
        }
    } else if (TTE’s Size == PgSz1) {
        if (one of the 2 same-index entries is invalid) {
          fill TTE to an invalid entry with selection order of
          (dt512_1 way0, dt512_1 way1)
        } else {
            case (LFSR[0]) {
                0: fill TTE to dt512_1 way0;
                1: fill TTE to dt512_1 way1;
            }
        }
    } else {
        fill TTE to dt16;
    }
}

TABLE 11-11 D-TLB Access Number

TLB # TLB Type Number of Entries

0 Small fully associative, all 4 page sizes (8K, 64K, 512K, 4M)

and locked pages

16

CODE EXAMPLE 11-2 D-TLB Replacement Algorithm (Continued)
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Note – For the 2-way dt512_0 and dt512_1, bit 11 (most significant bit of “TLB Entry”) of

the VA of ASI 0x5d determines the way select: 0 for way 0, 1 for way 1.

Note that since hardware has to zero out proper tag/VA bits based on page size prior to

writing to dt512_0/dt512_1 (to avoid tag masking delay on read access of variable page size),

D-MMU will use the page size information of TTE data (store data of STXA
ASI_DTLB_DATA_ACCESS_REG).

For diagnostic/direct ASI read from ASI_DTLB_DATA_ACCESS_REG, bits [62:61] (Page

Size field of TTE data) do not reflect meaningful size of dt512_0 and dt512_1; they always

read zero. This is because there is actually no size bits portion stored in the dt512 SRAM.

Note – Bit[47] of TTE data is hardwired to 0.

11.9.5 D-TLB Tag Read Register

The UltraSPARC III Cu processor behavior on read to ASI_DTLB_TAG_READ_REG

(ASI 0x5E) is as follows:

• For dt16 (small 16-entry fully-associative D-TLB), the 64-bit data read is the same as in

the UltraSPARC III processor − backward compatible.

• For dt512_0 and dt512_1, the bit positions of VPN (virtual page number) within

bits[63:13] change as follows:

Data[12:0] = Context[12:0]
Data[63:21] = VA[63:21] if 8K page
Data[63:21] = VA[63:24] 3’b100’ if 64K page
Data[63:21] = VA[63:27] 6’b100000’ if 512K page
Data[63:21] = VA[63:30] 9’b100000000’ if 4M page
Data[20:13] = Hb read number

                      ^                        ^

                      |                        |

                      VPN (virtual page number)

2 First large D-TLB, 2 way associative, all 4 page sizes (8K, 64K,

512K, 4M)

512

3 Second large D-TLB, 2 way associative, all 4 page sizes (8K,

64K, 512K, 4M)

512

TABLE 11-11 D-TLB Access Number

TLB # TLB Type Number of Entries
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11.9.6 Demap Operation

For Demap Page in the large D-TLBs, the page size used to index the D-TLBs is derived

based on the Context bits (Primary/Secondary/Nucleus). Hardware will automatically select

proper PgSz bits based on the “Context” field (Primary/Secondary/Nucleus) defined in

ASI_DMMU_DEMAP (ASI 0x5f). These two PgSz fields are used to properly index

dt512_0 and dt512_1.

Demap Context and Demap All operations with dt512_0/dt512_1/dt16 are straight forward,

except that one additional dt512 is demap in parallel.

Note – When global pages are used (G = 1), any active pages in a dt512 must have the same
Page Size (but dt512_0’s PgSz and dt512_1’s PgSz can be different). When pages with

G = 1 in a dt512 have variety of page sizes, the dt512 cannot index and locate the page

correctly when trying to match the VA tag without the context number as a qualifier. Proper

demap must be done, as well as proper Page Size settings in PContext and SContext
registers.
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11.9.7 D-TLB Access Summary

TABLE 11-12 lists the D-MMU TLB access summary.

TABLE 11-12 D-MMU TLB Access Summary

Software Operation Effect on MMU Physical Registers

Load/
Store Register TLB Tag Array TLB Data Array Tag Access SFSR SFAR

Load Tag Read Contents returned.

From entry

specified by

LDXA’s access

No effect No effect No effect No effect

Tag

Access

No effect No effect Contents

returned

No effect No effect

Data In Trap with data_access_exception

Data

Access

No effect Contents

returned. From

entry specified by

LDXA’s access

No effect No effect No effect

SFSR No effect No effect No effect Contents

returned

No effect

SFAR No effect No effect No effect No effect Contents

returned
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11.9.8 D-MMU Operation Summary

The behavior of the D-MMU is summarized in TABLE 11-13 on page 11-276. In each case and

for all conditions, the behavior of each MMU is given by one of the following abbreviations:

Store Tag Read Trap with data_access_exception

Tag Access No effect No effect Written with store

data

No effect No effect

Data In TLB entry

determined by

replacement policy

written with contents

of Tag Access

Register

TLB entry

determined by

replacement policy

written with store

data

No effect No effect No effect

Data Access TLB entry specified

by STXA address

written with contents

of Tag Access

Register

TLB entry specified

by STXA address

written with store

data

No effect No effect No effect

SFSR No effect No effect No effect Written with

store data

No effect

SFAR No effect No effect No effect No effect Written

with store

data

TLB

miss

No effect No effect Written with VA

and context of

access

Written with

fault status

of faulting

instruction

and page

sizes at

faulting

context for

two 2-way

set

associative

TLB

Written

with virtual

address of

faulting

instruction

TABLE 11-12 D-MMU TLB Access Summary (Continued)

Software Operation Effect on MMU Physical Registers

Load/
Store Register TLB Tag Array TLB Data Array Tag Access SFSR SFAR
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The ASI is indicated by one the following abbreviations:

Note – The *_LITTLE versions of the ASIs behave the same as the big-endian versions

with regard to the MMU table of operations.

Other abbreviations include W for the writable bit, E for the side-effect bit, and P for the

privileged bit.

The following cases are not covered in TABLE 11-13.

• Invalid ASIs or ASIs that have no meaning for the opcodes listed; for example,

ASI_PRIMARY_NOFAULT for a store or atomic.

• Access to internal registers other than LDXA, LDDFA, STXA, or STDFA. See Chapter 8

“Address Space Identifiers.” The MMU signals a data_access_exception trap (FT = 0816)

for these cases.

• Attempted access using a restricted ASI in non-privileged mode. The MMU signals a

privileged_action exception for this case.

• An atomic instruction (including 128-bit atomic load) issued to a memory address marked

non-cacheable in a physical cache; that is, with the CP bit set to 0, including cases in

which the D-MMU is disabled. The MMU signals a data_access_exception trap

(FT = 0416) for this case.

Abbreviation Meaning

OK Normal translation

Dmiss fast_data_access_MMU_miss exception

Dexc data_access_exception exception

Dprot fast_data_access_protection exception

Imiss fast_instruction_access_MMU_miss exception

Iexc instruction_access_exception exception

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT

SEC Any ASI with SECONDARY translation, except *NO_FAULT

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_AS_IF_USER_PRIMARY*

U_SEC ASI_AS_IF_USER_SECONDARY*

BYPASS ASI_PHYS_* and also other ASIs that require the MMU to perform a bypass

operation (such as D-cache access).
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• A data access with an ASI other than “(PRIMARY,SECONDARY)_NO_FAULT
(_LITTLE)” to a page marked with the NFO bit. The MMU signals a

data_access_exception trap (FT = 1016) for this case.

11.9.9 Internal Registers and ASI Operations

In this section, how to access MMU registers is first described and following is the registers

themselves, as follows:

• Context Registers

• D-MMU TLB Tag Access Registers

• D-TLB Data In, Data Access, and Tag Read Registers

• dTSB Tag Target Registers

• dTSB Base Registers

• dTSB Extension Registers

• dTSB 8 KB and 64 KB Pointer and Direct Pointer Registers

• Data Synchronous Fault Status Registers (D-SFSR)

• MMU Data Synchronous Fault Address Register

Following the register descriptions, the Data demap operation is described.

TABLE 11-13 D-MMU Table of Operations for Normal ASIs

Condition

ASI W

Behavior

Opcode
PRIV
mode TLB Miss

E = 0
P = 0

E = 0
P = 1

E = 1
P = 0

E = 1
P = 1

Load

0 PRIM, SEC x Dmiss OK Dexc OK Dexc

PRIM_NF, SEC_NF x Dmiss OK Dexc Dexc Dexc

1 PRIM, SEC, NUC x Dmiss OK OK OK OK

PRIM_NF, SEC_NF x Dmiss OK OK Dexc Dexc

U_PRIM, U_SEC x Dmiss OK Dexc OK Dexc

Store or

Atomic

0 PRIM, SEC 0 Dmiss Dprot Dexc Dprot Dexc

1 Dmiss OK Dexc OK Dexc

1 PRIM, SEC, NUC 0 Dmiss Dprot Dprot Dprot Dprot

1 Dmiss OK OK OK OK

U_PRIM, U_SEC 0 Dmiss Dprot Dexc Dprot Dexc

1 Dmiss OK Dexc OK Dexc

FLUSH 0

1

x

x

Dmiss

Dmiss

OK

OK

Dexc

OK

OK

Dexc

Dexc

Desc

x 0 BYPASS x privileged_action

x 1 BYPASS x Bypass
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11.9.9.1 Accessing MMU Registers

All internal MMU registers can be accessed directly by the processor through defined ASIs.

Several of the registers have been assigned their own ASI because these registers are crucial

to the speed of the TLB miss handler. Allowing the use of %g0 for the address reduces the

number of instructions required to perform the access to the alternate space (by eliminating

address formation).

For instance, to facilitate an access to the D-cache, the MMU performs a bypass operation.

Caution – A store to an MMU register requires a MEMBAR #Sync, FLUSH, DONE, or

RETRY before the point that the effect must be visible to load/store/atomic accesses. A

FLUSH, DONE, or RETRY is needed before the point that the effect must be visible to

instruction accesses, that is, MEMBAR #Sync is not sufficient. In either case, one of these

instructions must be executed before the next non-internal store or load of any type and on or

before the delay slot of a delayed-control transfer instruction of any type. This action is

necessary to avoid data corruption.

If the low-order three bits of the VA are nonzero in an LDXA/STXA to or from these

registers, then a mem_address_not_aligned trap occurs. Writes to read-only, reads to

write-only, illegal ASI values, or illegal VA for a given ASI can cause a

data_access_exception trap (FT = 0816). (The hardware detects VA violations in only an

unspecified lower portion of the virtual address.) TABLE 11-14 describes MMU registers.

TABLE 11-14 MMU Internal Registers and ASI Operations

D-MMU ASI VA<63:0> Access Register or Operation Name

5816 016 Read-only dTSB Tag Target Registers

5816 816 Read/Write Primary Context Register

5816 1016 Read/Write Secondary Context Register

5816 1816 Read/Write Data Synchronous Fault Status Registers

(D-SFSR)

5816 2016 Read-only Data Synchronous Fault Address Register

(D-SFAR)

5816 2816 Read/Write dTSB Base Registers

5816 3016 Read/Write D-TLB Tag Access Registers

5816 3816 Read/Write Virtual Watchpoint Address

5816 4016 Read/Write Physical Watchpoint Address

5816 4816 Read/Write dTSB Primary Extension Registers

5816 5016 Read/Write dTSB Secondary Extension Register

5816 5816 Read/Write dTSB Nucleus Extension Registers

5916 016 Read-only dTSB 8 KB Pointer Registers
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Note – TSB_Hash field is implemented in TSB Extension Register.

11.9.9.2 Context Registers

The Primary Context Register is shared by the I-MMU and the D-MMU and resides in the

MMU. The Primary Context Register is illustrated in FIGURE 11-9; PContext is the context

identifier for the primary address space.

FIGURE 11-9 D-MMU Primary Context Register

The Secondary Context Register is illustrated in FIGURE 11-10; SContext is the context

identifier for the secondary address space.

FIGURE 11-10 D-MMU Secondary Context Register

The Nucleus Context Register is hardwired to zero, as illustrated in FIGURE 11-11.

FIGURE 11-11 D-MMU Nucleus Context Register

5A16 016 Read-only dTSB 64 KB Pointer Registers

5B16 016 Read-only dTSB Direct Pointer Register

5C16 016 Write-only D-TLB Data In Registers

5D16 016 – 20FF816 Read/Write D-TLB Data Access Registers

5D16 4000016 – 60FF816 Read/Write D-TLB CAM Diagnostic Register

5E16 016 – 20FF816 Read-only D-TLB Tag Read Registers

5F16 See 11.9.9.14 Write-only D-MMU Demap Operations

TABLE 11-14 MMU Internal Registers and ASI Operations (Continued)

D-MMU ASI VA<63:0> Access Register or Operation Name

63 13 12 0

— PContext

63 13 12 0

— SContext

63 0

0000
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11.9.9.3 Data MMU TLB Tag Access Registers

In each MMU, the Tag Access Register is used as a temporary buffer for writing the TLB

entry tag information. The Tag Access Register holds the tag portion, and the Data In or Data

Access Register holds the data being accessed.

The Tag Access Register can be updated during either of the following operations:

• When the MMU signals a trap due to a miss, exception, or protection

The MMU hardware automatically writes the missing VA and the appropriate context into

the Tag Access Register to facilitate formation of the TSB Tag Target Register. One

exception is that after a data_access_exception, the contents of the Context field of the

D-MMU Tag Access Register are undefined.

• An ASI write to the Tag Access Register

Before an ASI store to the TLB Data Access Registers, the operating system must set the

Tag Access Register to the values desired in the TLB entry. Note that an ASI store to the

TLB Data In Register for automatic replacement also uses the Tag Access Register, but

typically the value written into the Tag Access Register by the MMU hardware is

appropriate.

Note – Any update to the Tag Access Registers immediately affects the data that are

returned from subsequent reads of the TSB Tag Target and TSB Pointer Registers.

The TLB Tag Access Register fields are defined in TABLE 11-15 and illustrated in

FIGURE 11-12.

FIGURE 11-12 D-MMU TLB Tag Access Registers Format

TABLE 11-15 D-MMU TLB Tag Access Registers

Bit(s) Field Type Description

63:13 VA RW The 51-bit virtual page number.

12:0 Context RW The 13-bit context identifier. This field reads 0 when there is no

associated context with the access. Its contents in the D-MMU

are undefined after a data_access_exception.

63 0

VA<63:13> Context<12:0>

13 12
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Caution – When the D-MMU causes a trap due to a protection violation or other exception,

software should use the context number from D-SFSR.CT instead of the Context field of

the D-TLB Tag Access Register.

11.9.9.4 Data TLB Data In, Data Access, and Tag Read Registers

Access to the TLB is complicated because of the need to provide an atomic write of a TLB

entry data item (tag and data) that is larger than 64 bits, the need to replace entries

automatically through the TLB entry replacement algorithm as well as to provide direct

diagnostic access, and the need for hardware assist in the TLB miss handler.

TABLE 11-2 on page 11-259 shows when loads and stores update the Tag Access Registers.

TABLE 11-16 shows how the Tag Read, Tag Access, Data In, and Data Access Registers

interact to provide atomic reads and writes to the TLBs.

An ASI load from the TLB Tag Read Register initiates an internal read of the tag portion of

the specified TLB entry.

TABLE 11-16 MMU TLB Access Summary

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB Tag Array TLB Data Array Tag Access Register

Load

Tag Read Contents returned. Entry

specified by STXA‘s access.

No effect No effect

Tag Access No effect No effect Contents returned

Data In Trap with data_access_exception.

Data Access No effect Contents returned. Entry

specified by STXA‘s

access.

No effect

Store

Tag Read Trap with data_access_exception.

Tag Access No effect No effect Written with store data

Data In TLB entry determined by

replacement policy written

with contents of Tag Access

Register

TLB entry determined by

replacement policy written

with store data

No effect

Data Access TLB entry specified by STXA
address written with contents

of Tag Access Register

TLB entry specified by

STXA address written with

store data

No effect

TLB miss No effect No effect Written with VA and

context of access
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11.9.9.5 Data In and Data Access Registers

The Data In and Data Access Registers are the means of reading and writing the TLB for all

operations. The TLB Data In Register is used for TLB miss handler automatic replacement

writes. The TLB Data Access Register is used for operating system and diagnostic directed

writes (writes to a specific TLB entry).

An ASI load from the TLB Data Access Register initiates an internal read of the data portion

of the specified TLB entry.

ASI loads from the TLB Data In Register are not supported.

An ASI store to the TLB Data In Register initiates an automatic atomic replacement of the

TLB entry pointed to by an internal register that is updated by a proprietary replacement

algorithm. The TLB data and tag are formed as in the case of an ASI store to the TLB Data

Access Register.

Caution – Stores to the Data In Register are not guaranteed to replace the previous TLB

entry, causing a fault. In particular, to change an entry’s attribute bits, software must

explicitly demap the old entry before writing the new entry; otherwise, a multiple match

error condition can result.

Both the TLB Data In Register and the TLB Data Access Register use the TTE format shown

in FIGURE 11-3 on page 11-248. Refer to the description of the TTE data in Section 11.2

“Translation Table Entry” on page 11-248 for a complete description of the data fields.

Writes to the TLB Data In Register require the virtual address to be set to 0.

The format of the TLB Data Access Register virtual address is illustrated in FIGURE 11-13 and

described in TABLE 11-17.
Chapter 11 Memory Management Unit 11-281



FIGURE 11-13 D-MMU TLB Data Access Address Format

11.9.9.6 Data MMU TLB Tag Read Register

The format for the Tag Read Register virtual address is described in TABLE 11-18 and

illustrated in FIGURE 11-14.

TABLE 11-17 TLB Data Access Register

Bit(s) Field Type Description

63:19 — — Reserved.

18 0 — Set to zero.

17:16 TLB # RW The TLB to access, as defined below.

15:12 — — Reserved.

11:3 TLB

Entry

RW The TLB entry number to be accessed, in the range 0 – 511. Not all

TLBs will have all 512 entries. All TLBs regardless of size are

accessed from 0 to N − 1, where N is the number of entries in the

TLB.

2:0 0 — Set to zero.

TLB # TLB Type # of Entries

0 Fully associative 64 KB, 512 KB, and

4 MB page size and locked pages

16

2 2-way associative 512 (D-MMU)

(dt512-0)

3 2-way associative 512 (D-MMU)

(dt512-1)

63 0

0

12 11 3 2

TLB Entry—

16 15

—TLB #

171819

0
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FIGURE 11-14 D-MMU TLB Tag Read Registers

11.9.9.7 Data MMU TLB Tag Access Register

An ASI store to the TLB Data Access or Data In Register initiates an internal atomic write to

the specified TLB entry. The TLB entry data is obtained from the store data, and the TLB

entry tag is obtained from the current contents of the TLB Tag Access Register.

11.9.9.8 Data TSB Tag Target Registers

The Data Translation Storage Buffer (dTSB) Tag Target Registers are simply bit-shifted

versions of the data stored in the Data Tag Access Registers. Since the Data Tag Access

Register is updated on an D-TLB miss, the Data Tag Target Registers appear to software to

be updated on an D-TLB miss. The D-MMU Tag Target Register is described in TABLE 11-19

and illustrated in FIGURE 11-15.

FIGURE 11-15 MMU Tag Target Registers

TABLE 11-18 D-MMU TLB Tag Read Registers

Bit(s) Field Type Description

63:13 VA RW The 51-bit virtual page number. In the fully associative TLB,

page offset bits for larger page sizes are stored in the TLB; that

is, VA<15:13>, VA<18:13>, and VA<21:13> for 64 KB, 512 KB,

and 4 MB pages, respectively. These values are ignored during

normal translation. When read, an implementation will return

either 0 or the value previously written to them.

12:0 Data Context RW The 13-bit context identifier.

63 013 12

Context<12:0>VA<63:13>

63 61 47 4160 48 42 0

Context000 — VA<63:22>
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11.9.9.9 Data TSB Base Registers

The TSB registers provide information for the hardware formation of TSB pointers and tag

target, to assist software in quickly handling TLB misses. If the TSB concept is not employed

in the software memory management strategy and therefore the Pointer and Tag Access

Registers are not used, then the TSB registers need not contain valid data.

The TSB register is illustrated in FIGURE 11-16 and described in TABLE 11-20.

FIGURE 11-16 MMU Data TSB Registers

TABLE 11-19 MMU Tag Target Registers

Bit(s) Field Type Description

63:61 000 — Set to 000.

60:48 Context<12:0> RW The context associated with the missing virtual address.

47:42 — — Reserved.

41:0 VA<63:22> RW The most significant bits of the missing virtual address.

TABLE 11-20 TSB Register Description

Bit(s) Field Type Description

63:13 Data TSB_Base RW Provides the base virtual address of the TSB. Software must ensure that the TSB

base is aligned on a boundary equal to the size of the TSB or both TSBs in the

case of a split TSB.

63 3 2 0

TSB_Base (virtual) TSB_Size

13 12

Split —

11
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11.9.9.10 Data TSB Extension Registers

The TSB Extension Registers provide information for the hardware formation of TSB

pointers and tag target, to assist software in handling TLB misses quickly. If the TSB concept

is not employed in the software memory management strategy and therefore the pointer and

Tag Access Registers are not used, then the TSB Extension Registers need not contain valid

data.

The TSB registers are defined as follows in FIGURE 11-17.

FIGURE 11-17 MMU Data TSB Extension Registers

12 Split RW When Split = 1, the TSB 64 KB pointer address is calculated assuming separate

(but abutting and equally sized) TSB regions for the 8 KB and the 64 KB TTEs. In

this case, TSB_Size refers to the size of each TSB. The TSB 8 KB pointer

address calculation is not affected by the value of the Split bit. When

Split = 0, the TSB 64 KB pointer address is calculated assuming that the same

lines in the TSB are shared by 8 KB and 64 KB TTEs, called a “common TSB”

configuration.

Caution: In the “common TSB” configuration (TSB.Split = 0), 8 KB and

64 KB page TTEs can conflict unless the TLB miss handler explicitly checks the

TTE for page size. Therefore, do not use the common TSB mode in an optimized

handler. For example, suppose an 8 KB page at VA = 200016 and a 64 KB page at

VA = 1000016 both exist — a legal situation. These both map to the second TSB

line (line 1) and have the same VA tag of 0. Therefore, there is no way for the miss

handler to distinguish these TTEs by the TTE tag alone, and unless the miss

handler checks the TTE data, it may load an incorrect TTE.

11:3 — — Reserved.

2:0 Data TSB_Size RW The UltraSPARC III Cu processor implements a 3-bit TSB_Size field.

The TSB_Size field provides the size of the TSB as follows:

• The number of entries in the TSB (or each TSB if split) = 512 × 2TSB_Size.

• The number of entries in the TSB ranges from 512 entries at

TSB_Size = 0 (8 KB common TSB, 16 KB split TSB), to 64K entries at

TSB_Size = 7 (1 MB common TSB, 2 MB split TSB).

Note: Any update to the TSB register immediately affects the data that are

returned from later reads of the Tag Target and TSB Pointer Registers.

TABLE 11-20 TSB Register Description (Continued)

Bit(s) Field Type Description

63 3 2 0

TSB_EXT<63:13> (virtual) TSB_Size

13 12

Split TSB_Hash

11
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In the UltraSPARC III Cu processor, TSB_Hash (bits 11:3 of the Extension Registers) are

exclusive-ORed with the calculated TSB offset to provide a “hash” into the TSB. Changing

the TSB_Hash field on a per-process basis minimizes the collision of TSB entries between

different processes.

The register field definitions are the same as for Data TSB Base Registers. The field can be

used either as a TSB_Hash, which is a representation of the context that generated the TLB

miss, or as an extension to the TSB_size field, depending on the implementation. In the

latter case, TSB pointer generation logic must incorporate the context ID into the process of

TSB pointer generation, as described in “TSB Pointer Formation” on page 254.

There are three TSB Extension Registers, one for each of the virtual address spaces (Primary,

Secondary, Nucleus); see TABLE 8-4 on page 8-193 for the ASI and VA of each register.

When a D-TLB miss occurs, an appropriate TSB Extension Register is selected and XORed

either with the dTSB Register or with context ID, depending on the implementation. The

result is then used to form a TSB pointer, as described in “TSB Pointer Formation” on

page 254.

11.9.9.11 Data TSB 8 KB and 64 KB Pointer and Direct Pointer Registers

The dTSB 8 KB and 64 KB registers are provided as an aid to software in determining the

location of the missing or trapping TTE in the software-maintained TSB. The TSB 8 KB and

64 KB Pointer Registers provide the possible locations of the 8 KB and 64 KB TTE,

respectively.

As a fine point, the bit that controls selection of 8 KB or 64 KB address formation for the

Direct Pointer Register is a state bit in the D-MMU that is updated during a

fast_data_access_protection exception. It records whether the page that hit in the TLB was a

64 KB page or a non-64 KB page, in which case, 8 KB is assumed.

The registers are illustrated in FIGURE 11-18, where VA<63:4> is the full virtual address of the

TTE in the TSB, as determined by the MMU hardware, and is described in “Hardware

Support for TSB Access” on page 253.

FIGURE 11-18 D-MMU TSB 8 KB/64 KB Pointer and D-MMU Direct Pointer Register

63 0

VA<63:4>

4 3

0
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TSB 8 KB and 64 KB Pointer Registers

The TSB Pointer Registers are implemented as a recorder of the current data stored in the

Tag Access Register and the TSB Extension Register. If the Tag Access Register or TSB

Extension Register is updated through a direct software write (through an STXA instruction),

then the values in the Pointer Registers will be updated as well.

Direct Pointer Register

The Direct Pointer Register is mapped by hardware to either the 8 KB or 64 KB Pointer

Register in the case of a fast_data_access_protection exception according to the known size

of the trapping TTE. In the case of a 512 KB or 4 MB page miss, the Direct Pointer Register

returns the pointer as if the fault were from an 8 KB page.

11.9.9.12 Data Synchronous Fault Status Registers (D-SFSR)

The D-MMU maintains its own SFSR Register. The SFSR is illustrated in FIGURE 11-19 and

described in TABLE 11-21.

FIGURE 11-19 MMU Data Synchronous Fault Status Registers (I-SFSR, D-SFSR)

TABLE 11-21 D-SFSR Bit Description

Bit(s) Field Type Description

63:25 — Reserved.

24 NF RW Set in the D-MMU if the faulting instruction was a non-faulting load (a load to

ASI_NOFAULT).

23:16 ASI RW Records the 8-bit ASI associated with the faulting instruction. This field is valid for both

D-MMU and I-MMU SFSRs and for all traps in which the FV bit is set. A trapping

alternate space load or store sets the ASI field to the ASI the instruction attempted to

reference. A trapping non-alternate-space load or store sets ASI to ASI_PRIMARY if

PSTATE.CLE = 0 or to ASI_PRIMARY_LITTLE if PSTATE.CLE = 1. A

mem_address_not_aligned trap caused by a JMPL or RETURN either does not set

DSFSR.ASI or sets it as would a trapping non-alternate-space load or store.

15 TM RW D-TLB miss.

14:12 — Reserved.

63 1523 1114 7 5 3 16 4 2 0

Reserved ASI FT E W OW FVCT PR

24

—

16

TMNF

25 12
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11:7 FT RW Specifies the exact condition that caused the recorded fault, according to TABLE 11-22

following this table. In the D-MMU, the Fault Type field is valid only for

data_access_exception faults; there is no ambiguity in all other MMU trap cases. Note

that the hardware does not priority-encode the bits set in the fault type (FT) field; that is,

multiple bits can be set. In particular, the following ASI stores could set both the 0116

and 0816 Fault Type bits (the page is privileged, as well as storing to a read-only ASI):

stda %g0, [%g4]ASI_PRIMARY_NO_FAULT

stda %g0, [%g4]ASI_SECONDARY_NO_FAULT

stda %g0, [%g4]ASI_PRIMARY_NO_FAULT_LITTLE

stda %g0, [%g4]ASI_SECONDARY_NO_FAULT_LITTLE

6 E RW Side-effect bit. Associated with the faulting data access or flush instruction. Set by

translating ASI accesses (see Chapter 8 “Address Space Identifiers”) that are mapped by

the TLB with the E bit set and bypass ASIs 1516 and 1D16. Other cases that update the

SFSR (including bypass or internal ASI accesses) set the E bit to 0.

5:4 CT RW Context Register selection, as described below. The context is set to 112 when the access

does not have a translating ASI.

3 PR RW Privilege bit. Set if the faulting access occurred while in privileged mode. This field is

valid for all traps in which the FV bit is set.

2 W RW Write bit. Set if the faulting access indicated a data write operation (a store or atomic

load/store instruction).

1 OW RW Overwrite bit. When the MMU detects a fault, the Overwrite bit is set to 1 if the Fault

Valid bit has not been cleared from a previous fault; otherwise, it is set to 0.

0 FV RW Fault Valid bit. Set when the MMU detects a fault; it is cleared only on an explicit ASI

write of 0 to the SFSR. This bit is not set on an MMU miss. Therefore, overwrites of

MMU misses cannot be detected.

When the Fault Valid bit is not set, the values of the remaining fields in the SFSR and

SFAR are undefined for traps other than an MMU miss.

TABLE 11-21 D-SFSR Bit Description (Continued)

Bit(s) Field Type Description

Context ID I-MMU Context D-MMU Context

00 Primary Primary

01 Reserved Secondary

10 Nucleus Nucleus

11 Reserved Reserved
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TABLE 11-22 describes the SFSR fault type field (FT<11:7>).

Note – A fast_data_access_MMU_miss trap causes the D-SFSR and the D-SFAR to be

overwritten without setting either the OW or the FV bits.

The SFSR and the Tag Access Registers both maintain state concerning a previous

translation causing an exception. The update policy for the SFSR and the Tag Access

Registers is shown in TABLE 11-2 on page 11-259.

11.9.9.13 Synchronous Fault Addresses

This section describes how the D-MMU obtains a fault address.

D-MMU Fault Address

The Data Synchronous Fault Address Register contains the virtual memory address of the

fault recorded in the D-MMU Synchronous Fault Status Register. The D-SFAR can be

thought of as an additional field of the D-SFSR.

The D-SFAR register is illustrated in FIGURE 11-20, where Fault Address is the virtual

address associated with the translation fault recorded in the D-SFSR; the field is set on an

MMU miss fault or when the D-SFSR Fault Valid (FV) bit is set.

FIGURE 11-20 MMU Data Synchronous Fault Address Register (D-SFAR)

TABLE 11-22 MMU Synchronous Fault Status Register FT (Fault Type) Field

Data
FT[6:0
] Fault Type

Data 0116 Privilege violation.

D 0216 Non-faulting load instruction to page marked with E bit. This bit is 0 for internal

ASI accesses.

D 0416 Atomic (including 128-bit atomic load) to page marked non-cacheable.

D 0816 Illegal LDA/STA ASI value, VA, RW, or size. Does not include cases where 0216

and 0416 are set.

D 1016 Access other than non-faulting load to page marked NFO. This bit is 0 for

internal ASI accesses.

63 0

Fault Address (VA<63:0>)
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11.9.9.14 Data MMU Demap

Demap is an MMU operation, not an MMU register. Demap removes selected entries from

the TLBs.

Note – A store to a D-MMU Register requires a MEMBAR #Sync, FLUSH, DONE, or RETRY
before the point that the effect must be visible to load/store/atomic accesses. A FLUSH,

DONE, or RETRY is needed before the point that the effect must be visible to instruction

accesses, that is, MEMBAR #Sync is not sufficient. In either case, one of these instructions

must be executed before the next non-internal store or load of any type and on or before the

delay slot of a delayed-control transfer instruction of any type. This action is necessary to

avoid data corruption.

Three types of demap operations are provided:

• Demap page — Removes any TLB entry that matches exactly the specified virtual page

and context number. It is illegal to have more than one TLB entry per page.

Demap page may, in fact, remove more than one TLB entry in the condition of a multiple

TLB match, but this is an error condition of the TLB and has undefined results.

• Demap context — Removes any TLB entries that match the specified context identifier.

• Demap all — Removes all of the TLB entries from the TLB except for locked entries.

Demap is initiated by an STXA with ASI 5F16 for D-MMU demap. It removes TLB entries

from an on-chip TLB. No bus-based demap is supported. The demap address format is

illustrated in FIGURE 11-21 and described in TABLE 11-23.

FIGURE 11-21 MMU Demap Operation Address and Data Formats

0Context

012
Address

Data

3463 13

Reserved

7 56

Type

063

VA<63:13>

—

8
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A demap operation does not invalidate the TSB in memory. Software must modify the

appropriate TTEs in the TSB before initiating a demap operation.

Except for Demap All, the demap operation does not depend on the value of any entry’s lock

bit. A demap operation demaps both locked entries and unlocked entries.

The demap operation produces no output.

The following are Data demap page types:

• Data Demap Page (Type = 0). Demap Page removes the TTE (from the specified TLB),

matching the specified virtual page number and Context Register. The match condition

with regard to the global bit is the same as a normal TLB access; that is, if the global bit

is set, the contexts do not need to match.

Virtual page offset bits 15:13, 18:13, and 21:13 for 64 KB, 512 MB, and 4 MB page TLB

entries, respectively, do not participate in the match for that entry. This is the same

condition as for a translation match.

TABLE 11-23 Demap Address Format

Bit(s) Field Type Description

63:13 VA<63:13> RW The virtual page number of the TTE to be removed from the TLB for Demap

Page.

12:8 Reserved This field is ignored by hardware.

7:6 Type RW The type of demap operation, as described below:

5:4 Context ID RW Context Register selection, as described below. Use of the reserved value causes

the demap to be ignored.

3:0 0 Set to zero.

Type Field Demap Operation

0 Demap page — see page 290

1 Demap context — see page 290

2 Demap all — see page 290

3 Reserved — Ignored

Context ID Field Context Used in Demap

00 Primary

01 Secondary (D-MMU only)

10 Nucleus

11 Reserved
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Note – Each Demap Page operation removes only one TLB entry. A demap of a 64 KB,

512 KB, or 4 MB page does not demap any smaller page within the specified virtual address

range.

• Data Demap Context (Type = 1). Demap Context removes from the TLB all TTEs

having the specified context. If the TTE Global bit is set, then the TTE is not removed. VA
is ignored for this operation.

• Data Demap All (Type = 2). Demap All removes all TTEs that do not have the lock bit

set. VA and Context are ignored for this operation.

11.9.9.15 Data TLB CAM Diagnostic Register

Accesses to the TLB Diagnostic Register require the virtual address to be set to access a TLB

and TLB entry. The virtual address format of the TLB Diagnostic Register virtual address is

described in TABLE 11-24 and illustrated in FIGURE 11-22.

FIGURE 11-22 MMU TLB Diagnostic Access Virtual Address

TABLE 11-24 TLB Diagnostic Register Virtual Address Format

Bit(s) Field Type Description

63:19 — — Reserved.

18 1 — Set to one. Selects CAM Diagnostic mode for the t16

TLB only (the other two TLBs do not employ CAM

registers).

17:16 (D) TLB # RW The number of the TLB to access, as follows:

63 0

0

12 11 3 2

TLB Entry #—

16 15

—TLB #

171819

1

TLB TLB Type Entries

0 Fully associative 64 KB, 512 KB,

and 4 MB page size and locked

pages

16 (dt16)

2 2-way associative 8 KB, 64 KB,

512 KB, and 4 MB locked/unlocked

page size

512

(dt512_0)

3 2-way associative 8 KB, 64 KB,

512 KB, and 4 MB locked/unlocked

page size

512

(dt512_1)
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The format for the CAM Diagnostic Register is described in TABLE 11-25 and illustrated in

FIGURE 11-23.

FIGURE 11-23 D-MMU TLB CAM Diagnostic Registers

An ASI store to the TLB CAM Diagnostic Register initiates an internal atomic write to the

specified TLB entry. The TLB RAM and CAM entry data are obtained from the store data.

An ASI load from the TLB CAM Diagnostic Register initiates an internal read of the data

portion of the specified TLB RAM and CAM entry.

15:12 — — Reserved.

11:3 TLB Entry # RW The number of the TLB entry to be accessed, in the

range 0 − 511. Not all TLBs will have all 512 entries.

All TLBs regardless of size are accessed from 0 to N − 1,

where N is the number of entries in the TLB.

2:0 0 — Set to zero.

TABLE 11-25 CAM Diagnostic Register

Bit(s) Field Type Description

63:7 — — Reserved.

6 LRU RW The LRU bit in the CAM, read-write.

5:3 RAM SIZE R The 3-bit page size field from the RAM, read-only.

2:0 CAM SIZE R The 3-bit page size field from the CAM, read-only.

TABLE 11-24 TLB Diagnostic Register Virtual Address Format (Continued)

Bit(s) Field Type Description

63 07 6

CAM SIZERAM SIZELRU

5 3 2

—

Chapter 11 Memory Management Unit 11-293



11.9.10 D-MMU Bypass

In a bypass access, the D-MMU sets the physical address equal to the truncated virtual

address; that is, the low-order bits of the virtual address are passed through without

translation as the physical address. The physical page attribute bits are set as shown in

TABLE 11-26.

Compatibility Note – The virtual address is wider than the physical address; thus, there

is no need to use multiple ASIs to fill in the high-order physical address bits, as is done in

SPARC V8 machines.

11.10 Instruction Translation Lookaside Buffer

In the I-MMU, a 128-entry, 2-way associative TLB (it128) is used exclusively for 8 KB,

unlocked page translations, and a 16-entry fully associative TLB is used for 64 KB, 512 KB,

and 4 MB page translations and locked pages of all four sizes.

11.10.1 I-TLB Access Operation

When an instruction fetch access is issued, its VA and Context are presented to the I-MMU.

Both I-TLBs (it128 and it16) are accessed in parallel. The two possible 8K page entries in

the it128 are checked to determine a hit.

There are two possible Context numbers active in the CPU, Primary (PContext field in

ASI_PRIMARY_CONTEXT_REG), and Nucleus (default to Context = 0). When TL = 0

primary context number is used and when TL > 0, nucleus context number is used.

TABLE 11-26 Bypass Attribute Bits

ASI

Attribute Bits

CP IE CV E P W NFO Size

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE

1 0 0 0 0 1 0 8 KB

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

0 0 0 1 0 1 0 8 KB
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Since two I-TLBs are being accessed in parallel, software must guarantee that there are no

duplicate (stale) entry hits. Most of this responsibility lies in software (operating system)

with the hardware providing some assistance to support full software control. A set of rules

on I-TLB replacement, demap and context switch must be followed to maintain consistent

and correct behavior.

11.10.2 I-TLB Automatic Replacement

An I-TLB miss fast trap handler utilizes the automatic (hardware) replacement write using

store ASI_ITLB_DATA_IN_REG.

When I-TLB miss, or DATA_ACCESS_EXCEPTION, or

FAST_DATA_ACCESS_PROTECTION is detected, hardware automatically saves the

missing VA and context to the Tag Access Register (ASI_ IMMU_TAG_ACCESS). To ease

indexing of the it128 when the TTE data is presented (via STXA
ASI_ITLB_DATA_IN_REG), the missing page size information of it128 is captured into a

new Extension Register, called ASI_ IMMU_TAG_ACCESS_EXT.

CODE EXAMPLE 11-3 shows the hardware I-TLB replacement algorithm.

CODE EXAMPLE 11-3 I-TLB Hardware Replacement Algorithm

        if (TTE to fill is a locked page, i.e., L bit is set) {

            fill TTE to it16;

        } else {

            if (TTE’s Size == 8K) {

                if (one of the 2 same-index entries is invalid) {

                    fill TTE to an invalid entry

                } else if (no entry is valid |

                           both entries are valid) {

                    case (LFSR[0]) {

                        0: fill TTE to it128 way0;

                        1: fill TTE to it128 way1;

                    }

                }

            } else {

fill TTE to it16;

            }

        }
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11.10.3 I-TLB Access Summary

TABLE 11-27 lists the I-MMU TLB access summary.

TABLE 11-27 I-MMU TLB Access Summary

Software Operation Effect on MMU Physical Registers

Load/
Store Register TLB Tag Array TLB Data Array Tag Access SFSR

Load Tag Read Contents returned.

From entry

specified by

LDXA’s access

No effect No effect No effect

Tag

Access

No effect No effect Contents

returned.

No effect

Data In Trap with data_access_exception

Data

Access

No effect Contents

returned. From

entry specified by

LDXA’s access

No effect No effect

SFSR No effect No effect No effect Contents

returned

SFAR No effect No effect No effect No effect
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Store Tag Read Trap with data_access_exception

Tag Access No effect No effect Written with store

data

No effect

Data In TLB entry

determined by

replacement policy

written with contents

of Tag Access

Register

TLB entry

determined by

replacement policy

written with store

data

No effect No effect

Data Access TLB entry specified

by STXA address

written with contents

of Tag Access

Register

TLB entry specified

by STXA address

written with store

data

No effect No effect

SFSR No effect No effect No effect Written with

store data

SFAR No effect No effect No effect No effect

TLB

miss

No effect No effect Written with VA

and context of

access

Written with

fault status

of faulting

instruction

and page

sizes at

faulting

context for

two 2-way

set

associative

TLB

TABLE 11-27 I-MMU TLB Access Summary (Continued)

Software Operation Effect on MMU Physical Registers

Load/
Store Register TLB Tag Array TLB Data Array Tag Access SFSR
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11.10.4 I-MMU Operation Summary

The behavior of the I-MMU is summarized in TABLE 11-28.

11.10.5 Internal Registers and ASI Operations

In this section, how to access MMU registers is first described followed by the registers

themselves and are described as follows:

• I-MMU TLB Tag Access Registers

• I-TLB Data In, Data Access, and Tag Read Registers

• I-TSB Tag Target Registers

• I-TSB Base Registers

• I-TSB Extension Registers

• I-TSB 8 KB and 64 KB Pointer and Direct Pointer Registers

• Instruction Synchronous Fault Status Registers (I-SFSR, D-SFSR)

• MMU Synchronous Fault Address Register

Following the register descriptions, the Instruction demap operation is described.

11.10.5.1 Instruction MMU TLB Tag Access Registers

In each MMU, the Tag Access Register is used as a temporary buffer for writing the TLB

Entry tag information. The Tag Access Register holds the tag portion, and the Data In or

Data Access Register holds the data being accessed.

The Tag Access Register can be updated during either of the following operations:

• When the MMU signals a trap due to a miss, exception, or protection

The MMU hardware automatically writes the missing VA and the appropriate context into

the Tag Access Register to facilitate formation of the TSB Tag Target Register. One

exception is that after a data_access_exception, the contents of the Context field of the

I-MMU Tag Access Register are undefined.

TABLE 11-28 I-MMU Table of Operations for Normal ASIs

Condition Behavior

PRIV mode TLB Miss P = 0 P = 1

0 Imiss OK Iexc

1 Imiss OK OK
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• An ASI write to the Tag Access Register

Before an ASI store to the TLB Data Access Registers, the operating system must set the

Tag Access Register to the values desired in the TLB Entry. Note that an ASI store to the

TLB Data In Register for automatic replacement also uses the Tag Access Register, but

typically the value written into the Tag Access Register by the MMU hardware is

appropriate.

Note – Any update to the Tag Access Registers immediately affects the data that is returned

from subsequent reads of the TSB Tag Target and TSB Pointer Registers.

The TLB Tag Access Register fields are defined in TABLE 11-29 and illustrated in

FIGURE 11-12.

FIGURE 11-24 I-MMU TLB Tag Access Registers

Caution – When the I-MMU causes a trap due to a protection violation or other exception,

software should use the context number from I-SFSR.CT instead of from the Context
field of the I-TLB Tag Access Register.

11.10.5.2 Instruction TLB Data In, Data Access, and Tag Read Registers

Access to the TLB is complicated because of the need to provide an atomic write of a TLB

entry data item (tag and data) that is larger than 64 bits, the need to replace entries

automatically through the TLB entry replacement algorithm as well as to provide direct

diagnostic access, and the need for hardware assist in the TLB miss handler.

TABLE 11-2 on page 11-259 shows when loads and stores update the Tag Access Registers.

TABLE 11-29 I-MMU Tag Access Register

Bit Field Type Description

63:13 VA RW The 51-bit virtual page number.

12:0 Context RW The 13-bit context identifier. This field reads 0 when there is no

associated context with the access. Its contents in the I-MMU are

undefined after a data_access_exception.

63 0

VA<63:13> Context<12:0>

13 12
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TABLE 11-30 shows how the Tag Read, Tag Access, Data In, and Data Access Registers

interact to provide atomic reads and writes to the TLBs.

An ASI load from the TLB Tag Read Register initiates an internal read of the tag portion of

the specified TLB entry.

11.10.5.3 Data In and Data Access Registers

The Data In and Data Access Registers are the means of reading and writing the TLB for all

operations. The TLB Data In Register is used for TLB miss handler automatic replacement

writes. The TLB Data Access Register is used for operating system and diagnostic directed

writes (writes to a specific TLB entry).

An ASI load from the TLB Data Access Register initiates an internal read of the data portion

of the specified TLB entry.

ASI loads from the TLB Data In Register are not supported.

TABLE 11-30 MMU TLB Access Summary

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB Tag Array TLB Data Array Tag Access Register

Load

Tag Read Contents returned. Entry

specified by STXA‘s access.

No effect No effect

Tag Access No effect No effect Contents returned

Data In Trap with data_access_exception.

Data Access No effect Contents returned. Entry

specified by STXA‘s

access.

No effect

Store

Tag Read Trap with data_access_exception.

Tag Access No effect No effect Written with store data

Data In TLB entry determined by

replacement policy written

with contents of Tag Access

Register

TLB entry determined by

replacement policy written

with store data

No effect

Data Access TLB entry specified by STXA
address written with contents

of Tag Access Register

TLB entry specified by

STXA address written with

store data

No effect

TLB miss No effect No effect Written with VA and

context of access
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An ASI store to the TLB Data In Register initiates an automatic atomic replacement of the

TLB Entry pointed to by an internal register that is updated by a proprietary replacement

algorithm. The TLB data and tag are formed as in the case of an ASI store to the TLB Data

Access Register.

Caution – Stores to the Data In Register are not guaranteed to replace the previous TLB

entry, causing a fault. In particular, to change an entry’s attribute bits, software must

explicitly demap the old entry before writing the new entry; otherwise, a multiple match

error condition can result.

Both the TLB Data In Register and the TLB Data Access Register use the TTE format shown

in FIGURE 11-3 on page 11-248. Refer to the description of the TTE data in “Translation

Table Entry” on page 248 for a complete description of the data fields.

Writes to the TLB Data In Register require the virtual address to be set to 0.

The format of the TLB Data Access Register virtual address is illustrated in FIGURE 11-25 and

described in TABLE 11-31.

FIGURE 11-25 I-MMU TLB Data Access Address

TABLE 11-31 TLB Data Access Register

Bit(s) Field Type Description

63:19 — — Reserved.

18 0 — Set to zero.

17:16 TLB # RW The TLB to access, as defined below.

63 0

0

10 9 3 2

     TLB Entry—

16 15

—TLB #

171819

0

TLB # TLB Type # of Entries

0 Fully associative 64 KB, 4 MB, and

512 KB page size and locked pages

16

2 2-way associative, 8 KB page size 128 (I-MMU)
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11.10.5.4 Instruction MMU TLB Tag Read Register

The format for the Tag Read Register virtual address is described in TABLE 11-32 and

illustrated in FIGURE 11-26.

FIGURE 11-26 I-MMU TLB Tag Read Registers

11.10.5.5 Instruction MMU TLB Tag Access Register

An ASI store to the TLB Data Access or Data In Register initiates an internal atomic write to

the specified TLB Entry. The TLB entry data are obtained from the store data, and the TLB

entry tag is obtained from the current contents of the TLB Tag Access Register.

15:10 — — Reserved.

9:3 TLB Entry RW For it128, the TLB entry number to be accessed, in the range

0 − 127. Therefore, all 7 bits of the TLB entry are used.

For it16, the TLB entry number to be accessed, in the range 0 − 15.

Therefore, all 4 bits of the TLB entry are used.

2:0 0 — Set to zero.

TABLE 11-32 I-MMU TLB Tag Read Register

Bit Field Type Description

63:13 VA RW The 51-bit virtual page number. In the fully associative TLB,

page offset bits for larger page sizes are stored in the TLB; that

is, VA<15:13>, VA<18:13>, and VA<21:13> for 64 KB, 512 KB,

and 4 MB pages, respectively. These values are ignored during

normal translation. When read, the UltraSPARC III Cu processor

will return either 0 or the value previously written to them.

11:0 Instruction

Context
RW The 13-bit context identifier.

TABLE 11-31 TLB Data Access Register (Continued)

Bit(s) Field Type Description

63 013 12

Context<12:0>VA<63:13>
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11.10.5.6 Instruction TSB Tag Target Registers

The I-TSB Tag Target Registers are simply bit-shifted versions of the data stored in the

Instruction Tag Access Registers, respectively. Since the Instruction Tag Access Register is

updated on an I-TLB miss, respectively, the Instruction Tag Target Registers appear to

software to be updated on an I-TLB miss. The MMU Tag Target Register is described in

TABLE 11-33 and illustrated in FIGURE 11-27.

FIGURE 11-27 MMU Tag Target Registers

11.10.5.7 Instruction TSB Base Registers

The Translation Storage Buffer (TSB) registers provide information for the hardware

formation of TSB pointers and tag target, to assist software in quickly handling TLB misses.

If the TSB concept is not employed in the software memory management strategy and

therefore the Pointer and Tag Access Registers are not used, then the TSB registers need not

contain valid data.

The TSB register is illustrated in FIGURE 11-28 and described in TABLE 11-34.

FIGURE 11-28 MMU Instruction TSB Registers

TABLE 11-33 MMU Tag Target Register

Bit(s) Field Type Description

63:61 000 — Set to 000.

60:48 Context<12:0> RW The context associated with the missing virtual address.

47:42 — — Reserved.

41:0 VA<63:22> RW The most significant bits of the missing virtual address.

63 61 47 4160 48 42 0

Context000 — VA<63:22>

63 3 2 0

TSB_Base (virtual) TSB_Size

13 12

Split —

11
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11.10.5.8 Instruction TSB Extension Registers

The TSB Extension Registers provide information for the hardware formation of TSB

pointers and tag target, to assist software in handling TLB misses quickly. If the TSB concept

is not employed in the software memory management strategy and therefore the pointer and

Tag Access Registers are not used, then the TSB Extension Registers need not contain valid

data.

The TSB registers are defined as follows in FIGURE 11-29.

TABLE 11-34 TSB Register Description

Bit Field Type Description

63:13 Instruction

TSB_Base
RW Provides the base virtual address of the Translation Storage Buffer. Software must

ensure that the TSB base is aligned on a boundary equal to the size of the TSB or

both TSBs in the case of a split TSB.

12 Split RW When Split = 1, the TSB 64 KB pointer address is calculated assuming separate

(but abutting and equally sized) TSB regions for the 8 KB and the 64 KB TTEs. In

this case, TSB_Size refers to the size of each TSB. The TSB 8 KB pointer

address calculation is not affected by the value of the Split bit. When

Split = 0, the TSB 64 KB pointer address is calculated assuming that the same

lines in the TSB are shared by 8 KB and 64 KB TTEs, called a “common TSB”

configuration.

Caution: In the “common TSB” configuration (TSB.Split = 0), 8 KB and

64 KB page TTEs can conflict unless the TLB miss handler explicitly checks the

TTE for page size. Therefore, do not use the common TSB mode in an optimized

handler. For example, suppose an 8 KB page at

VA = 200016 and a 64 KB page at VA = 1000016 both exist — a legal situation.

These both map to the second TSB line (line 1) and have the same VA tag of 0.

Therefore, there is no way for the miss handler to distinguish these TTEs by the

TTE tag alone, and unless the miss handler checks the TTE data, it may load an

incorrect TTE.

11:3 — — Reserved.

2:0 Instruction

TSB_Size
RW The UltraSPARC III Cu processor implements a 3-bit TSB_Size field.

The TSB_Size field provides the size of the TSB as follows:

• The number of entries in the TSB (or each TSB if split) = 512 × 2TSB_Size.

• The number of entries in the TSB ranges from 512 entries at

TSB_Size = 0 (8 KB common TSB, 16 KB split TSB), to 64K entries at

TSB_Size = 7 (1 MB common TSB, 2 MB split TSB).

Note: Any update to the TSB register immediately affects the data that are

returned from later reads of the Tag Target and TSB Pointer Registers.
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FIGURE 11-29 MMU Instruction TSB Extension Registers

In the UltraSPARC III Cu processor, TSB_Hash (bits 11:3 of the Extension Registers) are

exclusive-ORed with the calculated TSB offset to provide a “hash” into the TSB. Changing

the TSB_Hash field on a per-process basis minimizes the collision of TSB entries between

different processes.

There are two TSB Extension Registers, one for each of the virtual address spaces (Primary,

Nucleus).

When an I-TLB miss occurs, an appropriate TSB Extension Register is selected and XORed

with the I-TSB Register. The result is then used to form a TSB pointer, as described in “TSB

Pointer Formation” on page 254.

11.10.5.9 Instruction TSB 8 KB and 64 KB Pointer and Direct Pointer

Registers

The I-TSB 8 KB and 64 KB registers are provided as an aid to software in determining the

location of the missing or trapping TTE in the software-maintained TSB. The TSB 8 KB and

64 KB Pointer Registers provide the possible locations of the 8 KB and 64 KB TTE,

respectively.

As a fine point, the bit that controls selection of 8 KB or 64 KB address formation for the

Direct Pointer Register is a state bit in the I-MMU that is updated during a

fast_data_access_protection exception. It records whether the page that hit in the TLB was a

64 KB page or a non-64 KB page, in which case, 8 KB is assumed.

The registers are illustrated in FIGURE 11-30, where VA<63:4> is the full virtual address of the

TTE in the TSB, as determined by the MMU hardware, and is described in “Hardware

Support for TSB Access” on page 253.

FIGURE 11-30 I-MMU TSB 8 KB/64 KB Pointer and I-MMU Direct Pointer Register

63 3 2 0

TSB_EXT<63:13> (virtual) TSB_Size

13 12

Split TSB_Hash

11

63 0

VA<63:4>

4 3

0
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TSB 8 KB and 64 KB Pointer Registers

The TSB Pointer Registers are implemented as a reorder of the current data stored in the Tag

Access Register and the TSB Extension Register. If the Tag Access Register or TSB

Extension Register is updated through a direct software write (through an STXA instruction),

then the values in the Pointer Registers will be updated as well.

Direct Pointer Register

The Direct Pointer Register is mapped by hardware to either the 8 KB or 64 KB Pointer

Register in the case of a fast_data_access_protection exception according to the known size

of the trapping TTE. In the case of a 512 KB or 4 MB page miss, the Direct Pointer Register

returns the pointer as if the fault were from an 8 KB page.

11.10.5.10 Instruction Synchronous Fault Status Registers (I-SFSR)

The I-MMU maintains its own SFSR Register. The SFSR is illustrated in FIGURE 11-31 and

described in TABLE 11-35.

FIGURE 11-31 MMU Instruction Synchronous Fault Status Registers (I-SFSR, D-SFSR)

TABLE 11-35 SFSR Bit Description

Bit(s) Field Type Description

63:25 — Reserved.

24 NF RW Set in the I-MMU if the faulting instruction was a non-faulting load (a load to

ASI_NOFAULT) (I-MMU = 0). NF is always 0 in I-SFSR.

23:16 ASI RW Records the 8-bit ASI associated with the faulting instruction. This field is valid for both

I-MMU and I-MMU SFSRs and for all traps in which the FV bit is set. A trapping

alternate space load or store sets the ASI field to the ASI the instruction attempted to

reference. A trapping non-alternate-space load or store sets ASI to ASI_PRIMARY if

PSTATE.CLE = 0 or to ASI_PRIMARY_LITTLE if PSTATE.CLE = 1. A

mem_address_not_aligned trap caused by a JMPL or RETURN either does not set

DSFSR.ASI or sets it as would a trapping non-alternate-space load or store.

15 TM RW I-TLB miss.

14:12 — Reserved.

63 1523 1114 7 5 3 16 4 2 0

Reserved ASI FT E W OW FVCT PR

24

—

16

TMNF

25 12
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TABLE 11-36 describes the SFSR fault type field (FT<11:7>).

Note – A fast_instruction_MMU_miss trap causes the SFSR and the SFAR to be

overwritten without setting either the OW or the FV bits.

11:7 FT RW Specifies the exact condition that caused the recorded fault, according to TABLE 11-35

following this table. In the I-MMU, the Fault Type field is valid only for

data_access_exception faults; there is no ambiguity in all other MMU trap cases. Note

that the hardware does not priority-encode the bits set in the fault type (FT) field; that is,

multiple bits can be set. In particular, the following ASI stores could set both the 0116

and 0816 Fault Type bits (the page is privileged, as well as storing to a read-only ASI):

stda %g0, [%g4]ASI_PRIMARY_NO_FAULT

stda %g0, [%g4]ASI_SECONDARY_NO_FAULT

stda %g0, [%g4]ASI_PRIMARY_NO_FAULT_LITTLE

stda %g0, [%g4]ASI_SECONDARY_NO_FAULT_LITTLE

The FT field in the I-MMU SFSR always reads 0 for fast_instruction_access_MMU_miss
and reads 0116 for instruction_access_exception, as all other fault types do not apply.

6 E RW Side-effect bit. It always reads as 0 in the I-MMU.

5:4 CT RW Context Register selection, as described below. The context is set to 112 when the access

does not have a translating ASI.

3 PR RW Privilege bit. Set if the faulting access occurred while in privileged mode. This field is

valid for all traps in which the FV bit is set.

2 W RW Write bit. This bit always reads as 0 in the I-MMU SFSR.

1 OW RW Overwrite bit. When the MMU detects a fault, the Overwrite bit is set to 1 if the Fault

Valid bit has not been cleared from a previous fault; otherwise, it is set to 0.

0 FV RW Fault Valid bit. Set when the MMU detects a fault; it is cleared only on an explicit ASI

write of 0 to the SFSR. This bit is not set on an MMU miss. Therefore, overwrites of

MMU misses cannot be detected.

When the Fault Valid bit is not set, the values of the remaining fields in the SFSR and

SFAR are undefined for traps other than an MMU miss.

TABLE 11-36 MMU Synchronous Fault Status Register FT (Fault Type) Field

Instruction FT[6:0] Fault Type

Instruction 0116 Privilege violation.

TABLE 11-35 SFSR Bit Description (Continued)

Bit(s) Field Type Description

Context ID I-MMU Context D-MMU Context

00 Primary Primary

01 Reserved Secondary

10 Nucleus Nucleus

11 Reserved Reserved
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The SFSR and the Tag Access Registers both maintain state concerning a previous

translation causing an exception. The update policy for the SFSR and the Tag Access

Registers is shown in TABLE 11-2 on page 11-259.

11.10.5.11 Synchronous Fault Addresses

This section describes how the I-MMU obtains a fault address.

I-MMU Fault Address

There is no I-MMU Synchronous Fault Address Register. Instead, software must read the

TPC register appropriately as discussed here.

For fast_instruction_access_MMU_miss traps, TPC contains the virtual address that was not

found in the I-MMU TLB.

For instruction_access_exception traps, “privilege violation” fault type, TPC contains the

virtual address of the instruction in the privileged page that caused the exception.

11.10.5.12 Instruction MMU Demap

Demap is an MMU operation, not an MMU register. Demap removes selected entries from

the TLBs.

Note – A store to an I-MMU Register requires a MEMBAR #Sync, FLUSH, DONE, or RETRY
before the point that the effect must be visible to load/store/atomic accesses. A FLUSH,

DONE, or RETRY is needed before the point that the effect must be visible to instruction

accesses, that is, MEMBAR #Sync is not sufficient. In either case, one of these instructions

must be executed before the next non-internal store or load of any type and on or before the

delay slot of a delayed-control transfer instruction of any type. This action is necessary to

avoid data corruption.

Three types of demap operations are provided:

• Demap page — Removes any TLB entry that matches exactly the specified virtual page

and context number. It is illegal to have more than one TLB entry per page.

Demap page may, in fact, remove more than one TLB entry in the condition of a multiple

TLB match, but this is an error condition of the TLB and has undefined results.

• Demap context — Removes any TLB entries that match the specified context identifier.

• Demap all — Removes all of the TLB entries from the TLB except for locked entries.
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Demap is initiated by an STXA with ASI 5716 for I-MMU demap. It removes TLB entries

from an on-chip TLB. No bus-based demap is supported. The demap address format is

illustrated in FIGURE 11-32 and described in TABLE 11-37.

FIGURE 11-32 MMU Demap Operation Address and Data Formats

A demap operation does not invalidate the TSB in memory. Software must modify the

appropriate TTEs in the TSB before initiating a demap operation.

Except for Demap All, the demap operation does not depend on the value of any entry’s lock

bit. A demap operation demaps both locked entries and unlocked entries.

TABLE 11-37 Demap Address Format

Bit(s) Field Type Description

63:13 VA<63:13> RW The virtual page number of the TTE to be removed from the TLB for Demap

Page.

12:8 Ignored This field is ignored by hardware.

7:6 Type RW The type of demap operation, as described below:

5:4 Context ID RW Context Register selection, as described below. Use of the reserved value causes

the demap to be ignored.

3:0 0 — Set to zero.

0Context

012
Address

Data

3463 13

Ignored

7 56

Type

063

VA<63:13>

—

8

Type Field Demap Operation

0 Demap page — see page 308

1 Demap context — see page 308

2 Demap all — see page 308

3 Reserved — Ignored

Context ID Field Context Used in Demap

00 Primary

01 Reserved
10 Nucleus

11 Reserved
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The demap operation produces no output.

The following are Instruction/Data demap page types:

• Instruction Demap Page (Type = 0). Demap Page removes the TTE (from the specified

TLB), matching the specified virtual page number and Context Register. The match

condition with regard to the global bit is the same as a normal TLB access; that is, if the

global bit is set, the contexts do not need to match.

Virtual page offset bits 15:13, 18:13, and 21:13 for 64 KB, 512 KB, and 4 MB page TLB

entries, respectively, do not participate in the match for that entry. This is the same

condition as for a translation match.

Note – Each Demap Page operation removes only one TLB entry. A demap of a 64 KB,

512 KB, or 4 MB page does not demap any smaller page within the specified virtual address

range.

• Instruction Demap Context (Type = 1). Demap Context removes from the TLB all

TTEs having the specified context. If the TTE Global bit is set, then the TTE is not

removed. VA is ignored for this operation.

• Instruction Demap All (Type = 2). Demap All removes all TTEs that do not have the

lock bit set. VA and Context are ignored for this operation.

11.10.5.13 Instruction TLB Diagnostic Register

Accesses to the TLB Diagnostic Register require the virtual address to be set to access a TLB

and TLB entry. The format of the TLB Diagnostic Register virtual address is described

TABLE 11-38 and illustrated in FIGURE 11-33.

FIGURE 11-33 MMU TLB Diagnostic Access Virtual Address Format

63 0

0

10 9 3 2

TLB Entry #—

16 15

—TLB #

171819

1
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11.10.6 I-MMU Bypass

The I-MMU can only be bypassed by being disabled.

TABLE 11-38 MMU TLB Diagnostic Register Virtual Address

Bit Field Type Description

63:19 — — Reserved.

18 1 — Set to one.

17:16 TLB # RW The number of the table to access, as follows:

15:10 — — Reserved.

9:3 TLB Entry # RW For it128, the TLB entry number to be accessed, in the

range 0 – 127. Therefore, all 7 bits of the TLB entry are

used.

For it16, the TLB entry number to be accessed, in the range

0 – 15. Therefore, all 4 bits of the TLB entry are used.

2:0 0 — Set to zero.

TLB TLB Type Entries

0 Fully associative 64 KB,

4 MB, and 512 KB page size

and locked pages (all sizes)

16 (it16)

2 2-way associative 8 KB page

size

128 (it128)
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CHAPTER 12

Traps and Trap Handling

A trap is a vectored transfer of control to supervisor software through a trap table that

contains the first eight (32 for clean_window, spill, fill, fast_instruction_access_MMU_miss,

fast_data_access_MMU_miss, and fast_data_access_protection traps) instructions of each

trap handler. The base address of the table is established by supervisor software, by writing

the Trap Base Address (TBA) register. The displacement within the table is determined by the

trap type and the current trap level (TL). One-half of the table is reserved for hardware traps;

one-quarter is reserved for software traps generated by Tcc instructions; the remaining

quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to do the following:

1. Save certain processors state (program counters, CWP, ASI, CCR, PSTATE, and the trap

type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an instruction induced exception, a reset, an

asynchronous error, or an interrupt request not directly related to a particular instruction. The

processor must appear to behave as though, before executing each instruction, it determines

if there are any pending exceptions or interrupt requests. If there are pending exceptions or

interrupt requests, the processor selects the highest priority exception or interrupt request and

causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue

executing the current instruction stream without software intervention. A trap is the action

taken by the processor when it changes the instruction flow in response to the presence of an

exception, interrupt, or Tcc instruction.
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12
A catastrophic error exception is due to the detection of a hardware malfunction, which due

to the nature of the error, the state of the machine at the time of the exception cannot be

restored. Since the machine state cannot be restored, execution after such an exception may

not be resumable. An example of such an error is an uncorrectable bus parity error.

Catastrophic errors cause deferred or disrupting traps.

Traps are described in the following sections:

• Processor States, Normal and Special Traps

• Trap Categories

• Trap Control

• Trap-Table Entry Addresses

• Trap Processing

• Exception and Interrupt Descriptions

12.1 Processor States, Normal and Special Traps

The processor is always in one of three discrete states:

• execute_state, which is the normal execution state of the processor

• RED_state (Reset, Error, and Debug state), which is a restricted execution state

reserved for processing traps that occur when TL = MAXTL – 1, and for processing

hardware-initiated and software-initiated resets

• error_state, which is a halted state that is entered as a result of a trap when

TL = MAXTL

Traps processed in execute_state are called normal traps. Traps processed in

RED_state are called special traps.

FIGURE 12-1 shows the processor state diagram.
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FIGURE 12-1 Processor State Diagram

12.1.1 RED_state

RED_state is an acronym for Reset, Error, and Debug state. The processor enters

RED_state under any one of the following conditions:

• A trap is taken when TL = MAXTL –1.

• A POR, WDR, or XIR reset occurs.

• An SIR occurs when TL < MAXTL.

• System software sets PSTATE.RED = 1.

RED_state serves two mutually exclusive purposes:

• During trap processing, it indicates that no more trap levels are available; that is, if

another nested trap is taken, the processor will enter error_state and halt.

RED_state provides system software with a restricted execution environment.

• It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in

RED_state; when this bit is clear, the processor is not in RED_state, independent of the

value of TL. Executing a DONE or RETRY instruction in RED_state restores the stacked

copy of the PSTATE register, which clears the PSTATE.RED flag if the stacked copy had it

RED_stateexecute_state error_state

POR,

Including Power OFF

Trap @

Trap or SIR @
MAXTL

Trap @
TL = MAXTL - 1

DONE,

TL = MAXTL

RED = 1

RED = 0

XIR

Any State

Trap or SIR @
TL < MAXTL

Trap @
TL < MAXTL - 1

Trap or SIR @
TL < MAXTL,

RETRY,
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cleared. System software can also set or clear the PSTATE.RED flag with a WRPR
instruction, which also forces the processor to enter or exit RED_state, respectively. In this

case, the WRPR instruction should be placed in the delay slot of a jump so that the program

counter (PC) can be changed in concert with the state change.

Programming Notes – Setting TL = MAXTL with a WRPR instruction does not also set

PSTATE.RED = 1 nor does it alter any other machine state. The values of PSTATE.RED
and TL are independent.

Setting PSTATE.RED with a WRPR instruction causes the processor to execute in

RED_state. However, it is different from a RED_state trap in the sense that there are no

trap related changes in the machine state (for example, TL does not change).

12.1.1.1 RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state use

an abbreviated trap vector. The RED_state trap vector is constructed so that it can overlay

the normal trap vector, if necessary. TABLE 12-1 illustrates the RED_state trap vector

layout.

†TT = 2 if a WDR occurs while the processor is not in error_state; TT = trap type of the exception that caused entry into

error_state if a WDR occurs in error_state.

‡TT = 3 if an externally_initiated_reset (XIR) occurs while the processor is not in error_state; TT = trap type of the

exception that caused entry into error_state if the externally initiated reset occurs in error_state.

*TT = trap type of the exception. See TABLE 12-3.

When the UltraSPARC III Cu processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state trap vector base address (RSTVaddr);

the base address is at virtual address FFFF FFFF F000 000016, which passes through to

physical address 7FF F000 000016.

TABLE 12-1 RED_state Trap Vector Layout

Offset TT Reason

0016 0 Reserved (SPARC V8 reset)

2016 1 Power-on reset (POR)

4016 2† Watchdog reset (WDR)

6016 3‡ Externally initiated reset (XIR)

8016 4 Software-initiated reset (SIR)

A016 * All other exceptions in RED_state
12-318 UltraSPARC III Cu User’s Manual • January 2004



12.1.1.2 RED_state Execution Environment

In RED_state, the processor is forced to execute in a restricted environment by overriding

the values of some processor controls and state registers.

The values are overridden, not set, allowing them to be switched atomically.

When RED_state is entered because of component failures, the handler should attempt to

recover from potentially catastrophic error conditions or to disable the failing components.

When RED_state is entered after a reset, the software should create the environment

necessary to restore the system to a running state.

12.1.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases.

• Power-on reset (POR) — Implemented in hardware in UltraSPARC III Cu processors;

not really a trap.

• Watchdog reset (WDR) — Implemented in hardware in UltraSPARC III Cu processors;

this trap is used as a recovery mechanism from error_state in UltraSPARC III Cu.

Upon an entry to error_state, the processor automatically invokes a WDR to enter

RED_state.

• Externally initiated reset (XIR) — Implemented in hardware in UltraSPARC III Cu

processors; typically used as a nonmaskable interrupt method for debug.

In addition, the following trap is processed in RED_state if TL < MAXTL when the trap

is taken. Otherwise, it is processed in error_state.

• Software-initiated reset (SIR)

Traps that occur when TL = MAXTL – 1 also set PSTATE.RED = 1; that is, any trap handler

entered with TL = MAXTL runs in RED_state.

Any non-reset trap that sets PSTATE.RED = 1 or that occurs when PSTATE.RED = 1
branches to a special entry in the RED_state trap vector at RSTVaddr + A016.

12.1.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing.

Software should be designed to require only MAXTL – 1 trap levels for normal processing.

That is, any trap that causes TL = MAXTL is an exceptional condition that should cause entry

to RED_state.
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The architected value for MAXTL in the UltraSPARC III Cu processor is five; typical usage of

the trap levels is shown in TABLE 12-2.

Programming Note – To log the state of the processor, RED_state handler software

needs either a spare register or a preloaded pointer to a save area. To support recovery, the

operating system might reserve one of the alternate global registers (for example, %a7) for

use in RED_state.

12.1.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its

maximum supported trap level, that is, when TL = MAXTL.

The processor automatically exits error_state using WDR. The processor signals itself

internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x4016. WDR sets the processor in a state where it is prepared to diagnose

failures. A WDR behaves more like a trap than a reset.

WDR affects only one processor, rather than the entire system.

Note – When a window trap occurs at TL = MAXTL, the processor enters RED_state and

then performs a WDR. The current window pointer (CWP) is always updated as if the

window trap was taken successfully.

12.2 Trap Categories

An exception or interrupt request can cause any of the following trap types:

TABLE 12-2 Typical Usage for Trap Levels

TL Usage

0 Normal execution

1 System calls, interrupt handlers, instruction emulation

2 Window spill/fill

3 Page-fault handler

4 Reserved for error handling

5 RED_state handler
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• Precise trap

• Deferred trap

• Disrupting trap

• Reset trap

12.2.1 Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-visible

state has been changed by the trap-inducing instructions. When a precise trap occurs, several

conditions must be true:

• The PC saved in TPC[TL] points to the instruction that induced the trap, and the next

program counter (nPC) saved in TNPC[TL] points to the instruction that was to be

executed next.

• All instructions issued before the one that induced the trap have completed execution.

• Any instructions issued after the one that induced the trap remain not executed.

Among the actions the trap handler software might take after a precise trap are the following:

• Return to the instruction that caused the trap and re-execute it by executing a RETRY
instruction (PC ← old PC, nPC ← old nPC).

• Emulate the instruction that caused the trap and return to the succeeding instruction by

executing a DONE instruction (PC ← old nPC, nPC← old nPC + 4).

• Terminate the program or process associated with the trap.

12.2.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a

deferred trap may occur after program-visible state has been changed. Such state may have

been changed by the execution of either the trap inducing instruction itself or by one or more

other instructions.

Associated with a particular deferred trap implementation, the following must exist:

• An instruction that causes a potentially outstanding deferred trap exception to be taken as

a trap.

• Privileged instructions that access the state information needed by the supervisor software

to emulate the deferred trap inducing instruction and to resume execution of the trapped

instruction stream.
Chapter 12 Traps and Trap Handling 12-321



Programming Note – Resuming execution may require the emulation of instructions that

had not completed execution at the time of the deferred trap, that is, those instructions in the

deferred trap queue.

Among the actions software can take after a deferred trap are the following:

• Emulate the instruction that caused the exception, emulate or cause to execute any other

execution deferred instructions that were in an associated deferred trap state queue, and

use RETRY to return control to the instruction at which the deferred trap was invoked.

• Terminate the program or process associated with the trap.

12.2.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused by

a condition (for example, an interrupt) rather than directly by a particular instruction; the

cause distinguishes it from precise and deferred traps. When a disrupting trap has been

serviced, trap handler software normally arranges for program execution to resume where it

left off. This differentiates disrupting traps from reset traps, which trap to a unique reset

address from which execution of the program that was running when the reset occurred is

never expected to resume.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL)

register and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is

ignored when interrupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt

level is less than or equal to that specified in PIL.

A disrupting trap may be due either to an interrupt request not directly related to a previously

executed instruction or an exception related to a previously executed instruction. Interrupt

requests may be either internal or external. An interrupt request can be induced by the

assertion of a signal not directly related to any particular processor or memory state, for

example, the assertion of an “I/O done” signal.

A disrupting trap related to an earlier instruction causing an exception is similar to a deferred

trap in that it occurs after instructions following the trap inducing instruction have modified

the processor or memory state. The difference is that the condition that caused the instruction

to induce the disrupting trap may lead to unrecoverable errors, since the implementation may

not preserve the necessary state. An example is an ECC data access error reported after the

corresponding load instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Among the actions that trap-handler software might take after a disrupting trap are the

following:

• Use RETRY to return to the instruction at which the trap was invoked

(PC ← old PC, nPC ← old nPC).
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• Terminate the program or process associated with the trap.

12.2.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware determines

that the machine must be reset to a known state. Reset traps differ from disrupting traps in

that trap handler software for resets is never expected to resume execution of the program

that was running when the reset trap occurred.

The following reset traps are defined for the SPARC V9 architecture:

• Software-initiated reset (SIR) — Initiated by software by executing the SIR instruction.

• Power-on reset (POR) — Initiated when power is applied (or reapplied) to the processor.

• Watchdog reset (WDR) — Initiated in response to entry into error_state.

• Externally initiated reset (XIR) — Initiated in response to an external signal. This reset

trap is normally used for critical system events, such as power failure.

12.2.5 Uses of the Trap Categories

The SPARC V9 trap model makes the following stipulations:

1. Reset traps, except software_initiated_reset traps, occur asynchronously to program

execution.

2. When recovery from an exception can affect the interpretation of subsequent instructions,

such exceptions shall be precise. These exceptions include:

• software_initiated_reset

• instruction_access_exception

• privileged_action

• privileged_opcode

• trap_instruction

• instruction_access_error

• clean_window

• fp_disabled

• LDDF_mem_address_not_aligned

• STDF_mem_address_not_aligned

• tag_overflow

• spill_n_normal

• spill_n_other
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• fill_n_normal

• fill_n_other

3. An exception caused after the initial access of a multiple access load or store instruction

(load/store doubleword, block load, block store, LDSTUB, CASA, CASXA, or SWAP) that

causes a catastrophic exception may be precise, deferred, or disrupting. Thus, a trap due

to the second memory access can occur after the processor or memory state has been

modified by the first access.

4. Implementation-dependent catastrophic exceptions may cause precise, deferred, or

disrupting traps.

5. Exceptions caused by external events unrelated to the instruction stream, such as

interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap inducing instruction is

dispatched.

12.3 Trap Control

Several registers control how any given trap is processed:

• The IE field in PSTATE and the processor interrupt level PIL register control interrupt

processing.

• The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable (PEF)

field in PSTATE, and the trap enable mask (TEM) in the FSR control floating-point traps.

• The TL register, which contains the current level of trap nesting, controls whether a trap

causes entry to execute_state, RED_state, or error_state.

• PSTATE.TLE determines whether implicit data accesses in the trap routine will be

performed with the big-endian or little-endian byte order.

12.3.1 PIL Control

Between the execution of instructions, the IU prioritizes the outstanding exceptions and

interrupt requests. At any given time, only the highest priority exception or interrupt request

is taken as a trap. When there are multiple outstanding exceptions or interrupt requests, the

SPARC V9 architecture assumes that lower priority interrupt requests will persist and lower

priority exceptions will recur if an exception causing instruction is re-executed.

For interrupt requests, the IU compares the interrupt request level against the PIL register. If

the interrupt request level is greater than PIL, then the processor takes the interrupt request

trap, assuming there are no higher-priority exceptions outstanding.
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12.3.2 TEM Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled with

the user accessible TEM field of the FSR. If a particular bit of TEM is one, the associated

IEEE_754_exception can cause a fp_exception_ieee_754 trap.

If a particular bit of TEM is zero, the associated IEEE_754_exception does not cause a

fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s

accrued exception field (aexc).

If an IEEE_754_exception results in a fp_exception_ieee_754 trap, then the destination

f register, fccn, and aexc fields remain unchanged. However, if an IEEE_754_exception
does not result in a trap, then the f register, fccn, and aexc fields are updated to their new

values.

12.4 Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49 bits of the

trap-table base address. Bit 14 of the vector address (the TL>0 field) is set based on the

value of TL at the time the trap is taken, that is, to zero if TL = 0 and to one if TL > 0.

Bits 13–5 of the trap vector address are the contents of the TT register. The lowest five bits

of the trap address, bits 4–0, are always zero (hence, each trap-table entry is at least 25 or

32 bytes long). FIGURE 12-2 illustrates the trap vector address.

FIGURE 12-2 Trap Vector Address

12.4.1 Trap Table Organization

The trap table layout is illustrated in FIGURE 12-3.

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000
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FIGURE 12-3 Trap Table Layout

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 comprises

512 more 32-byte entries. Therefore, the total size of a full trap table is 512 × 32 × 2, or

32 KB. However, if privileged software does not use software traps (Tcc instructions) at

TL > 0, the table can be made 24 KB long.

12.4.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the current

9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an

address formed by the TBA register (TL>0) and TT[TL]. The lowest five bits of the address

are always zero; each entry in the trap table may contain the first eight instructions of the

corresponding trap handler.

Programming Notes – The trap type for the clean_window exception is 02416. Three

subsequent trap vectors (02516–02716) are reserved to allow for an inline (branchless) trap

handler. Three subsequent trap vectors are reserved for each spill/fill vector, to allow for an

inline (branchless) trap handler.

The spill/fill, clean_window, and MMU related traps (fast_instruction_access_MMU_miss,

fast_data_access_MMU_miss, and fast_data_access_protection) trap types are spaced such that

their trap-table entries are 128 bytes (32 instructions) long in the UltraSPARC III Cu processor.

This length allows the complete code for one spill/fill routine, a clean_window routine, or a

normal MMU miss handling routine to reside in one trap-table entry.

When a special trap occurs, the TT register is set as described in “RED_state” on page 317.

Control is then transferred into the RED_state trap table to an address formed by the

RSTVaddr and an offset depending on the condition.

Value of TL
Before the Trap

Trap Table Contents Trap Type

TL = 0

Hardware traps

Spill/fill traps

Software traps

Reserved

00016–07F16

08016–0FF16

10016–7F16

18016–1FF16

TL > 0

Hardware traps

Spill/fill traps

Software traps

Reserved

20016–27F16

28016–2FF16

30016–37F16

38016–3FF16
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TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are reserved

for software traps (traps caused by execution of a Tcc instruction). TT values 18016–1FF16

are reserved for future uses.

TT values 07016, 07116 and 07216 are reserved for fast_ECC_error, dcache_parity_error and

icache_parity_error, respectively.

The assignment of TT values to traps is shown in TABLE 12-3. Hardware must detect and trap

these exceptions and interrupts and must set the defined TT values. In the table,

AG = alternate globals, MG = MMU globals, and IG = interrupt globals.

TABLE 12-3 Exception and Interrupt Requests, by TT Value (1 of 3)

Exception or Interrupt Request TT

Global
Register
Set Priority

Reserved 00016 NA

power_on_reset 00116 AG 0

watchdog_reset 00216 AG 1

externally_initiaTrap Table Layoutted_reset 00316 AG 1

software_initiated_reset 00416 AG 1

RED_state_exception 00516 AG 1

Reserved 00616–00716 NA

instruction_access_exception 00816 MG 5

instruction_access_MMU_miss (Not used. Replaced by newer
version.)

00816 NA

instruction_access_error 00A16 AG 3

Reserved 00B16–00F16 NA

illegal_instruction 01016 AG 7

privileged_opcode 01116 AG 6

Reserved 01216 NA

Reserved 01316 NA

Reserved 01416–01F16 NA

fp_disabled 02016 AG 8

fp_exception_ieee_754 02116 AG 11

fp_exception_other 02216 AG 11

tag_overflow 02316 AG 14

clean_window 02416–02716 AG 10

division_by_zero 02816 AG 15
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Reserved 02916–02F16 NA

data_access_exception 03016 MG 12

data_access_MMU_miss (Not used; replaced by newer version) 03116 NA

data_access_error 03216 AG 12

data_access_protection (Not used; replaced by newer version) 03316 12

mem_address_not_aligned 03416 AG 10

LDDF_mem_address_not_aligned 03516 AG 10

STDF_mem_address_not_aligned 03616 AG 10

privileged_action 03716 AG 11

Reserved 03816 NA

Reserved 03916 NA

Reserved 03A16–03F16 NA

Reserved 04016 NA

interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

Reserved 05016–05F16 NA

interrupt_vector 06016 IG 16

PA_watchpoint 06116 AG 12

VA_watchpoint 06216 AG 11

ECC_error 06316 AG 33

fast_instruction_access_MMU_miss 06416–06716 MG 2

fast_data_access_MMU_miss 06816–06B16 MG 12

fast_data_access_protection 06C16–06F16 MG 12

fast_ECC_error 07016 AG 2

dcache_parity_error 07116 AG 2

icache_parity_error 07216 AG 2

spill_n_normal (n = 0–7) 08016–09F16 AG 9

spill_n_other (n = 0–7) 0A016–0BF16 AG 9

fill_n_normal (n = 0–7) 0C016–0DF16 AG 9

TABLE 12-3 Exception and Interrupt Requests, by TT Value (2 of 3)

Exception or Interrupt Request TT

Global
Register
Set Priority
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TABLE 12-4 lists the traps in priority order. Reserved and unused traps have been left out of

this table.

fill_n_other (n = 0–7) 0E016–0FF16 AG 9

trap_instruction 10016–17F16 AG 16

Reserved 18016–1FF16 NA

TABLE 12-4 Exception and Interrupts Requests in Priority Order

Exception or Interrupt Request TT

Global
Register
Set Priority

power_on_reset 00116 AG 0

watchdog_reset 00216 AG 1

externally_initiated_reset 00316 AG 1

software_initiated_reset 00416 AG 1

RED_state_exception 00516 AG 1

fast_instruction_access_MMU_miss 06416–06716 MG 2

fast_ECC_error 07016 AG 2

dcache_parity_error 07116 AG 2

icache_parity_error 07216 AG 2

instruction_access_error 00A16 AG 3

instruction_access_exception 00816 MG 5

privileged_opcode 01116 AG 6

illegal_instruction 01016 AG 7

fp_disabled 02016 AG 8

spill_n_normal (n = 0–7) 08016–09F16 AG 9

spill_n_other (n = 0–7) 0A016–0BF16 AG 9

fill_n_normal (n = 0–7) 0C016–0DF16 AG 9

fill_n_other (n = 0–7) 0E016–0FF16 AG 9

clean_window 02416–02716 AG 10

mem_address_not_aligned 03416 AG 10

LDDF_mem_address_not_aligned 03516 AG 10

TABLE 12-3 Exception and Interrupt Requests, by TT Value (3 of 3)

Exception or Interrupt Request TT

Global
Register
Set Priority
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12.4.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of the

OTHERWIN and WSTATE registers as described in TABLE 12-5 and shown in FIGURE 12-4.

STDF_mem_address_not_aligned 03616 AG 10

fp_exception_ieee_754 02116 AG 11

fp_exception_other 02216 AG 11

privileged_action 03716 AG 11

VA_watchpoint 06216 AG 11

data_access_exception 03016 MG 12

data_access_error 03216 AG 12

PA_watchpoint 06116 AG 12

fast_data_access_MMU_miss 06816–06B16 MG 12

fast_data_access_protection 06C16–06F16 MG 12

tag_overflow 02316 AG 14

division_by_zero 02816 AG 15

trap_instruction 10016–17F16 AG 16

interrupt_vector 06016 IG 16

interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

ECC_error 06316 AG 33

TABLE 12-5 Trap Types for Spill/Fill Traps

Bit Field Description

8:6 SPILL_OR_FILL 0102 for spill traps; 0112 for fill trap

5 OTHER (OTHERWIN ≠ 0)

4:2 WTYPE If (OTHER) then WSTATE.OTHER; else WSTATE.NORMAL

TABLE 12-4 Exception and Interrupts Requests in Priority Order (Continued)

Exception or Interrupt Request TT

Global
Register
Set Priority
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FIGURE 12-4 Trap Type Encoding for Spill/Fill Traps

12.4.3 Trap Priorities

TABLE 12-3 shows the assignment of traps to TT values and the relative priority of traps and

interrupt requests. Priority 0 is highest, priority 31 is lowest; that is, if X < Y, a pending

exception or interrupt request with priority X is taken instead of a pending exception or

interrupt request with priority Y.

However, the TT values for the exceptions and interrupt requests shown in TABLE 12-3 must

remain the same for every implementation.

The trap priorities given always need to be considered in light of how the processor actually

issues and executes instructions. For example, if an instruction_access_error occurs (priority

3), it will be taken even if the instruction was an SIR (priority 1). This situation occurs

because the processor gets the instruction_access_error during I-fetch and never actually

issues or executes the instruction, so the SIR is never seen by the backend of the processor.

This is an obvious case, but there are other more subtle cases.

In summary, the trap priorities are used to prioritize traps that occur in the same clock cycle.

They do not take into consideration that an instruction may be alive for multiple cycles and

that a trap may be detected and initiated early in the life of an instruction. Once the early trap

is taken, any errors that might have occurred later in the instruction’s life will not be seen.

12.4.4 Details of Supported Traps

12.4.4.1 MMU Traps

The UltraSPARC III Cu processor supports three 32-instruction traps for handling the most

performance sensitive MMU traps:

• fast_instruction_access_MMU_miss

• fast_data_access_MMU_miss

• fast_data_access_protection

The first two traps are taken when the TLBs miss on an instruction or data access. The third

type of trap is taken when a protection violation occurs. The common case of this trap occurs

when a write request is made to a page marked as clean in the TLB.

Trap Type

05 2

0SPILL_OR_FILL

1468

0WTYPEOTHER
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Each of these trap vectors takes up four slots in the trap table; this means that each trap

handler can contain up to 32 instructions before a branch is needed.

12.4.4.2 Precise Correctable Data Corruption Error Traps

The UltraSPARC III Cu processor implements three error traps listed in TABLE 12-6.

D-Cache and I-Cache Parity Errors

Upon a dcache_parity_error trap taken, hardware will automatically turn off D-cache and

I-cache by clearing the DC and IC bit in the DCU Control Register. The same action is done

on icache_parity_error. The objective is to avoid any possible recursive/nested parity error of

the same type, an event that is very complicated to handle by the trap handler and likely to

reduce software ability to repair and recover from the parity error.

Fast ECC Errors

On fast_ECC_error detection during D-cache load miss fill, D-cache will still install the

uncorrected data. But since the fast_ECC_error trap is precise, hardware can rely on

software to help clean up the bad data. I-cache is different. If I-cache is filled with errors, the

line will not be installed in I-cache.

A D-cache or I-cache miss request may observe an ECC error in the line it reads from the

L2-cache. When this occurs, a fast_ECC_error precise trap is generated for the instruction

that detected the error. In the case of a D-cache request, the corrupted data will be installed

in the D-cache, but the trap takes effect before the data can be used.

In case of an I-cache request, the data from the L2-cache will be corrected by hardware

before being installed in the I-cache. When the fast_ECC_error trap is taken, the I-cache and

D-cache are left enabled. Software is responsible to disable any caches as a part of the

recovery. Software must flush the corrupted line from the D-cache if it was filled.

TABLE 12-6 Two New Traps Added for D-cache and I-cache Parity Error

Exception or Interrupt Request Globals TT Priority

fast_ECC_error AG 0x070 2

dcache_parity_error AG 0x071 2

icache_parity_error AG 0x072 2
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Prioritization of Errors

All traps with priority 2 are of precise type. Miss/error traps with priority 2 that arrive at the

same time are processed by hardware according to their “age” or program order. The oldest

instruction with an error/miss will get the trap.

However, there are some cases where the same instruction (same PC) generate multiple traps.

There are two cases:

1. Case 1: Singular trap type with highest priority.

The processing order of which trap to take first follows the priority number (lowest

number wins).

2. Case 2: Multiple traps having same highest priority.

For trap priority 2, the only possible combination is simultaneous traps due to I-cache

parity error and I-TLB miss. In this case, the hardware processing order is as follows:

icache_parity_error > fast_instruction_access_MMU_miss

There are no other “simultaneous traps” combinations of Case 2. The other priority 2 traps

have later arrivals. D-cache access is further down the pipeline after instruction fetch from

I-cache. Thus, D-cache parity error on a load instruction (if any) will be detected after

I-cache parity error (if any) and I-TLB miss (if any). The other priority 2 trap,

fast_ECC_error can only be caused by an I-cache miss or D-cache load miss; therefore, it

arrives even later.

To summarize, precise traps are processed in the following order:

program order > trap priority number > Hardware implementation order

One exception to the trap priority number order in implementation is on a non-precise ECC

error trap. If the victim instruction selected as the trap point also has a higher priority precise

trap, then the ECC error trap is taken first. This should be okay since no trap is lost. When

the ECC error trap handling finishes and the victim instruction is retried, the precise trap is

encountered again.

12.4.4.3 Other Traps

The UltraSPARC III Cu processor supports the following trap types in addition to those in

SPARC V9:

• interrupt_vector_trap

• PA_watchpoint

• VA_watchpoint

• ECC_error

• data_access_protection
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12.5 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level of

trap nesting (given in the TL register), and the processor state. When a trap occurs, the global

registers are replaced with one of three sets of trap global register — MMU globals, interrupt

globals, or alternate globals — based on the type of trap.

All traps use normal trap processing, except those due to reset requests, catastrophic errors,

traps taken when TL = MAXTL – 1, and traps taken when the processor is in RED_state.

These traps use special RED_state trap processing.

During normal operation, the processor is in execute_state. It processes traps in

execute_state and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are no

more levels on the trap stack, so the processor enters error_state and halts. To avoid this

catastrophic failure, SPARC V9 provides the RED_state processor state. Traps processed

in RED_state use a special trap vector and a special trap-vectoring algorithm.

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset

traps are also processed in RED_state. Finally, supervisor software can force the processor

into RED_state by setting the PSTATE.RED flag to one.

Once the processor has entered RED_state, no matter how it got there, all subsequent traps

are processed in RED_state until software returns the processor to execute_state or a

normal or SIR trap is taken when TL = MAXTL, which puts the processor in error_state.

TABLE 12-7, TABLE 12-8, and TABLE 12-9 describe the processor mode and trap-level

transitions involved in handling traps.

†This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it clears PSTATE.RED while

at MAXTL.

TABLE 12-7 Trap Received While in execute_state

Original State

New State, After Receiving Trap Type

Normal Trap
or Interrupt POR XIR, WDR SIR

execute_state

TL < MAXTL – 1

execute_state

TL ← TL + 1

RED_state

TL = MAXTL

RED_state

TL ← TL + 1

RED_state

TL ← TL + 1

execute_state

TL = MAXTL – 1

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

execute_state†

TL = MAXTL

error_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL
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Implementation Note – The processor does not recognize interrupts while it is in

error_state.

12.5.1 Normal Trap Processing

A trap other than a fast MMU trap (see Section 12.5.2, “Fast MMU Trap Processing”) or an

interrupt vector trap (see Section 12.5.3, “Interrupt Vector Trap Processing”) causes the

following state changes to occur1:

• If the processor is already in RED_state, the new trap is processed in RED_state
unless TL = MAXTL.

TABLE 12-8 Trap Received While in RED_state

Original State

New State, After Receiving Trap Type

Normal Trap
or Interrupt POR XIR, WDR SIR

RED_state

TL < MAXTL – 1

RED_state

TL ← TL + 1

RED_state

TL = MAXTL

RED_state

TL ← TL + 1

RED_state

TL ← TL + 1

RED_state

TL = MAXTL – 1

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL

TABLE 12-9 Reset Received While in error_state

Original State

New State, After Receiving Trap Type

Normal Trap
or Interrupt POR XIR, WDR SIR

error_state

TL < MAXTL – 1
—

RED_state

TL = MAXTL

RED_state

TL ← TL + 1
—

error_state

TL = MAXTL – 1
—

RED_state

TL = MAXTL

RED_state

TL = MAXTL
—

error_state

TL = MAXTL
—

RED_state

TL = MAXTL

RED_state

TL = MAXTL
—

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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• If the processor is in execute_state and the trap level is one less than its maximum

value, that is, TL = MAXTL–1, then the processor enters RED_state.

• If the processor is in either execute_state or RED_state and the trap level is

already at its maximum value, that is, TL = MAXTL, then the processor enters

error_state.

Otherwise, the trap uses normal trap processing, and the following state changes occur:

• The trap level is set. This provides access to a fresh set of privileged trap-state registers

used to save the current state, in effect, pushing a frame on the trap stack.

TL ← TL + 1

• Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is preserved.

TT[TL] ← the trap type

• The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged

PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE is unchanged

• For a register-window trap only, CWP is set to point to the register window that must be

accessed by the trap-handler software, that is:

■ If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

■ If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ← CWP + CANSAVE + 2.

■ If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

For non-register-window traps, CWP is not changed.

• Control is transferred into the trap table:

PC ← TBA<63:15> (TL > 0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL > 0) TT[TL] 0 0100

where “(TL > 0)” is zero if TL = 0, and one if TL > 0.
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Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed

autonomously by the processor when a trap is taken while TL = n – 1; however, software can

change any of these values with a WRPR instruction when TL = n.

12.5.2 Fast MMU Trap Processing

Fast MMU traps (fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and

fast_data_access_protection) cause the following state changes to occur1:

• If the processor is already in RED_state, the new trap is processed in RED_state
unless TL = MAXTL.

• If the processor is in execute_state and the trap level is one less than its maximum

value, that is, TL = MAXTL – 1, then the processor enters RED_state.

• If the processor is in either execute_state or RED_state and the trap level is

already at its maximum value, that is, TL = MAXTL, then the processor enters

error_state.

Otherwise, the trap uses normal trap processing, and the following state changes occur:

• The trap level is set. This provides access to a fresh set of privileged trap-state registers

used to save the current state, in effect, pushing a frame on the trap stack.

TL ← TL + 1

• Existing state is preserved:

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is preserved.

TT[TL] ← the trap type

• The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged

PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 0 (alternate globals are disabled)

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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PSTATE.MG ← 1 (global registers are replaced with MMU globals)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE is unchanged

• For non-register-window traps, CWP is not changed.

• Control is transferred into the trap table:

PC ← TBA<63:15> (TL > 0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL > 0) TT[TL] 0 0100

where “(TL > 0)” is zero if TL = 0, and one if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed

autonomously by the processor when a trap is taken while TL = n – 1; however, software can

change any of these values with a WRPR instruction when TL = n.

12.5.3 Interrupt Vector Trap Processing

An interrupt_vector trap causes the following state changes to occur1:

• If the processor is already in RED_state, the new trap is processed in RED_state
unless TL = MAXTL.

• If the processor is in execute_state and the trap level is one less than its maximum

value, that is, TL = MAXTL – 1, the processor enters RED_state.

• If the processor is in either execute_state or RED_state and the trap level is

already at its maximum value, that is, TL = MAXTL, then the processor enters

error_state.

Otherwise, the trap uses normal trap processing, and the following state changes occur:

• The trap level is set. This provides access to a fresh set of privileged trap-state registers

used to save the current state, in effect, pushing a frame on the trap stack.

TL ← TL + 1

• Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is preserved.

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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TT[TL] ← the trap type

• The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged

PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 0 (alternate globals are disabled)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 1 (global registers are replaced with interrupt globals)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE is unchanged

• For non-register-window traps, CWP is not changed.

• Control is transferred into the trap table:

PC ← TBA<63:15> (TL > 0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL > 0) TT[TL] 0 0100

where “(TL > 0)” is zero if TL = 0, and one if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed

autonomously by the processor when a trap is taken while TL = n – 1; however, software can

change any of these values with a WRPR instruction when TL = n.

12.5.4 Special Trap Processing

The following conditions invoke special trap processing:

• Traps taken with TL = MAXTL – 1

• Power-on reset traps

• Watchdog reset traps

• Externally initiated reset traps

• Software-initiated reset traps

• Traps taken when the processor is already in RED_state

12.5.4.1 Normal Traps with TL = MAXTL – 1

Normal traps that occur when TL = MAXTL – 1 are processed in RED_state. The following

state changes occur1:
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• The trap level is advanced.

TL ← MAXTL

• Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is preserved.

TT[TL] ← the trap type

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE ← undefined1

• For a register-window trap only, CWP is set to point to the register window that must be

accessed by the trap-handler software, that is:

- If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

- If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ← CWP + CANSAVE + 2.

- If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

For non-register-window traps, CWP is not changed.

• Implementation-specific state changes; for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.

1. Note that this differs from SPARC V9.
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12.5.4.2 Power-On Reset (POR) Traps

POR traps occur when power is applied to the processor. If the processor is in

error_state, a POR brings the processor out of error_state and places it in

RED_state. Processor state is undefined after POR, except for the following1:

• The trap level is set.

TL ← MAXTL

• The trap type is set.

TT[TL] ← 00116

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← 0 (big-endian mode for nontraps)

PSTATE.TLE ← 0 (big-endian mode for traps)

• The TICK register is protected.

TICK.NPT ← 1 (TICK unreadable by non-privileged software)

• Implementation-specific state changes; for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0010 00002

nPC ← RSTVaddr<63:8> 0010 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n], and

TSTATE[n] are undefined.

12.5.4.3 Watchdog Reset (WDR) Traps

The WDR reset in the UltraSPARC III Cu processor provide automatic recovery from

error_state.

Processor state is undefined after WDR, except for the following1:

• The trap level is set.

TL ← min (TL + 1, MAXTL)

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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• Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is set.

TT[TL] ← 00216

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE ← undefined1

• Implementation-specific state changes; for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0100 00002

nPC ← RSTVaddr<63:8> 0100 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n], and

TSTATE[n] are undefined.

12.5.4.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be

masked by IE = 0 or PIL. Typically, XIR is used for critical system events, such as power

failure, reset button pressed, failure of external components, that does not require a WDR

(which aborts operations), or systemwide reset in a multiprocessor. The following state

changes occur2:

• Existing state is preserved.

1. Note that this differs from SPARC V9.

2. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is set.

TT[TL] ← 00316

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE ← undefined1

• Implementation-specific state changes, for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0110 00002

nPC ← RSTVaddr<63:8> 0110 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n], and

TSTATE[n] are undefined.

12.5.4.5 Software-Initiated Reset (SIR) Traps

SIR traps are initiated by execution of an SIR instruction in privileged mode. Supervisor

software uses the SIR trap as a panic operation or a metasupervisor trap.

The following state changes occur1:

• If TL = MAXTL, then enter error_state. Otherwise, do the following:

• The trap level is set.

TL ← TL + 1

• Existing state is preserved.

1. Please note that these state transitions include the minimum set covered in theSPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.
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TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← undefined

1

• The trap type is set.

TT[TL] ← 0416

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE ← undefined2

• Implementation-specific state changes, for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1000 00002

nPC ← RSTVaddr<63:8> 1000 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n], and

TSTATE[n] are undefined.

12.5.4.6 Normal Traps When the Processor Is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in

RED_state, unless TL = MAXTL, in which case the processor enters error_state.

Assuming that TL < MAXTL, the processor state shall be set as follows1:

• The trap level is set.

TL ← TL + 1

• Existing state is preserved.

1. Please note that these state transitions include the minimum set covered in the SPARC V9 architecture. There are other

non-SPARC V9 transitions that are implementation-dependent and are not described here.

2. Note that this differs from SPARC V9.
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TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← undefined1

TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

• The trap type is preserved.

TT[TL] ← trap type

• The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)

PSTATE.RED ← 1 (enter RED_state)

PSTATE.PEF ← 1 (FPU is present)

PSTATE.AM ← 0 (address masking is turned off)

PSTATE.PRIV ← 1 (the processor enters privileged mode)

PSTATE.IE ← 0 (interrupts are disabled)

PSTATE.AG ← 1 (global registers are replaced with alternate globals)

PSTATE.MG ← 0 (MMU globals are disabled)

PSTATE.IG ← 0 (interrupt globals are disabled)

PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

PSTATE.TLE ← undefined1

• For a register-window trap only, CWP is set to point to the register window that must be

accessed by the trap-handler software, that is:

■ If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

■ If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ← CWP + CANSAVE + 2.

■ If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

• For non-register-window traps, CWP is not changed.

• Implementation-specific state changes; for example, disabling an MMU.

• Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

12.6 Exception and Interrupt Descriptions

This section describes the various exceptions and interrupt requests and the conditions that

cause them. Each exception and interrupt request describes the corresponding trap type as

defined by the trap model. On the UltraSPARC III Cu processor, all traps are precise except

for the deferred traps and disrupting traps.

1. Note that this differs from SPARC V9
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• data_access_exception [tt = 03016] (Precise) — An exception occurred on an attempted

data access. Detailed information regarding the error is logged into the FTYPE field of

Data Synchronous Fault Status Register (ASI 5816, VA = 1816). Below is a list of

exceptions that cause a data_access_exception exception.

■ Invalid ASI — An attempt to perform a load or store with undefined or reserved ASI

or a disallowed instruction/ASI combination.

■ Illegal Access to Strongly Ordered Page — An attempt to access a strongly ordered

page by any type of load instruction with non-faulting ASI or by FLUSH instruction.

■ Illegal Access to Non-Faulting-Only Page — An attempt to access a

non-faulting-only page by any type of load or store instruction or FLUSH instruction

with ASI other than non-faulting ASI.

■ Illegal Access to Non-cacheable Page —An attempt to access a non-cacheable page

by atomic instructions (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA), atomic

quad load instructions (LDDA with ASI = 2416, 2C16), or by FLUSH instruction.

• division_by_zero [tt = 02816] (Precise) — An integer divide instruction attempted to

divide by zero.

• fill_n_normal [tt = 0C016–0DF16] (Precise)

• fill_n_other [tt = 0E016–0FF16] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a register window

must be restored from memory.

Compatibility Note – The SPARC V9 fill_n_* exceptions supersede the SPARC V8

window_underflow exception.

• fp_disabled [tt = 02016] (Precise) — An attempt was made to execute a Floating-point

operate (FPop), a floating-point branch, or a floating-point load/store instruction while an

FPU was not present, PSTATE.PEF = 0, or FPRS.FEF = 0.

• illegal_instruction [tt = 01016] (Precise) — An attempt was made to execute an

instruction with an unimplemented opcode, an ILLTRAP instruction, an instruction with

invalid field usage, instruction breakpoints, or an instruction that would result in illegal

processor state.

Note – Unimplemented FPop instructions generate fp_exception_other traps.

An illegal_instruction is generated in the following cases:

■ An instruction encoding does not match any of the opcode map definitions.

■ An instruction is not implemented in hardware (if the op and op3 fields of the

instruction decode as an FPop, then a fp_exception_other exception, with ftt = 3, will

be generated instead of illegal_instruction).

■ An illegal value is present in an instruction i field.

■ An illegal value is present in a field that is explicitly defined for an instruction, such as

cc2, cc1, cc0, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or opf_cc.
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■ Illegal register alignment (such as odd rd value in a doubleword load instruction).

■ RDASR instruction with rs1 = 1, 7–14, 20–21, or 26–31.

■ RDASR with rs1 = 15 and nonzero rd.

■ RDPR with rs1 = 16–30.

■ RDPR with rs1 ≤ 3 when TL = 0.

■ WRPR with rd = 15–31.

■ WRPR with rd ≤ 3 when TL = 0.

■ WRPR to PSTATE register that attempts to set more than one of bits IG, MG, and AG.

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or

STFSR.

■ Illegal rd value for WRPR.

■ Illegal rs1 value for RDPR.

■ WRASR instruction with rd = 1, 4, 5, 7–14, 26-31.

■ WRASR with rd = 15 and nonzero rs1.

■ WRASR with rd = 15 and i = 0.

■ DONE or RETRY when TL = 0.

■ ILLTRAP instruction.

■ Instruction breakpoint occurred.

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an

illegal_instruction exception should be generated.1

Note – If an instruction breakpoint triggers an illegal_instruction trap, then the

illegal_instruction trap has a higher priority than does a privileged_opcode trap.

• instruction_access_exception [tt = 00816] (Precise) — A protection exception occurred

on an instruction access, typically as a result of an attempt to access a privileged page

while the processor was executing in non-privileged mode.

• interrupt_level_n [tt = 04116–04F16] (Disrupting) — An interrupt request level of n was

presented to the IU, while PSTATE.IE = 1 and (interrupt request level > PIL).

• mem_address_not_aligned [tt = 03416] (Precise) — A load/store instruction generated a

memory address that was not properly aligned according to the instruction, or a JMPL or

RETURN instruction generated a non-word-aligned address.

• power_on_reset (POR) [tt = 00116] (Reset) — An external signal was asserted. This trap

is issued to bring a system reliably from the power-off to the power-on state.

• privileged_action [tt = 03716] (Precise) — An action defined to be privileged has been

attempted while PSTATE.PRIV = 0. Some examples include: a data access by

non-privileged software using an ASI value with its most significant bit = 0 (a restricted

ASI), or an attempt to read the TICK register by non-privileged software when

TICK.NPT = 1.

• privileged_opcode [tt = 01116] (Precise) — An attempt was made to execute a privileged

instruction while PSTATE.PRIV = 0.

1. It is required that reserved fields have zero value.
Chapter 12 Traps and Trap Handling 12-347



Compatibility Note – The trap type for privileged_opcode is identical to that of the

SPARC V8 privileged_instruction trap. The name was changed to distinguish it from the new

privileged_action trap type.

• RED_state_exception [tt = 00516] — Caused when TL = MAXTL − 1 and a trap occurs,

an event that brings the processor into RED_state.

• software_initiated_reset (SIR) [tt = 00416] (Precise/Reset) — Caused by the execution

of the WRSIR, write to SIR register, instruction. It allows system software to reset the

processor.

• spill_n_normal [tt = 08016–09F16] (Precise)

• spill_n_other [tt = 0A016–0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register window

must be saved to memory.

Compatibility Note – The SPARC V9 spill_n_* exceptions supersede the SPARC V8

window_overflow exception.

• tag_overflow [tt = 02316] (Precise) — A TADDccTV or TSUBccTV instruction was

executed, and either 32-bit arithmetic overflow occurred or at least one of the tag bits of

the operands was nonzero.

• trap_instruction [tt = 10016–17F16] (Precise) — A Tcc instruction was executed and the

trap condition evaluated to TRUE.

• clean_window [tt = 02416–02716] (Precise) — A SAVE instruction discovered that the

window about to be used contains data from another address space; the window must be

cleaned before it can be used.

• data_access_error [tt = 03216] (Precise or Deferred) — An error occurred on a data

access.

• externally_initiated_reset (XIR) [tt = 00316] (Reset) — An external signal was asserted.

This trap is used for catastrophic events, such as power failure, reset button pressed, and

systemwide reset, in multiprocessor systems.

• fp_exception_ieee_754 [tt = 02116] (Precise) — An FPop instruction generated an

IEEE_754_exception and its corresponding trap enable mask (TEM) bit was one. The

floating-point exception type, IEEE_754_exception, is encoded in the FSR.ftt, and

specific IEEE_754_exception information is encoded in FSR.cexc.

• fp_exception_other [tt = 02216] (Precise) — An FPop instruction generated an

exception other than an IEEE_754_exception. Some examples include: the FPop is

unimplemented, or there was a sequence or hardware error in the FPU. The floating-point

exception type is encoded in the FSR’s ftt field.

• instruction_access_error [tt = 00A16] (Precise) — An error occurred on an instruction

access.
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• LDDF_mem_address_not_aligned [tt = 03516] (Precise) — An attempt was made to

execute an LDDF instruction and the effective address was not doubleword aligned.

• STDF_mem_address_not_aligned [tt = 03616] (Precise) — An attempt was made to

execute an STDF instruction and the effective address was not doubleword aligned.

• Watchdog reset (WDR) [tt = 00216] (Reset) — This trap occurs as a transition from

error_state to RED_state.

• ECC_error [tt = 06316] (Disrupting) — The trap to signal the detection of hardware

errors asynchronous to the instruction execution, or to request to save the information

logged for the error that was detected and corrected by the processor.

Implementation Note – Some implementations may refer to this trap by the name

“corrected_ECC_error.”

• fast_data_access_MMU_miss [tt = 06816 –06B16] (Precise) — During an attempted

data access, the MMU detected that a translation lookaside buffer (TLB) did not contain a

translation for the virtual address (that is, a TLB miss occurred). Four trap vectors are

allocated for this trap, allowing a TLB miss handler of up to 32 instructions to fit within

the trap vector area.

• fast_data_access_protection [tt = 06C16–06F16] (Precise) — During an attempted data

write access (by a store or load-store instruction), the instruction had appropriate access

privilege but the MMU signalled that the location was write-protected (write to a

read-only location). Note that on an UltraSPARC III Cu processor, an attempt to read or

write to a privileged location while in non-privileged mode causes the higher priority

data_access_exception instead of this exception. Four trap vectors are allocated for this

trap, allowing a trap handler of up to 32 instructions to fit within the trap vector area.

• fast_instruction_access_MMU_miss [tt = 06416 –06716] (Precise) — During an

attempted instruction access, the MMU detected a TLB miss. Four trap vectors are

allocated for this trap, allowing a trap handler of up to 32 instructions to fit within the trap

vector area.

• interrupt_vector_trap [tt = 06016] (Disrupting) — The processor has received an

interrupt request.

• PA_watchpoint [tt = 06116] (Precise) — The processor has detected a physical address

breakpoint.

• VA_watchpoint [tt = 06216] (Precise) — The processor has detected a virtual address

breakpoint.

• fast_ECC_error [tt = 07016] (Precise) — A single-bit or multiple-bit ECC error is

detected.

This trap is taken on ECC errors from the L2-cache. The trap handler is required to flush

the cache line containing the error from both the D-cache and L2-cache since incorrect

data would have already been written into the D-cache. The UltraSPARC III Cu hardware

will automatically correct single-bit ECC errors on the L2-cache write back when the trap
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handler performs the L2-cache flush. After the caches are flushed, the instruction that

encountered the error should be retried; the corrected data will then be brought back in

from memory and reinstalled in the D-cache and L2-cache.

On fast_ECC_error detection during D-cache load miss fill, D-cache installs the

uncorrected data. But since the fast_ECC_error trap is precise, hardware can rely on

software to help clean up the bad data. I-cache is different. If I-cache is filled with errors,

the line will not be installed in I-cache.

A D-cache or I-cache miss request may observe an ECC error in the line it reads from the

L2-cache. When this occurs, a fast_ECC_error precise trap is generated for the instruction

that detected the error. In the case of a D-cache request, the corrupted data will be

installed in the D-cache, but the trap takes effects before the data can be used.

In case of an I-cache request, the data from the L2-cache will be corrected by hardware

before being installed in the I-cache. When the fast_ECC_error trap is taken, the I-cache

and D-cache are left enabled. Software is responsible to disable any caches as a part of the

recovery. Software must flush the corrupted line from the D-cache if it was filled.
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CHAPTER 13

Interrupt Handling

Processors and I/O devices can interrupt a selected processor by assembling and sending an

interrupt packet consisting of eight 64-bit words of interrupt vector data. The contents of

these data are defined by software convention. Thus, hardware interrupts and cross-calls can

have the same hardware mechanism for interrupt delivery and can share a common software

interface for processing.

The interrupt requesting/receiving mechanism is a two-step process: the sending of an

interrupt request on a vector data register to the target and the scheduling of the received

interrupt request on the target upon receipt.

An interrupt request packet is sent by the interrupter through the interrupt vector dispatch

mechanism and is received by the specified target through the interrupt vector receive

mechanism. Upon receipt of an interrupt request packet, a special trap is invoked on the

target processor. The trap handler software invoked in the target processor then schedules the

interrupt request to itself by posting the interrupt into SOFTINT register at the desired

interrupt level.

Note that the processor may not send an interrupt request packet to itself through the

interrupt dispatch mechanism. Separate sets of dispatch (outgoing) and receive (incoming)

interrupt data registers allow simultaneous interrupt dispatching and receiving.

In the following sections, we describe different aspects of interrupt handling:

• Interrupt Vector Dispatch

• Interrupt Vector Receive

• Interrupt Global Registers

• Interrupt ASI Registers

• Software Interrupt Register (SOFTINT)
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13
13.1 Interrupt Vector Dispatch

To dispatch an interrupt or cross-call, a processor or I/O device first writes to the Outgoing

Interrupt Vector Data Registers according to an established software convention, described

below. A subsequent write to the Interrupt Vector Dispatch Register triggers the interrupt

delivery. The status of the interrupt dispatch can be read by polling the

ASI_INTR_DISPATCH_STATUS’s BUSY and NACK bits. A MEMBAR #Sync should be

used before polling begins to ensure that earlier stores are completed. If both NACK and

BUSY are cleared, the interrupt has been successfully delivered to the target processor. With

the NACK bit cleared and BUSY bit set, the interrupt delivery is pending. Finally, if the

delivery cannot be completed (if it is rejected by the target processor), the NACK bit is set.

The pseudocode sequence in CODE EXAMPLE 13-1 sends an interrupt.

The ASI_INTR_DISPATCH_STATUS register contains 32 pairs of BUSY/NACK bit pairs

enabling interrupts to be pipelined. Specifying a unique pair of BUSY/NACK bits to be used

for each interrupt when writing the Interrupt Dispatch Register enables up to 32 interrupts to

be outstanding at one time.

Note – The processor may not send an interrupt vector to itself through outgoing interrupt

vector data registers. Doing so causes undefined interrupt vector data to be returned.

CODE EXAMPLE 13-1 Code Sequence for Interrupt Dispatch

Read state of ASI_INTR_DISPATCH_STATUS; Error if BUSY

<no pending interrupt dispatch packet>

Repeat

Begin atomic sequence(PSTATE.IE ← 0)

Store to IV data reg 0 at ASI_INTR_W, VA=0x40 (optional)

Store to IV data reg 1 at ASI_INTR_W, VA=0x48 (optional)

Store to IV data reg 2 at ASI_INTR_W, VA=0x50 (optional)

Store to IV data reg 3 at ASI_INTR_W, VA=0x58 (optional)

Store to IV data reg 4 at ASI_INTR_W, VA=0x60 (optional)

Store to IV data reg 5 at ASI_INTR_W, VA=0x68 (optional)

Store to IV data reg 6 at ASI_INTR_W, VA=0x80 (optional)

Store to IV data reg 7 at ASI_INTR_W, VA=0x88 (optional)

Store to IV dispatch at ASI_INTR_W, VA<63:29>=0,

VA<28:24>=BUSY/NACK bit #,VA<23:14>=ITID,

VA<13:0>=0x70 initiates interrupt delivery

Membar #Sync (wait for stores to finish)
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Note – To avoid deadlocks, enable interrupts for some period before retrying the atomic

sequence. Alternatively, implement the atomic sequence with locks without disabling

interrupts.

13.2 Interrupt Vector Receive

When an interrupt is received, all eight Interrupt Data Registers are updated, regardless of

which are being used by software. This update is done in conjunction with the setting of the

BUSY bit in the ASI_INTR_RECEIVE register. At this point, the processor inhibits further

interrupt packets from the system bus. If interrupts are enabled (PSTATE.IE = 1), then an

interrupt trap (implementation-dependent trap type 6016) is generated. Software reads the

ASI_INTR_RECEIVE register and Incoming Interrupt Data Registers to determine the entry

point of the appropriate trap handler. All of the external interrupt packets are processed at the

highest interrupt priority level and are then re-prioritized as lower priority interrupts in the

software handler. CODE EXAMPLE 13-2 illustrates interrupt receive handling.

Poll state of ASI_INTR_DISPATCH_STATUS (BUSY, NACK)

Loop if BUSY

End atomic sequence(PSTATE.IE ← 1)

CODE EXAMPLE 13-2 Code Sequence for an Interrupt Receive

Read state of ASI_INTR_RECEIVE; Error if !BUSY

Read from IV data reg 0 at ASI_SDB_INTR_R, VA=0x40 (optional)

Read from IV data reg 1 at ASI_SDB_INTR_R, VA=0x48 (optional)

Read from IV data reg 2 at ASI_SDB_INTR_R, VA=0x50 (optional)

Read from IV data reg 3 at ASI_SDB_INTR_R, VA=0x58 (optional)

Read from IV data reg 4 at ASI_SDB_INTR_R, VA=0x60 (optional)

Read from IV data reg 5 at ASI_SDB_INTR_R, VA=0x68 (optional)

Read from IV data reg 6 at ASI_SDB_INTR_R, VA=0x80 (optional)

Read from IV data reg 7 at ASI_SDB_INTR_R, VA=0x88 (optional)

Determine the appropriate handler

Handle interrupt or reprioritize this trap and

set the SOFTINT register

CODE EXAMPLE 13-1 Code Sequence for Interrupt Dispatch (Continued)
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13.3 Interrupt Global Registers

A separate set of global registers is implemented to expedite interrupt processing. As

described in Section 13.2, “Interrupt Vector Receive,” the processor takes an

implementation-dependent interrupt trap after receiving an interrupt packet. Software uses a

number of scratch registers while determining the appropriate handler and constructing the

interrupt state.

A separate set of eight Interrupt Global Registers (IGRs) replaces the eight

programmer-visible global registers during interrupt processing. After an interrupt trap is

dispatched, the hardware selects the interrupt global registers by setting the PSTATE.IG
field. The previous value of PSTATE is restored from the trap stack by a DONE or RETRY
instruction on exit from the interrupt handler.

13.4 Interrupt ASI Registers

MEMBAR #Sync is generally needed after stores to interrupt ASI registers, which avoids

unnecessary effects caused by possible prefetches to the locations with side-effect.

13.4.1 Outgoing Interrupt Vector Data<7:0> Register

ASI_INTR_W (data 0): ASI = 7716, VA<63:0> = 4016

ASI_INTR_W (data 1): ASI = 7716, VA<63:0> = 4816

ASI_INTR_W (data 2): ASI = 7716, VA<63:0> = 5016

ASI_INTR_W (data 3): ASI = 7716, VA<63:0> = 5816

ASI_INTR_W (data 4): ASI = 7716, VA<63:0> = 6016

ASI_INTR_W (data 5): ASI = 7716, VA<63:0> = 6816

ASI_INTR_W (data 6): ASI = 7716, VA<63:0> = 8016

ASI_INTR_W (data 7): ASI = 7716, VA<63:0> = 8816

Name: ASI_INTR_W: Outgoing Interrupt Vector Data Registers (privileged, write-only)

TABLE 13-1 describes the register field of the eight Outgoing Interrupt Vector Data Registers.

TABLE 13-1 Outgoing Interrupt Vector Data Register Format

Bits Field Type Description

63:0 Data W Interrupt data
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A write to these eight registers modifies the outgoing Interrupt Dispatch Data Registers.

Non-privileged access to this register causes a privileged_action trap. An attempt to read this

register causes a data_access_exception trap.

13.4.2 Interrupt Vector Dispatch Register

ASI 7716

VA<63:39> = 0

VA<38:29> = SID<9:0>

VA<28:24> = BUSY/NACK bit pair # (BN)

VA<23:14> = interrupt target identifier (ITID)

VA<13:0> = 7016

Name: ASI_INTR_DISPATCH_W (interrupt dispatch) (Privileged, write-only)

TABLE 13-2 describes the fields of the Interrupt Vector Dispatch Register.

A write to this ASI triggers an interrupt vector dispatch to the target CPU identified with

Interrupt Target ID (ITID), using BUSY/NACK bit pair BN along with the contents of the

eight Interrupt Vector Data Registers. Note that the write acts as a trigger; however, the data

for the write is ignored. The upper bits VA<28:14> steer the interrupt.

The UltraSPARC III Cu processor interprets all ten bits of VA<38:39> when the Interrupt

Vector Dispatch Register is written.

A read from the Interrupt Vector Dispatch Register causes a data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

TABLE 13-2 Interrupt Vector Dispatch Register Format

Bits Field Type Description

VA<28:24> BN W Specifies which of the BUSY/NACK bit pairs to use for the

interrupt. A 016 in this field (which current software is using)

selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<1:0> for backward

compatibility. A 116 in this field selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<3:2>.

VA<23:14> ITID W Interrupt Target ID. Specifies the interrupt target CPU using the

BUSY/NACK bit pair BN, along with the contents of the eight

Interrupt Vector Data Registers.
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13.4.3 Interrupt Vector Dispatch Status Register

ASI 4816

VA<63:0> = 0

Name: ASI_INTR_DISPATCH_STATUS (Privileged, read-only)

TABLE 13-3 describes the fields of the Interrupt Vector Dispatch Status Register.

In the UltraSPARC III Cu processor, 32 BUSY/NACK pairs are implemented in the Interrupt

Vector Dispatch Status Register.

The status of up to 32 outgoing interrupts can be read from

ASI_INTR_DISPATCH_STATUS BUSY/NACK bits. This register contains up to 32 pairs of

BUSY/NACK bit pairs: the pair at <1:0> is referred to as pair 0, <3:2> as pair 1, and so on up

to pair 31 at bits <63:62>. The VA<28:24> field of the Interrupt Dispatch Register specifies

which BUSY/NACK bit pair will be used for the interrupt.

Writes to this ASI cause a data_access_exception trap. Non-privileged access to this register

causes a privileged_action trap.

13.4.4 Incoming Interrupt Vector Data<7:0>

ASI_INTR_R (data 0): ASI = 7F16, VA<63:0> = 4016

ASI_INTR_R (data 1): ASI = 7F16, VA<63:0> = 4816

ASI_INTR_R (data 2): ASI = 7F16, VA<63:0> = 5016

ASI_INTR_R (data 3): ASI = 7F16, VA<63:0> = 5816

ASI_INTR_R (data 4): ASI = 7F16, VA<63:0> = 6016

ASI_INTR_R (data 5): ASI = 7F16, VA<63:0> = 6816

ASI_INTR_R (data 6): ASI = 7F16, VA<63:0> = 8016

ASI_INTR_R (data 7): ASI = 7F16, VA<63:0> = 8816

Name: ASI_INTR_R

TABLE 13-3 Interrupt Dispatch Status Register Format

Bits Field Type Description

Odd NACK R Set if interrupt dispatch has failed. Cleared at the start of every

interrupt dispatch attempt; set when a dispatch has failed.

Even BUSY R Set when there is an outstanding dispatch.
13-356 UltraSPARC III Cu User’s Manual • January 2004



TABLE 13-4 describes the register field of the eight Incoming Interrupt Vector Data Registers.

A read from these registers returns incoming interrupt information from the incoming

Interrupt Receive Data Registers.

Non-privileged access to this register causes a privileged_action trap.

13.4.5 Interrupt Vector Receive Register

ASI 4916

VA<63:0> = 0

Name: ASI_INTR_RECEIVE (Privileged)

TABLE 13-5 describes the fields of the Interrupt Receive Register.

The status of an incoming interrupt can be read from ASI_INTR_RECEIVE. The BUSY bit

is cleared by writing zero to this register.

The UltraSPARC III Cu processor sets all ten physical module ID (MID) bits in the SID_U

and SID_L fields of the Interrupt Vector Receive Register. These bits correspond to the

interrupt ID of the interrupter.

Non-privileged access to the Interrupt Vector Receive Register causes a privileged_action
trap.

TABLE 13-4 Incoming Interrupt Vector Data Register Format

Bits Field Type Description

63:0 Data R Interrupt data

TABLE 13-5 Interrupt Receive Register Format

Bits Field Type Description

63:11 R Reserved.

10:6 SID_U R Most significant (upper) 5 bits of the physical module ID (MID)

of the interrupter. Source ID bits <9:5> of interrupter.

5 BUSY RW Set when an interrupt vector is received. The BUSY bit must be

cleared by software writing zero.

4:0 SID_L R Least significant (lower) 5 bits of the physical module ID (MID)

of the interrupter.
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13.5 Software Interrupt Register (SOFTINT)

To schedule interrupt vectors for processing at a later time, each processor can send itself

signals by setting bits in the SOFTINT register.

The SOFTINT register (ASR 1616) is used for conication from nucleus (TL > 0) code to

kernel (TL = 0) code. Interrupt packets and other service requests can be scheduled in queues

or mailboxes in memory by the nucleus, which then sets SOFTINT<n> to cause an interrupt

at level <n>.

Non-privileged access to this register causes a privileged_opcode trap.

13.5.1 Setting the Software Interrupt Register

Setting SOFTINT<n> is done by a write to the SET_SOFTINT register (ASR 1416), with

bit n corresponding to the interrupt level set. The value written to the SET_SOFTINT
register is effectively ORed into the SOFTINT register. This approach allows the interrupt

handler to set one or more bits in the SOFTINT register with a single instruction.

Read accesses to the SET_SOFTINT register cause an illegal_instruction trap. Non-privileged

accesses to this register cause a privileged_opcode trap.

When the nucleus returns, if (PSTATE.IE = 1) and (n > PIL), then the processor will

receive the highest priority interrupt IRL<n> of the asserted bits in SOFTINT<16:0>. The

processor then takes a trap for the interrupt request, and the nucleus sets the return state to

the interrupt handler at that PIL and returns to TL = 0. In this manner, the nucleus can

schedule services at various priorities and process them according to their priority.

13.5.2 Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, the kernel writes to

the CLEAR_SOFTINT register (ASR 1516) with bit n set, to clear that interrupt. The

complement of the value written to the CLEAR_SOFTINT register is effectively ANDed

with the SOFTINT register. This approach allows the interrupt handler to clear one or more

bits in the SOFTINT register with a single instruction.

Read accesses to the CLEAR_SOFTINT register cause an illegal_instruction trap.

Non-privileged write accesses to this register cause a privileged_opcode trap.

The timer interrupt TICK_INT and system timer interrupt STICK_INT are equivalent to

SOFTINT<14> and have the same effect.
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Note – To avoid a race condition between the kernel clearing an interrupt and the nucleus

setting it, the kernel should examine the queue for any valid entries again after clearing the

interrupt bit.

TABLE 13-6 summarizes the SOFTINT ASRs.

TABLE 13-6 SOFTINT ASRs

ASR Value ASR Name Type Description

1416 SET_SOFTINT W Set bit(s) in Soft Interrupt Register.

1516 CLEAR_SOFTINT W Clear bit(s) in Soft Interrupt Register.

1616 SOFTINT RW Per-processor Soft Interrupt Register.
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Performance Programming
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CHAPTER 14

Performance Instrumentation

Performance instrumentation consists of processor event counters that can be used to gather

statistics during program execution and calls that start and stop the gathering process. Many

events can be monitored, two at a time, to gain information about the performance of the

processor. Memory access and stall times, for example, can be measured using two, 32-bit

Performance Instrumentation Counters (PICs). The PCR and PIC are accessed through

read /write Ancillary State Register instructions.

This chapter describes the performance instrumentation features in the following sections:

• Section 14.1, “Performance Control Register (PCR)”

• Section 14.2, “Performance Instrumentation Counter (PIC) Register”

• Section 14.3, “Performance Instrumentation Operation”

• Section 14.4, “Pipeline Counters”

• Section 14.5, “Cache Access Counters”

• Section 14.6, “Memory Controller Counters”

• Section 14.7, “Data Locality Counters for Scalable Shared Memory Systems”

• Section 14.8, “Miscellaneous Counters”

• Section 14.9, “PCR.SL and PCR.SU Encodings”

Supervisor/User Mode

Access to the PCR is privileged. Non-privileged accesses cause a privileged_opcode trap.

Software can restrict non-privileged access to PICs by setting the PCR.PRIV field while in

privileged mode. When PCR.PRIV = 1 (supervisor access only), an attempt by User

Software to access the PIC register causes a privileged_action trap. Software can control

event measurements in non-privilege or privileged modes by setting the PCR.UT (user trace)

and PCR.ST (system trace) fields.1

1. The PCR has mode bits to enable the counters in privileged mode, non-privilege mode, or to count when in either mode.

The mode setting affects both counters.
14-363



14.1 Performance Control Register (PCR)

The Performance Control Register (PCR) is used to select the events to monitor and provides

control for counting in privileged and/or non-privileged modes.

The 64-bit PCR is accessed through read/write Ancillary State Register (ASR) instructions

(RDASR/WRASR). PCR is located at ASRs 16 (1016).

Two events can simultaneously be measured by setting the PIC_SL and PIC_SU fields. The

counters can be enabled separately for Supervisor and User mode using UT and ST fields.

The selected statistics are reflected during subsequent accesses to the PICs.

The PCR is a read/write register used to control the counting of performance monitoring

events. FIGURE 14-1 shows the details of the PCR. TABLE 14-1 describes the various fields of

the PCR. Counts are collected in the PIC register (see Section 14.2, “Performance

Instrumentation Counter (PIC) Register”).

FIGURE 14-1 Performance Control Register

The PCR selects the events and controls the operating modes of the Performance Instrumentation
Counters (PICs).

ASR 1610 64-bit Read/Write Privileged Mode, otherwise

privileged_action trap.

Reset:

0x0000.0000

ASR RegisterPCR - Performance Control Register

mP reservedarch reserved

arch reserved mP reserved

SU

arch reserved

SL

UT (user trace)
ST (supervisor trace)

PRIV (privileged)

63 62 61 39 3555 3334363738 324041424344454647484950515253545657585960

31 30 29 7 323 12456 089101112131415161718192021222425262728

mp reserved
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14.2 Performance Instrumentation Counter (PIC)

Register

The 64-bit PIC is accessed through read/write Ancillary State Register (ASR) instructions

(RDASR/WRASR). PIC is located at ASRs 17 (1116).

The PIC counters can be monitored during program execution to gather on-going statistics or

reconfigure during steady-state program execution to gather statistics for more than two

events. The pair of 32-bit counters can accumulate over four billion events each prior to

TABLE 14-1 PCR Bit Description

Bit Field Description

63:48 — Reserved by SPARC architecture.

Read zero, write zero, or write value read previously (read-modify-write).

47:32 — Unused UltraSPARC III Cu processor.

Read zero, write zero, or write value read previously (read-modify-write).

31:27 — Reserved by SPARC architecture.

Read zero, write zero, or write value read previously (read-modify-write).

26:17 — Unused UltraSPARC III Cu processor.

Read zero, write zero, or write value read previously (read-modify-write).

16:11 SU Selects 1of up to 64 counters accessible in the upper half (bits <63:32>) of

the PIC register.

10 — Reserved by SPARC architecture.

Read zero, write zero, or write value read previously (read-modify-write).

9:4 SL Selects 1 of up to 64 counters accessible in the lower half (bits <31:0>) of

the PIC register.

3 — Unused UltraSPARC III Cu processor.

Read zero, write zero, or write value read previously (read-modify-write).

2 UT User Trace Enable.

If set to one, counts events in non-privileged mode (User).

1 ST System Trace Enable.

If set to one, counts events in privileged mode (Supervisor).

Notes:
If both PCR.UT and PCR.ST are set to one, all selected events are counted.

If both PCR.UT and PCR.ST are zero, counting is disabled.

PCR.UT and PCR.ST are global fields which apply to both PIC pairs.

0 PRIV Privileged. If PCR.PRIV = 1, a non-privileged (PSTATE.PRIV = 0)

attempt to access PIC (via a RDPIC or WRPIC instruction) will result in a

privileged_action exception.
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wrapping. Overflow of PICL or PICU causes a disrupting trap and SOFTINT. Active

monitoring will allow the gathering software to extend the data range by periodically reading

the contents of the PICs to detect and avoid overflow; an interrupt can be enabled on a

counter overflow1.

Each of the two 32-bit PICs can accumulate over 4 billion events before wrapping around.

Overflow of PICL or PICU causes a disrupting trap and SOFTINT register bit 15 to be set

to 1; then, if ((PSTATE.IE = 1) and (PIL < 15)), causes an interrupt_level_15 trap. Extended

event logging can be accomplished by periodic reading of the contents of the PICs before

each overflows. Additional statistics can be collected by use of the two PICs over multiple

passes of program execution.2

The difference between the values read from the PIC on two reads reflects the number of

events that occurred between register reads. Software can only rely on read-to-read PIC

accesses to get an accurate count and not a write-to-read of the PIC counters. FIGURE 14-2

shows the details of the PIC. TABLE 14-2 describes the various fields of the PIC.

FIGURE 14-2 Performance Instrumentation Counter Register

1. The point at which the interrupt due to a PIC overflow is delivered may be several instructions after the
instruction responsible for the overflow event. This situation is known as a “skid”. The degree of skid
depends on the event that caused the overflow and the type of instructions being executed in the pipeline at
the time the overflow occurred. It may not be possible to associate a counter overflow with the particular
instruction that caused it due to the skid problem.

2. Two events can simultaneously be measured by setting PCR.SU/PCR.SL fields along with the PCR.UT and
PCR.ST fields. The selected statistics are reflected during subsequent accesses to the PICs.

The PIC register provides access to the counter values for the two events being monitored.

ASR 1710 64-bit Read/Write

Note: Writes are

designed for

diagnostic and test

purposes.

Accessibility depends on

PCR.PRIV bit:

0 = accessible in any mode

1 = accessible in Supervisor Mode,

otherwise privileged_action trap

Reset:

0x0000.0000

ASR RegisterPIC - Performance Instrumentation Counter register

31 30 29 7 323 12456 089101112131415161718192021222425262728

63 62 61 39 3555 3334363738 324041424344454647484950515253545657585960

PICL

PICU
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14.2.1 PIC Counter Overflow Trap Operation

When a PIC counter overflows, an interrupt is generated as described in TABLE 14-3.

14.3 Performance Instrumentation Operation

FIGURE 14-3 shows how an operating system might use the performance instrumentation

features to provide event monitoring services.

Setup the PCR register as desired to select two events1 and in which modes data should be

collected. The monitoring must consider the real effects of the computer that includes calls to

the system and interrupts. When used, the PCR register is considered part of a process state

and must be saved and restored when switching process contexts.

Multiple data collection times can be done while the program executes to show on-going

statistics.

TABLE 14-2 PIC Register Fields

Bit Field Description

63:32 PICU 32-bit field representing the count of an event selected by the SU field of

the Performance Control Register (PCR)

31:0 PICL 32-bit field representing the count of an event selected by the SL field of

the Performance Control Register (PCR)

TABLE 14-3 PIC Counter Overflow Processor Compatibility Comparison

Function Description

PIC Counter

Overflow

On overflow, a counter wraps to zero, SOFTINT register bit 15 is set to one, and

an interrupt_level_15 trap (a disrupting trap). The counter overflow trap is triggered

on the transition from value FFFF FFFF16 to value 0.

The point at which the interrupt is delivered may be several instructions after the

instruction responsible for the overflow event. This situation is known as a “skid.”

1. When more than two events need to be monitored, the program, code sequence, or code loop need to be run again with the

new events enabled. It is not possible to monitor more than two events at any given time.
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FIGURE 14-3 Operational Flow Diagram for Controlling Event Counters

FOR ILLUSTRATIVE
PURPOSES ONLY

start
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14.3.1 Performance Instrumentation Implementations

Counting events and cycle stalls is sometimes complex because of the dynamic conditions

and cancelled activities1.

14.3.2 Performance Instrumentation Accuracy

The performance instrumentation counters are designed to provide reasonable accuracy

especially when used to count hundreds or thousands of events or stall cycles or when

comparing the PIC counts that have recorded a similar number of events or stall cycles.

Accuracy is most challenging when trying to associate an event to an instruction and when

comparing PIC counts with one count rarely occurring.

When using the overflow trap, it is sometimes difficult to pin-point the instruction that is

responsible for the overflow because of the way the pipeline is designed. A delay of several

instructions is possible before the overflow is able to stop the current instruction flow and

fetch the trap vector. This delay is referred to as skid and can occur for dozens of clock

cycles. The skid for the load miss detection case is small. The skid value cannot be measured

and its length depends on what event or stall cycle is being measured and what other

instructions are in the pipeline.

14.4 Pipeline Counters

14.4.1 Instruction Execution and CPU Clock Counts

The instruction execution count monitors are described in TABLE 14-4 for clock and

instruction execution counts.

1. Specifics of each event and cycle stall are covered.

TABLE 14-4 Instruction Execution Clock Cycles and Counts

Counter Description

Cycle_cnt [PICL 00.0000 and PICU 00.0000]
Counts clock cycles. This counter increments the same as the SPARC V9

TICK register, except that cycle counting is controlled by the PCR.UT and

PCR.ST fields.

Instr_cnt [PICL 00.0001 and PICU 00.0001]
Counts the number of instructions completed (retired)1.

1. This count does not include annulled, mispredicted, trapped, or helper instructions.
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Synthesized Clocks Per Instruction (CPI)

The cycle and instruction counts can be used to calculate the average number of instructions

completed per cycle: Clock cycles per instruction, CPI = Cycle_cnt / Instr_cnt.

14.4.2 IIU Statistics

The counters listed in TABLE 14-5 record branch prediction event counts for taken and

untaken branches in the Instruction Issue Unit (IIU). A retired branch in the following

descriptions refers to a branch that reaches the D-stage without being invalidated.

14.4.3 IIU Stall Counts

IIU stall counts, listed in TABLE 14-6 on page 14-371, are the major cause of pipeline stalls

(bubbles) from the instruction fetch and decode pipeline. Stalls are counted for each clock

cycle at which the associated condition is true.

FIGURE 14-4 on page 14-371 illustrates the first two considerations described below.

14.4.3.1 Dispatch Counter Considerations

1. Dispatch Counters count when the buffer is empty, regardless of whether the execution

pipeline can accept more instructions from the instruction queue.

2. It is difficult to associate an empty queue to the reason it is empty. Multiple reasons together

or separately can cause the instruction queue to be empty. The hardware picks the most

recent disruptive event that is in the Fetch Unit to choose a counter to assign the empty queue

cycles.

TABLE 14-5 Counters for Collecting IIU Statistics

Counter Description

IU_Stat_Br_miss_taken [PICL 01.0101] Counts retired branches that were

predicted to be taken, but in fact were not taken.

IU_Stat_Br_miss_untaken [PICU 01.1101] Counts retired branches that were

predicted to be untaken, but in fact were taken.

IU_Stat_Br_Count_taken [PICL 01.0110] Counts retired taken branches.

IU_Stat_Br_Count_untaken [PICU 01.1110] Counts retired untaken branches.
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3. Count accuracy is also subject to the conditions described in Section 14.3.2, “Performance

Instrumentation Accuracy” for all counters.

FIGURE 14-4 Dispatch Counters

TABLE 14-6 Counters for IIU Stalls

Counter Description

Dispatch0_IC_miss [PICL 00.0010] Counts the stall cycles due to the event that no

instructions are issued because I-queue is empty from instruction cache

miss. This count includes L2-cache miss processing if a L2-cache miss

also occurs.1

1. See “Dispatch Counter Considerations” on page 370 for important information.

Dispatch0_mispred [PICU 00.0010] Counts the stall cycles due to the event that no

instructions are issued because I-queue is empty due to branch

misprediction.1

Dispatch0_br_target [PICL 00.0011] Counts the stall cycles due to the event that no

instructions are issued because I-queue is empty due to a branch target

address calculation.1

Dispatch0_2nd_br [PICL 00.0100] Counts the stall cycles due to the event of having

two branch instructions line-up in one 4-instruction group causing the

second branch in the group to be re-fetched, delaying its entrance into

the I-queue.1

Dispatch_rs_mispred [PICL 01.0111] Counts the stall cycles due to the event that no

instructions are issued because the I-queue is empty due to a Return

Address Stack misprediction.1

Fetch Unit Instruction
Queue

Execution
Pipeline

Dispatch Counter Considerations

Stall Cycles due to incoming delays are determined from the dispatch
counters that count clock cycles when the queue is empty (empty cycles).

Dispatch Counters

Stall Cycles
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14.4.4 R-stage Stall Counts

Stalls are caused by dependency checks (data not ready for use by the instruction ready for

dispatch) and by resources not being available (out-of-pipeline execution units needed, but

are in-use).

The counters in TABLE 14-7 count the stall cycles at the R-stage of the pipeline. Stalls are

counted for each clock at which the associated condition is true.

14.4.5 Recirculation Counts

Recirculation instrumentation is implemented through the counters listed in TABLE 14-8.

TABLE 14-7 Counters for R-stage Stalls

Counter Description

Rstall_storeQ [PICL 00.0101] Counts R-stage stall cycles for a store instruction which is

the next instruction to be executed, but is stalled due to the store queue being

full, that is, cannot hold additional stores. Up to eight entries can be in the store

queue.

Rstall_FP_use [PICU 00.1011] Counts R-stage stall cycles due to the event that the next

instruction to be executed depends on the result of a preceding floating-point

instruction in the pipeline that is not yet available.

Rstall_IU_use [PICL 00.0110] Counts R-stage stall cycles due to the event that the next

instruction to be executed depends on the result of a preceding integer

instruction in the pipeline that is not yet available.

TABLE 14-8 Counters for Recirculation

Counter Description

Re_RAW_miss [PICU 10.0110] Counts stall cycles due to recirculation when there is a

load in the E-stage which has a non-bypassable read-after-write (RAW) hazard

with an earlier store instruction. This condition means that load data are being

delayed by completion of an earlier store. See the Section 9.12,

“Read-After-Write (RAW) Bypassing” for a description of the RAW hazard

and causes of recirculation.

Re_FPU_bypass [PICU 00.0101] Counts stall cycles due to recirculation when an FPU

bypass condition that does not have a direct bypass path occurs.

Re_DC_miss [PICU 00.0110] Counts stall cycles due to loads that miss D-cache and

L2-cache and get recirculated. Includes cacheable loads only.

Re_EC_miss [PICU 00.0111] Counts stall cycles due to loads that miss D-cache and

L2-cache and get recirculated. Stall cycles from the point when L2-cache miss

is detected to the D-stage of the recirculated flow are counted. Includes

cacheable loads only.

Re_PC_miss [PICU 01.0000] Counts stall cycles due to recirculation when a prefetch

cache miss occurs on a prefetch predicted second load.
14-372 UltraSPARC III Cu User’s Manual • January 2004



14.5 Cache Access Counters

Instruction, data, prefetch, write, and L2-cache access events can be collected through the

counters listed in TABLE 14-9. Counts are updated by each cache access, regardless of whether

the access will be used.

14.5.1 Instruction Cache Events

TABLE 14-9 describes the counters for instruction cache events.

14.5.2 Data Cache Events

TABLE 14-10 describes the counters for data cache events.

TABLE 14-9 Counters for Instruction Cache Events

Counter Description

IC_ref [PICL 00.1000]
Counts I-cache references. I-cache references are fetches (up to four

instructions) from an aligned block of eight instructions. I-cache

references are generally speculative and include instructions that are later

cancelled due to mis-speculation.

IC_miss [PICU 00.1000] Counts I-cache misses. Includes fetches from

mis-speculated execution paths which are later cancelled.

IC_miss_cancelled [PICU 00.0011] Counts I-cache misses cancelled due to

mis-speculation, recycle, or other events.

ITLB_miss [PICU 01.0001] Counts I-TLB miss traps taken.

TABLE 14-10 Counters for Data Cache Events

Counter Description

DC_rd [PICL 00.1001] Counts D-cache read references (including

accesses that subsequently trap). References to pages that are not

virtually cacheable (TTE CV bit = 0) are not counted.

DC_rd_miss [PICU 00.1001] Counts recirculated loads that miss the D-cache.

Includes cacheable loads only.

DC_wr [PICL 00.1010] Counts D-cache cacheable store accesses

encountered (including cacheable stores that subsequently trap).

Non-cacheable accesses are not counted.
Chapter 14 Performance Instrumentation 14-373



14.5.3 Write Cache Events

TABLE 14-11 describes the counters for write cache events.

14.5.4 Prefetch Cache Events

TABLE 14-12 describes the counters for prefetch cache events.

DC_wr_miss [PICU 00.1010] Counts D-cache cacheable store accesses that miss

D-cache. (There is no stall or recirculation on store miss).

DTLB_miss [PICU 01.0010] Counts memory reference instructions which trap

due to D-TLB miss.

TABLE 14-11 Counters for Write Cache Events

Counter Description

WC_miss [PICU 01.0011] Counts W-cache misses.

WC_snoop_cb [PICU 01.0100] Counts W-cache copybacks generated by a snoop

from a remote processor.

WC_scrubbed [PICU 01.0101] Counts W-cache hits to clean lines.

WC_wb_wo_read [PICU 01.0110] Counts W-cache writebacks not requiring a read.

TABLE 14-12 Counters for Prefetch Cache Events

Counter Description

PC_MS_miss [PICU 01.1111] Counts FP loads through the MS pipeline that miss

P-cache.

PC_soft_hit [PICU 01.1000] Counts FP loads that hit a P-cache line that was

prefetched by a software-prefetch instruction.

PC_hard_hit [PICU 01.1010] Counts FP loads that hit a P-cache line that was

prefetched by a hardware prefetch.

PC_snoop_inv [PICU 01.1001] Counts P-cache invalidates generated by a snoop

from a remote processor and stores by a local processor.

PC_port0_rd [PICL 01.0000] Counts P-cache cacheable FP loads to the first port

(general-purpose load path to D-cache and P-cache via MS pipeline).

PC_port1_rd [PICU 01.1011] Counts P-cache cacheable FP loads to the second

port (memory and out-of-pipeline instruction execution loads via the A0

and A1 pipelines).

TABLE 14-10 Counters for Data Cache Events (Continued)

Counter Description
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14.5.5 L2-Cache Events

The L2-cache write hit count is determined by subtraction of the read hit and the instruction

hit count from the total L2-cache hit count. The L2-cache write reference count is determined

by subtraction of the D-cache read miss and I-cache misses from the total L2-cache

references. Because of write caching, this is not the same as D-cache write misses.

TABLE 14-13 describes the counter for L2-cache events.1

TABLE 14-13 Counters for L2-Cache Events

Counter Description

EC_ref [PICL 00.1100] Counts L2-cache reference events. A 64-byte

request is counted as one reference. Includes speculative D-cache load

requests that turn out to be a D-cache hit. Count includes cacheable

accesses only.

EC_misses [PICU 00.1100] Counts L2-cache miss events sent to the System

Interface Unit. Includes I-cache, D-cache, P-cache, W-cache exclusive

(store), read stream (BLD), write stream (BST) requests that miss

L2-cache. Count includes cacheable accesses only.

EC_write_hit_RTO [PICL 00.1101] Counts W-cache exclusive requests that hit

L2-cache in S, O, or Os state and thus, do a read-to-own (RTO) bus

transaction.

EC_wb [PICU 00.1101] Counts dirty sub-blocks that produce writebacks

due to L2-cache miss events.

EC_snoop_inv [PICL 00.1110] Counts L2-cache invalidates generated from a

snoop by a remote processor.

EC_snoop_cb [PICU 00.1110] Counts L2-cache copybacks generated from a

snoop by a remote processor.

EC_rd_miss [PICL 00.1111] Counts L2-cache miss events (including atomics)

from D-cache requests. Cacheable D-cache loads only.

EC_ic_miss [PICU 00.1110] Counts L2-cache read misses from I-cache

requests. The counter counts all I-cache misses including those for

instructions from the mis-speculated execution path. Cacheable requests

only.

1. A block load or store access is counted as eight (8) references. For atomics, the read and write events are counted

individually.
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14.5.6 Separating D-cache Stall Counts

The D-cache stall cycle counts can be measured separately for L2-cache hits and misses by

using the Re_DC_missovhd counter. The Re_DC_missovhd stall cycle counter is used with

the recirculation and cache access events to separately calculate the D-cache loads that hit

and miss the L2-cache. TABLE 14-14 describes the Re_DC_missovhd stall cycle counter

processor compatibility.

TABLE 14-14 Re_DC_missovhd Stall Counter Processor Compatibility

Function Description

Re_DC_missovhd [PICL 00.0100]The Re_DC_missovhd cycle stall counter.
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Synthesizing Individual Hit and Miss Stall Times

To explain the synthesis for L2-cache hit and miss stall times separately, consider the four

stall regions A, B, C, and D shown in FIGURE 14-5 and the definitions and calculations that

follow.

FIGURE 14-5 D-Cache Load Miss Stall Regions

L2-cache Hit:

L2-cache Miss:

A B

DC

L2-cache Hit/MissD-cache load miss
Recirculated load reaches

at D Pipeline stage is reported
D Pipeline stage again

Stall Time (clock cycles)

T0 T1 T2 T3

D-cache misses to L2-cache

Re_DC_miss (stall cycles) = (A + B + C + D) stall cycles

miss L2

DC_rd_miss (events)

EC_rd_miss (events)

miss D-cache
==Fraction of D-cache misses

that miss L2-cache

Synthesized Stall Cycle Counts:

Definitions:

(C) Stall Cycles = Re_DC_missovhd * Miss L2 Ratio

L2-cache Miss Stall Cycles = (C + D) = (C) + Re_EC_miss

Miss L2 Ratio=

L2-cache Hit Stall Cycles = (A + B) = Re_DC_miss - (C + D)

Re_EC_miss (stall cycles) = (D) stall cycles

Re_DC_missovhd (stall cycles) = (A + C) stall cycles
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14.6 Memory Controller Counters

This section describes the memory controller counters in the UltraSPARC III Cu processor.

14.6.1 Memory Controller Read Request Events

If the snoop indicates that the line exists in some other device, the memory read request is

cancelled. The cancelled read requests are not counted. TABLE 14-15 describes the counters

for memory controller read events.

14.6.1.1 Memory Controller Write Request Events

TABLE 14-16 describes the counters for memory controller write events.

TABLE 14-15 Counters for Memory Controller Read Events

Counter Description

MC_reads_0 [PICL 10.0000] Counts read requests completed to memory bank 0.

MC_reads_1 [PICL 10.0001] Counts read requests completed to memory bank 1.

MC_reads_2 [PICL 10.0010] Counts read requests completed to memory bank 2.

MC_reads_3 [PICL 10.0011] Counts read requests completed to memory bank 3.

TABLE 14-16 Counters for Memory Controller Write Events

Counter Description

MC_writes_0 [PICU 10.0000] Counts write requests completed to memory bank 0.

MC_writes_1 [PICU 10.0001] Counts write requests completed to memory bank 1.

MC_writes_2 [PICU 10.0010] Counts write requests completed to memory bank 2.

MC_writes_3 [PICU 10.0011] Counts write requests completed to memory bank 3.
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14.6.1.2 Memory Request Stall Cycles

The stall cycles may be generated due to bus contention, a bank being busy, data availability

for a write, etc. TABLE 14-17 describes the counters for memory stall cycles.

14.7 Data Locality Counters for Scalable Shared

Memory Systems

There are four data locality performance event counters in the UltraSPARC III Cu processor.

These event counters are provided to improve the ability to monitor and exploit performance

in Scalable Shared Memory (SSM) systems where there are multiprocessor system clusters

using Shared Memory Protocol (SMP) that are tied to other clusters using fabric interconnect

utilizing the SSM architecture. TABLE 14-18 describes the counters for data locality events.

TABLE 14-17 Counters for Memory Controller Stall Cycles

Counter Description

MC_stalls_0 [PICL 10.0100] Counts clock cycles that requests were stalled in the MCU

queues because bank 0 was busy with a previous request.

MC_stalls_1 [PICU 10.0100] Counts clock cycles that requests were stalled in the MCU

queues because bank 1 was busy with a previous request.

MC_stalls_2 [PICL 10.0101] Counts clock cycles that requests were stalled in the MCU

queues because bank 2 was busy with a previous request.

MC_stalls_3 [PICU 10.0101] Counts clock cycles that requests were stalled in the MCU

queues because bank 3 was busy with a previous request.

TABLE 14-18 Counters for Data Locality Events

Counter Description

EC_miss_local [PICL 01.1010] Counts any transaction to an LPA for which the

processor issues an RTS/RTO/RS transaction.

EC_miss_mtag_remote [PICL 01.1011] and [PICU 10.1000] Counts any transaction

to an LPA address in which the processor is required to generate a retry

transaction.
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SSM Systems

Typically, four to six local processors are in a system cluster and have their own local

memory subsystem(s). They use an SMP to maintain data coherency amongst themselves.

Data coherency is maintained between system clusters using a directory based SSM data

coherency mechanism to insure data coherency across systems with a large number of

processors.

The data locality event counters are only valid for Shared System Memory architectures in

SSM mode.

14.7.1 Event Tree

The event and cycle stall counters are illustrated in FIGURE 14-6 on page 14-381. The diagram

includes actual counters and synthesized counts.

EC_miss_remote [PICU 10.1001] Counts the events triggered whenever the processor

generates a remote (R_*) transaction and the address is to a non-LPA

portion (remote) of the physical address space, or an R_WS transaction

due to block store (BST)/block store commit (BSTC) to any address

space (LPA or non-LPA), or an R_RTO due to Store/Swap request on Os

state to LPA space.

EC_wb_remote [PICL 01.1001] Counts the retry event when any victimization for

which the processor generates an R_WB transaction to non-LPA address

region.

In practice, these are all NUMA cases, since for Coherence Memory

Replication (CMR or COMA), the protocol insures that the processor

only generates WB transactions.

TABLE 14-18 Counters for Data Locality Events (Continued)

Counter Description
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FIGURE 14-6 Data Locality Event Tree for L2-cache Misses

Load Block Store (BST)
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14.7.2 Data Locality Event Matrix

TABLE 14-19 shows the data locality event matrix.

LPA Retried Events

Retry is to issue a R_* transaction for an RTS/RTO/RS transaction that gets unexpected

MTag from the SSM system interconnect (for example, cache state = O and mtag state = gS).

A retry takes place in LPA.

TABLE 14-19 Data Locality Events

MODE
Combined
State

Processor action

Load
Store/
Swap

Block
Load Block Store

Block Store
with
Commit Write Back

LPA

I
miss:

RTS

miss:

RTO

miss:

RS

miss:

R_WS

miss:

R_WS

none
E

hit

hit:

E→M

hit

hit:

E→M

S mtag miss:

RTO miss:

R_WS

O WB

Os
mtag miss:

R_RTO
WB

M hit WB

LPA

Retried

I
mtag miss:

R_RTS

mtag miss:

R_RTO

mtag miss:

R_RS
invalid none

E invalid

S

invalid
mtag miss:

R_RTO
invalid noneO

Os

M invalid

~LPA

I
miss:

R_RTS

miss:

R_RTO

miss:

R_RS

miss:

R_WS

miss:

R_WS

none
E hit

hit:

E→M
hit

hit:

E→M

S

hit
mtag miss:

R_RTO
hit

miss:

R_WS
O

miss:

R_WB
Os

M hit
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14.7.3 Synthesized Data Locality Events

The Data Locality event assignments allow the software to create synthetic events based on

arithmetic combinations of events assigned to PICL and PICU, as shown in TABLE 14-20.

EC_miss_total

EC_miss_total counts all EC misses, which is EC_misses plus all retries. Retry means you

have two transactions for each miss (first it misses MTag and then reissued).

TABLE 14-20 Synthesized Data Locality Events

Synthesized Event PICL PICU

EC_wb_local
=

+
EC_wb

–

EC_wb_remote

EC_miss_remote_nobst

(remote misses excluding

BST/BSTC)

=
+
EC_misses

–

EC_miss_local

EC_miss_total

(L2-cache misses + retries)

=
+
EC_misses

+

EC_miss_mtag_remote

EC_miss_remote_node

(CMR, NUMA)

=
+
EC_miss_remote

+
EC_miss_mtag_remote

EC_mtag_hit_local
=

–

EC_miss_mtag_remote

+
EC_miss_local
Chapter 14 Performance Instrumentation 14-383



14.8 Miscellaneous Counters

14.8.1 System Interface Events and Clock Cycles

System interface statistics are collected through the counters listed in TABLE 14-21.

14.8.2 Software Events

Software statistics are collected through the counters listed in TABLE 14-22.

Note – Both counters measure the same event; thus, the count can be programmed to be

read from either the PICL or the PICU register.

TABLE 14-21 Counters for System Interface Statistics

Counter Description

SI_snoop [PICL 01.0001] Counts snoops from remote processor(s) including RTS,

RTSR, RTO, RTOR, RS, RSR, RTSM, and WS.

SI_ciq_flow [PICL 01.0010] Counts system clock cycles when the flow control

(PauseOut) signal is asserted.

SI_owned [PICL 010011] Counts events where owned_in is asserted on bus

requests from the local processor.

TABLE 14-22 Counters for Software Statistics

Counter Description

SW_count0 [PICL 01.0100] Counts software-generated occurrences of sethi
%hi(0xfc000), %g0 instruction.

SW_count1 [PICU 01.1100] Counts software-generated occurrences of sethi
%hi(0xfc000), %g0 instruction.
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14.8.3 Floating-Point Operation Events

Floating-point operation statistics are collected through the counters listed in TABLE 14-23.

14.9 PCR.SL and PCR.SU Encodings

TABLE 14-24 lists PCR.SL and PCR.SL selection bit field encoding. Shaded blocks show SL

and SU field duplications with light shading.

TABLE 14-23 Counters for Floating-Point Operation Statistics

Event Counter Description

FA_pipe_completion [PICL 01.1000] Counts instructions that complete execution on the

Floating-point/Graphics ALU pipelines.

FM_pipe_completion [PICL 10.0111] Counts instructions that complete execution on the

Floating-point/Graphics Multiply pipelines.

TABLE 14-24 PIC.SL and PIC.SU Selection Bit Field Encoding

PCR.SL and
PCR.SU
Encodings PICL Event Selection PICU Event Selection

00.0000 Cycle_cnt Cycle_cnt

00.0001 Instr_cnt Instr_cnt

00.0010 Dispatch0_IC_miss Dispatch0_mispred

00.0011 Dispatch0_br_target IC_miss_cancelled

00.0100 Dispatch0_2nd_br Re_DC_missovhd

00.0101 Rstall_storeQ Re_FPU_bypass

00.0110 Rstall_IU_use Re_DC_miss

00.0111 Reserved Re_EC_miss

00.1000 IC_ref IC_miss

00.1001 DC_rd DC_rd_miss

00.1010 DC_wr DC_wr_miss

00.1011 Reserved Rstall_FP_use

00.1100 EC_ref EC_misses

00.1101 EC_write_hit_RTO EC_wb

00.1110 EC_snoop_inv EC_snoop_cb

00.1111 EC_rd_miss EC_ic_miss

01.0000 PC_port0_rd Re_PC_miss

01.0001 SI_snoop ITLB_miss

01.0010 SI_ciq_flow DTLB_miss
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01.0011 SI_owned WC_miss

01.0100 SW_count0 WC_snoop_cb

01.0101 IU_Stat_Br_miss_taken WC_scrubbed

01.0110 IU_Stat_Br_count_taken WC_wb_wo_read

01.0111 Dispatch_rs_mispred Reserved

01.1000 FA_pipe_completion PC_soft_hit

01.1001 EC_wb_remote PC_snoop_inv

01.1010 EC_miss_local PC_hard_hit

01.1011 EC_miss_mtag_remote PC_port1_rd

01.1100 Reserved SW_count1

01.1101 Reserved IU_Stat_Br_miss_untaken

01.1110 Reserved IU_Stat_Br_count_untaken

01.1111 Reserved PC_MS_miss

10.0000 MC_reads_0 MC_writes_0

10.0001 MC_reads_1 MC_writes_1

10.0010 MC_reads_2 MC_writes_2

10.0011 MC_reads_3 MC_writes_3

10.0100 MC_stalls_0 MC_stalls_1

10.0101 MC_stalls_2 MC_stalls_3

10.0110 Reserved Re_RAW_miss

10.0111 Reserved FM_pipe_completion

10.1000 Reserved EC_miss_mtag_remote

10.1001 Reserved EC_miss_remote

10.1010 -
11.1111

Reserved Reserved

TABLE 14-24 PIC.SL and PIC.SU Selection Bit Field Encoding (Continued)

PCR.SL and
PCR.SU
Encodings PICL Event Selection PICU Event Selection
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CHAPTER 15

Processor Optimization

15.1 Introduction

A significantly larger performance gain can be obtained if the code is re-compiled using a

compiler specifically designed for a specific processor. Several features are provided on the

UltraSPARC processors that can only be taken advantage of by using modern compiler

technology. This technology was previously unavailable primarily due to insufficient

hardware support to justify its development.

The front end of the processor consists of the following components:

• Prefetch Unit

• Instruction cache

• Next Field RAM

• The Branch and Set Prediction Logic

• Return address stack

The role of the front end in processor performance optimization is to supply as many valid

instructions as possible to the grouping logic and eventually to the functional units, including

the ALUs, the floating-point adder, the branch unit, the load/store pipe, to name a few.

Optimization is also about prefetching data, as cache misses are cycle intensive.

15.2 Instruction Stream Issues

The following section addresses the following issues:

• Instruction Alignment
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• Instruction Cache Timing

• Executing Code Out of the Level 2 Cache

• TLB Misses

• Instruction Cache Utilization

• Handling of CTI Couples

• Mispredicted Branches

• Return Address Stack

15.2.1 Instruction Alignment

15.2.1.1 Instruction Cache Organization

The I-cache is organized as a 4-way set associative cache, with each set containing a multiple

of eight-instruction lines (see FIGURE 15-1). Depending on its address, for each line of 8

instructions, up to 4 instructions are sent to the instruction buffer. If the address points to one

of the last three instructions in the line, only this last instruction and instructions (0-2) from

the end of the line are selected. Consequently, on average for random accesses, 3.25

instructions are fetched from the I-cache. For sequential accesses, the fetching rate (4

instructions per cycle) matches the consuming rate of the pipeline (up to 4 instructions per

cycle).

FIGURE 15-1 Instruction Cache Organization

32 bytes

8 instructions

Way 0

Way 1...

LINEs
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15.2.1.2 Branch Target Alignment

Given the restriction mentioned above regarding the number of instructions fetched from an

I-cache access, it is desirable to align branch targets so that enough instructions are fetched

to match the number of instructions issued in the first group of the branch target. The

following examples highlight the logic behind branch target alignment:

• If the compiler scheduler indicates that the target can be grouped with only one more

instruction, the target should be placed anywhere in the line except in the last slot, since

only one instruction would be fetched in that case. It may be beneficial to fetch more

instructions, if possible.

• If the target is accessed from more than one place, it should be aligned so that it

accommodates the largest possible group (first 5 instructions of a line).

• If accesses to the I-cache are expected to miss, it may be desirable to align targets on a

32-byte boundary, or at least the front end of a block, so that 4 instructions are forwarded

to the next stage. Such an alignment helps assure that the maximum number of

instructions can be processed between cache misses, assuming that the code does not

branch out of the sequence of instructions. In fact 64-byte alignment can help instruction

prefetch.

In general, it is best to align for maximum fetching by aligning branch targets on 4

instruction (16-byte) boundaries. This can help ensure that the fetch bandwidth matches the

issue width, which is a maximum of 4 instructions in the case of the UltraSPARC III

processor.

15.2.1.3 Branch Optimization

The UltraSPARC processors favor branch not taken conditionals. Regardless of this

preference, the instruction issue remains the same and the fetch is optimized.

15.2.1.4 Impact of the Delay Slot on Instruction Fetch

Most Control Transfer Instructions (CTIs) are actually delayed CTIs taking effect 1

instruction after the CTI, with the resulting lag known as the delay slot. That is the

instruction following the branch, or after CTI, is always executed regardless of where the

CTI directs execution (unless annulling is used). If the last instruction of a line is a branch,

the next sequential line in the I-cache must be fetched even if the branch predicted is taken,

since the delay slot must be sent to the grouping logic. This leads to inefficient fetches, since

an entire L2-cache access must be dedicated to fetching the missing delay slot. Therefore one

should take care not to place delayed CTIs at the end of a cache line.
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15.2.1.5 Instruction Alignment for the Grouping Logic

See Chapter 4 “Grouping Rules” for a description of grouping logic.

15.2.1.6 Impact of Instruction Alignment on Instruction Dispatch

It is important that no two branches are in the same fetch group. If there are two branches in

the same group the second branch will end the group and will cause a re-fetch taking 2

cycles. To guarantee this does not happen in the case of uncertain instruction alignment,

ensure that no 2 branches are within 4 instructions of each other.

15.2.2 Instruction Cache Timing

While accesses to the I-cache hit successfully, the pipeline rarely starves for instructions. In

rare cases however, the Instruction Dispatch is unable to provide a sufficient number of

instructions to keep the functional units busy. For example, a taken branch to a taken branch

sequence without any instructions between the branches (except for the delay slot) could

only be executed at a peak rate of two instructions per cycle.

An I-cache miss does not necessarily result in bubbles being inserted into the pipeline. Part

of the I-cache miss processing, or even all of it, can be overlapped with the execution of

instructions that are already in the instruction buffer and are waiting to be grouped and

executed. Moreover, since the operation of the Instruction Dispatch is somewhat separated

from the rest of the pipeline, the I-cache miss may have occurred when the pipeline was

already stalled (for example, due to a multi-cycle integer divide, floating-point divide

dependency, dependency on load data that missed the D-cache, etc.). This means that the

miss (or part of it) may be transparent to the pipeline.

Because of the possibility of stalling the processor when the pipeline is waiting for new

instructions, it is desirable to try to make code routines fit in the I-cache and avoid cache

misses. The UltraSPARC processor provides instrumentation to profile a program and detect

if instruction accesses generate a cache miss or a cache hit. By checkpointing the counters

before and after a large section of code, combined with profiling the section of code, one can

determine if the frequently executed functions generally hit or miss the I-cache.

15.2.3 Executing Code Out of the Level 2 Cache

Executing out of the L2-cache is much better than executing from main memory. From main

memory, hardware can prefetch the next 8 instructions if the initial fetch was from the lower

32 of a 64-byte aligned boundary.
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15.2.4 TLB Misses

The TLB contains the virtual page number and the associated physical page number of the

most recently accessed pages.

A TLB miss is handled by software through the use of the TSB, and takes a large number of

cycles. In order to minimize the frequency of TLB misses, the UltraSPARC processor

provides a large number of entries in the TLB. Nonetheless, techniques are encouraged to

further decrease the TLB miss cost.

15.2.4.1 Impact of the Annulled Slot

Grouping rules in Chapter 4 “Grouping Rules” describes how the UltraSPARC processor

handles instructions following an annulling branch. In connection with these instructions,

pay regard to the rules:

• Avoid scheduling WR(PR, ASR), SAVE, SAVED, RESTORE, RESTORED, RETURN,

RETRY, and DONE in the delay slot and in the first three groups following an annulling

branch.

15.2.5 Conditional Moves vs. Conditional Branches

The MOVcc and MOVR instructions provide an alternative to conditional branches for

executing short code segments. The UltraSPARC processor differentiates the two as follows:

• Conditional branches: Distancing the SETcc from Bicc does not gain any performance.

The penalty for a mispredicted branch is always 8-cycles. SETcc, Bicc, and the delay

slot can be grouped together (FIGURE 15-2).

FIGURE 15-2 Handling of Conditional Branches

• Conditional moves: A use of the destination register for the MOVcc follows the same rule

as a load-use. FIGURE 15-3 shows a typical example.

FIGURE 15-3 Handling of MOVCC

setcc G E C N1 N2 N3 W
bicc G E C N1 N2 N3 W
delay G E C N1 N2 N3 W

setcc G E C N1 N2 N3 W
movcc G E C N1 N2 N3 W
use G E C N1 N2 N3 W
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If a branch is correctly predicted, the issue rate can be higher than that of a branch that is

replaced by a conditional move. If a branch is not predictable the mis-predicted penalty is

significantly higher than the extra latency of a conditional move.

15.2.6 Instruction Cache Utilization

Grouping blocks that are executed frequently can effectively increase the apparent size of the

I-cache. Case studies show that, often, half of the I-cache entries are never executed. Placing

rarely executed code out of a line containing a frequently executed block (identified by

profiling) achieves a better I-cache utilization.

15.2.7 Handling of CTI couples

Placing a CTI into the delay slot of another CTI will disrupt the fetch and cost many cycles

and should be avoided.

15.2.8 Mispredicted Branches

Correctly predicted conditional branches allow the processor to group instructions from

subsequent basic blocks and continue to progress speculatively until the branch is resolved.

The capability of executing instructions speculatively is a significant performance boost for

the UltraSPARC processor.

15.2.9 Return Address Stack (RAS)

In order to speed up returns from subroutines invoked through CALL instructions,

UltraSPARC processor dedicates a 8-deep stack to store the return address. Each time a

CALL is detected, the return address is pushed onto this RAS (Return Address Stack). Each

time a return is encountered, the address is obtained from the top of the stack and the stack

is popped.The UltraSPARC III Cu processor considers a return to be a JMPL or RETURN
with rs1 equal to %o7 (normal subroutine) or %i7 (leaf subroutine). The RAS provides a

guess for the target address, so that prefetching can continue even though the address

calculation has not yet been performed. JMPL or RETURN instructions using rs1 values other

than %o7 or %i7 use the value on the top of the RAS for continuing prefetching, but they do

not pop the stack.

To take full advantage of the RAS, one should follow the standard call and return

conventions so that hardware can correctly predict the return addresses.
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15.3 Data Stream Issues

The following section addresses the following issues:

• Data Cache Organization

• Data Cache Timing

• Data Alignment

• Using LDDF to Load Two Single-Precision Operands/Cycle

• Store Considerations

• Read-After-Write Hazards

15.3.1 Data Cache Organization

The D-cache is a mapped, virtually indexed, physically tagged (VIPT), write-through,

non-write-allocating cache. It is logically organized as lines of 32 bytes.

FIGURE 15-4 Logical Organization of Data Cache

32 bytes

Way 0

Way 1...

LINEs
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15.3.2 Data Cache Timing

The latency of a load to the D-cache depends on the opcode. LDX and LDUW have 2-cycle

load-to-use latency while all other loads have 3. For instance, if the first two instructions in

the instruction buffer are a load and an instruction dependent on that load, the grouping logic

will break the group after the load and a bubble will be inserted in the pipeline. It is very

important to separate loads from their use.

15.3.3 Data Alignment

SPARC V9 requires that all accesses be aligned on an address equal to the size of the access.

Otherwise a mem_address_not_aligned trap is generated. This is especially important for double

precision floating-point loads, which should be aligned on an 8-byte boundary. If

misalignment is determined to be possible at compile time, it is better to use two LDF (load

floating-point, single precision) instructions and avoid the trap. The UltraSPARC processor

supports single-precision loads mixed with double-precision operations, so that the case

above can execute without penalty (except for the additional load). If a trap does occur, the

UltraSPARC processor dedicates a trap vector for this specific misalignment, which reduces

the overall penalty of the trap.

Grouping load data is desirable, since a D-cache sub-block can contain either four properly

aligned single-precision operands or two properly aligned double-precision operands (eight

and four respectively for a D-cache line). This is desirable not only for improving the

D-cache hit rate (by increasing its utilization density), but also for D-cache misses where, for

sequential accesses, one out of two requests to the L2-cache can be eliminated.

15.3.3.1 Using LDDF to Load Two Single-Precision Operands/Cycle

The UltraSPARC processor supports single cycle 8-byte data transfers into the floating-point

register file for LDDF. Wherever possible, applications that use single-precision floating-

point arithmetic heavily should organize their code and data to replace two LDFs with one

LDDF. This reduces the load frequency by approximately one half, and cuts execution time

considerably.

15.3.4 Store Considerations

The store on the UltraSPARC processor is designed so that stores can be issued even when

the data is not ready. More specifically, a store can be issued in the same group as the

instruction producing the result. The address of a store is buffered until the data is eventually

available. Once in the store buffer, the store data is buffered until it can be completed.
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The write cache can be used to exploit locality (both temporal and spatial) in the write

stream. Try to organize data to exploit the locality by not having more than 4 data streams

because of the 4-way set associative aliasing.

15.3.5 Read-After-Write Hazards

See Chapter 9 “Read-After-Write (RAW) Bypassing” for rules on RAW hazards.
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CHAPTER 16

Prefetch

This chapter contains the following sections:

• Prefetch Cache

• Software Prefetch

• Hardware Prefetch

• FP/VIS Load Instruction Miss Fetch

Prefetches can be used to hide memory latency, increase memory-level parallelism (overlap

memory accesses), and hide L2 latency for floating-point loads.

The Prefetch mechanism contains an eight entry prefetch request queue to hold up to eight

outstanding prefetch requests to L2-cache and beyond. Prefetches are generated by software

prefetch instructions and by an autonomous hardware prefetch engine. Prefetches may bring

data from memory into L2-cache. Prefetches may also bring data (either from L2-cache or

memory) all the way to the Level-1 P-cache. Only floating-point loads may get data from the

P-cache.

16.1 Prefetch Cache

The P-cache is virtually indexed and virtually tagged for CPU cache reads and never contains

modified data. It is physically indexed and physically tagged for system snooping of the

cache. The prefetch cache is 2 KB, 4-way set associative with 64 bytes per line.

The P-cache is accessed in parallel with the D-cache for floating-point/VIS loads. If the

P-cache contains the data and the D-cache does not, the data will be provided by the P-cache.

Integer loads cannot get data for the P-cache.
16-397



16.1.1 P-Cache Data Flow

Data is put into the P-cache under the following conditions:

• Hardware Prefetch (64 bytes)

• FP Load Miss (32 bytes)

• Some variants of Software Prefetch (64 bytes)

The hardware prefetch mechanism and the software prefetch instructions fetch data into the

P-cache but not the D-cache. The FP/VIS Load Instruction Miss Fetch puts data in both the

D-cache and P-cache.

Block load data is never loaded into the P-cache. The P-cache can hold cacheable data that is

not in the D-cache, and vice versa. The P-cache does not contain modified data. Stores that

hit the P-cache invalidate the 64-byte P-cache line.

16.1.2 Fetched_Mode Tag Bit

Each P-cache line contains a fetched_mode bit that indicates how the P-cache line entry was

installed: software prefetch instruction or hardware prefetch mechanism.

Successful software prefetches set this bit to indicate the cache line was installed using a

software prefetch instruction. This will inhibit the hardware prefetch mechanism from

operating when it might otherwise operate using the cache line information. The hardware

prefetch logic will not prefetch when the fetch mode bit of the current cache line is set to

software prefetched data. This helps keep the prefetching from interfering with successful

software prefetching.

16.2 Software Prefetch

The SPARC V9 instruction set contains data prefetch instructions. These instructions allow

software to give warning to hardware that it will be using data in the future. This gives

hardware the opportunity to potentially bring data closer to hide the latency of the memory

subsystem when the data is actually needed. There are different types of prefetches that

enable software to tell how the data will be used.

The UltraSPARC III Cu processor has extensive support for making use of prefetch directives

from software. The prefetching can be used to either hide latency or memory operations or to

overlap memory operations. In the UltraSPARC III Cu processor, different types of

prefetches are handled differently. Prefetches may do one of the following:

• Bring data into L2-cache only
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• Bring data into P-cache only

• Bring data into both P-cache and L2-cache

• Try to acquire ownership of a line for future writes

The software prefetch instructions are enabled by setting both the pcache_enable and the

software_prefetch_enable (SPE) (bits 45 and 43, DCUCR register). If the P-cache is disabled

or the SPE is zero, then all software prefetch instructions are ignored as they go through the

pipeline.

The P-cache responds to software prefetches by fetching the requested data into the P-cache

and/or L2-cache, as specified by the prefetch instruction.

16.2.1 Software Prefetch Instructions

Software prefetch instructions can prefetch data into the P-cache, L2-cache, or both,

depending on the type of prefetch instruction executed. TABLE 16-1 lists the types of software

prefetch instructions.

TABLE 16-1 Types of Software Prefetch Instructions

fcnValue
(hex) Instruction Type

Prefetch (64 bytes of
data) into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC III Cu

00 Prefetch read many P-cache and

L2-cache

Weak No

01 Prefetch read once P-cache only Weak No

02 Prefetch write many L2-cache only Weak Yes

03 Prefetch write once1

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

L2-cache only Weak No

04 Reserved Undefined

05 − 0F Reserved Undefined

10 Prefetch invalidate Invalidates a P-cache

line, no data is

prefetched.

N/A

11 − 13 Reserved Undefined

14 Same as fcn = 00 Weak2

2. These Weak instructions may be implemented as strong in future implementations.

No

15 Same as fcn = 01 Weak2 No

16 Same as fcn = 02 Weak2 Yes

17 Same as fcn = 03 Weak2 No

18 − 1F Reserved Undefined
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Instruction Strength. For each of the prefetch types, the software instruction can either

be a weak or a strong software prefetch instruction. This allows software to tell hardware

how confident it is that a prefetch will be helpful. Hardware may try harder to make sure that

a strong prefetch gets executed. In the case of the UltraSPARC III Cu processors, all software

prefetch instructions are weak, allowing the processor to more easily cancel their execution.

16.2.2 Software Prefetch Instruction Uses the MS Pipeline

All software prefetch instructions are executed by the MS pipeline because the MMU/TLB

structure is required and it is dedicated to the load and store instructions that are executed in

the MS pipeline.

The software prefetch instruction can be grouped with a second FP/VIS load instruction that

executes in the A0 or A1 pipeline, but the software prefetch instruction will always execute

in the MS pipeline. This means the processor never executes two software prefetch

instructions within one instruction group.

16.2.3 Cancelling Software Prefetch

The processor will cancel a prefetch instruction under various conditions that depend on the

instruction strength. The following four conditions can cancel a software prefetch instruction.

Regardless of software prefetch instruction strength, the prefetch is cancelled if:

• The data already exists in the appropriate cache, or

• The prefetch address is the same as one of the outstanding prefetches.

Weak software prefetch instruction strengths are also cancelled when:

• The prefetch instruction misses the D-TLB, or

• The prefetch queue is full (there are already too many outstanding prefetches).

16.2.4 Prefetch Instruction Variants

Prefetch for Several Reads

The data installs in the P-Cache and L2-cache. In cases that a memory request is required to

get the line, a Read to Share (RTS) is issued to the system. This is typically used when the

data will be read more than once.
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Prefetch for One Read

The data installs in the P-Cache only. It does not install in the L2-cache if the line is not

already there. In cases that a memory request is required to get the line, an RTS is issued to

the system. This is typically used for streaming data that is only used for a short period.

Note – Prefetch for one read can be used to stream special non-coherent data. A Prefetch

Invalidate should be used to flush such data to maintain correct behavior.

Prefetch for Several Writes

The data installs a 64-byte line in L2-cache, if not present. In the case that a memory request

is required, a Read to Own (RTO) is issued. This variant is typically used to prefetch for one

or more writes.

If the prefetch line is already in the L2-cache, then the prefetch instruction will be cancelled

even if the line is in a shared state. No RTO request will be sent out and no state change of

the 64-byte sub-block in the L2-cache is made.

Prefetch for One Write

The data installs a 64-byte line in L2-cache, if not present. In the case that a memory request

is required, an RTS is issued. This is typically used for prefetching integer data from memory

or for a two stage prefetch that separates prefetch to L2-cache and prefetch from L2-cache to

P-cache.

16.2.5 General Comments

• Block Load (BLD) data bypasses the P-cache and D-cache.

The block load data is always supplied by the L2-cache and written into FP/VIS register

file. The P-cache is used as a staging area utilizing eight 64-bit registers to hold the data

that is forwarded to the FP/VIS register file. Using BLD can corrupt the P-cache. It is

recommended that you use the SolarisTM bcopy routine for transferring large amounts of

data.

• P-cache data is not included in L2-cache.

The prefetch-read-once software prefetch instruction puts data into the P-cache from the

L2-cache or memory, but does not install it in L2-cache.
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• Stores invalidate prefetch cache lines.

Stores invalidate P-cache lines that reference the same store address to maintain cache

consistency. There is no mechanism to modify data in the P-cache, so code loops must be

careful to place any required store instructions after the P-cache data line is no longer

needed.

16.2.6 Code Example

CODE EXAMPLE 16-1 is an example of two memory operations per cycle, double-precision,

vector-multiply code.

CODE EXAMPLE 16-1 Two Memory Operations Per Cycle Code

! %l0 -> j
! %l1 -> c
! %l2 -> a
! %l3 -> b
! %l4 -> N
! %f32 -> K

! prefetch fcn=3 - one write, used to prefetch “c” into the E$
! prefetch fcn=1 - one read, used to prefetch “a” and “b” into

the P$

loop:
prefetch [%l1+64],3 ! prefetch in first memory

slot
lddf  [%l2],%f0 ! 2nd load from P$
fmuld  %f32,%f24,%f24
faddd  %f16,%f18,%f16

stdf  %f8,[%l1+16]  ! stf in first memory slot
add  %l1,64,%l1
lddf  [%l3],%f2  ! 2nd load from P$

prefetch [%l2+64],1
lddf  [%l2+8],%f4
fmuld  %f32,%f28,%f28
faddd  %f20,%f22,%f20

stdf  %f12,[%l1-40]
lddf  [%l3+8],%f6

prefetch [%l3+64],1
lddf  [%l2+16],%f8
fmuld  %f32,%f0,%f0
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faddd  %f24,%f28,%f24

stdf  %f16, [%11-32]
lddf  [%l3+16],%f10

lddf  [%l2+24],%f12
fmul  %f32,%f4,%f4
fadd  %f28,%f30,%f28
stdf  %f20,[%l1-24]

lddf  [%l3+24],%f14
lddf  [%l2+32],%f16
fmuld  %f32,%f8,%f8
faddd  %f0,%f2,%f0

stdf  %f24,[%l1-16]
lddf  [%l3+32],%f18

lddf  [%l2+40],%f20
fmuld  %f32,%f12,%f12
faddd  %f4,%f6,%f4
stdf  %f28,[%l1-8]

lddf  [%l3+40],%f22
subcc  %l0,8,%l0

lddf  [%l2+48],%f24
fmuld  %f32,%f16,%f16
faddd  %f8,%f10,%f8
stdf  %f0,[%l1]

lddf  [%l3+48],%f26
lddf  [%l2+56],%f28

lddf  [%l3+56],%f30
fmuld  %f32,%f20,%f20
faddd  %f14,%f12,%f12
stdf  %f4,[%l1+8]

add  %l3,64,%l3
bgt  loop
add  %l2,64,%l2

CODE EXAMPLE 16-1 Two Memory Operations Per Cycle Code (Continued)
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16.3 Hardware Prefetch

Note – Some versions of the UltraSPARC III Cu processor may have a hardware prefetch

mechanism as described in this section.

The hardware prefetch mechanism monitors the dispatching of floating-point load

instructions. If there is a P-cache hit and the state of the line indicates that it was not brought

in by a software prefetch and that a hardware prefetch for the next line has not already been

generated, then the hardware attempts to prefetch the next 64-byte cache line from the

L2-cache. If the request misses in the L2-cache, then the prefetch request is cancelled. The

hardware prefetch mechanism triggers regardless of which word(s) position within the

64 bytes is loaded; they do not need to be sequentially accessed to trigger the prefetch

mechanism.

The hardware prefetch mechanism is enabled when the pcache_enable and

hardware_prefetch_enable (bits 45 and 44, DCUCR register) are both set.

The hardware prefetch from the L2-cache to the P-cache can get needed data to the P-cache

well in advance of its use and hence reduce the L2-cache latency.

16.3.1 Cancelling Hardware Prefetches

Hardware prefetches are cancelled when they encounter one of the following conditions:

• The data already exists in the P-cache.

• The prefetch queue is full, or

• The hardware prefetch address is the same as one of the outstanding prefetches.

• The prefetch address is not in the same 8 KB boundary as the line that initiated the

prefetch.

• The request misses the L2-cache.

Hardware prefetch will return 64 bytes of data to P-cache only if it hits the L2-cache. No

more than one speculative prefetch is allowed to be generated from each prefetch cache line.

Once a cache hit has caused a speculative prefetch, subsequent hits to that line will not cause

redundant speculative prefetches.
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16.3.2 FP/VIS Load Instruction Miss Fetch

When an FP/VIS load instruction misses in the D-cache and P-cache, the hardware fetches

32 bytes of data from the L2-cache and fills it into the D-Cache, regardless of the load

instruction data size. If hardware prefetch is enabled, then the 32 bytes are also installed into

the P-cache. This is how hardware prefetch can get initiated. If the request misses the

L2-cache, then 64 bytes are fetched from main memory and installed in the L2-cache first.
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CHAPTER 17

IEEE 754-1985 Standard

The implementation of the floating-point unit for standard and nonstandard operating modes

are described in this chapter.

This chapter defines debug and diagnostics support in these sections:

• Introduction

• Floating-point Numbers

• IEEE Operations

• Traps and Exceptions

• IEEE Traps

• Underflow Operation

• IEEE NaN Operations

• Subnormal Operations

17.1 Introduction

17.1.1 Floating-point Operations

Floating-point Operations (FPops) include the algebraic operations and usually do not

include the specially treated FP Load/store, FBfcc, or the VIS instructions. The FABS, FNEG,

and FMOV instructions are also treated separately from the algebraic operations.
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17.1.2 Rounding Mode

The rounding mode of the FPU is determined either by the FSR.RD bit while in standard

rounding mode or by the GSR.IRND bit when in interval arithmetic rounding mode. The

rounding direction effects the result after any under or overflow condition is detected.

Underflow is detected before rounding. The FSR.RD bit options are shown in TABLE 17-1.

17.1.3 Nonstandard FP Operating Mode

The processor supports a nonstandard FP mode to facilitate in the handling of Subnormals by

the hardware, avoiding a software trap to supervisor software. The FP operating mode is

controlled by the FSR.NS bit. When FSR.NS = 1, nonstandard mode is selected. However,

when GSR.IM = 1, interval arithmetic rounding mode is selected, then regardless of the

FSR.NS bit the processor will be in standard mode.

17.1.4 Memory and Register Data Images

The floating-point values are represented in the f registers in the same way that they are

represented in memory. Any conversions for ALU operations are completed within the FP

execution unit. Load and store operations do not modify the register value.

VIS instructions (logical and move/copy operations) can be used with values generated by

the FPU.

17.1.5 Subnormal Operations

Subnormal operations include operations with Subnormal number operands and situations

where an operation without Subnormal number operands generate a Subnormal number

result. The FPU response to Subnormal numbers is described in section 17.8, Subnormal
Operations, on page 428.

TABLE 17-1 FSR.RD bit options

FSR.RD Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞

3 − ∞
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17.1.6 FSR.CEXC and FSR.AEXC Updates

The current exception (cexc) and accrued exception (aexc) fields in the FSR register are

described in section 17.5, IEEE Traps, on page 422.

In general:

• Only floating-point operations (FPops) will update cexc and only when an exceptional

condition is detected. All other instructions will leave cexc unchanged.

• When an exception is detected, but the trap is masked, then the FPop will update the

appropriate aexc field of the FSR register.

17.1.7 Prediction Logic

Prediction of overflow, underflow, and inexact traps is used in the hardware. Prediction

always errors on the side of providing correct results when the hardware can and generating

an exception when it cannot or is not sure.

Prediction of inexact occurs unless one of the operands is a Zero, NaN, or Infinity. When

prediction occurs and the exception is enabled, system software will properly handle these

cases and resume program execution. If the exception is not enabled, the result status is used

to update the FSR.aexc and FSR.cexc bits of the FSR register.

17.2 Floating-point Numbers

The floating-point number types and their abbreviations are shown in TABLE 17-2. In general

the IEEE 754-1985 Standard reserves exponent field values of all 0s and all 1s to represent

special values in the standard’s floating-point scheme.

TABLE 17-2 Floating-point Numbers

Number Type Abbreviation
Data Representation

Sign Exponent Fraction

Zero 0 0 or 1 000...000 000...000

Subnormal SbN 0 or 1
000...000 000...001 to

111...111

Normal Normal 0 or 1
000...001 to
111...110

000...000 to
111...111

Infinity Infinity 0 or 1 111...111 000...000

Signalling NaN SNaN 0 or 1 111...111 0xx...xxx

Quiet NaN QNaN 0 or 1 111...111 1xx...xxx
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Zero

Zero is not directly representable if the straight format is followed, this is due to the

assumption of a leading 1. To allow the number zero to yield a value of zero, the fraction (or

mantissa) must be exactly zero. Therefore the number zero is special cased with exponent

and fraction fields of zero. It is also important to note that -0 and +0 are considered to be

distinct values, though they both compare as equal.

SubNormal

If the exponent field is all 0s and the fraction field is non-zero then the value is a subnormal

(denormalized) number. These numbers do not have an assumed leading 1 before the binary

point. For single precision, these numbers are represented as (-1)s x 0.f x 2-126, in double

precision the representation is (-1)s x 0.f x 2-1022. In both cases s is the sign bit and f is the

fraction. Note that exponent and fraction fields of all 0s is the special representation of the

number zero. From this point of view, the number zero can be considered a subnormal.

Infinity

The values -infinity and +infinity are represented with an exponent field of all 1s and a

fraction field of all 0s. The sign bit distinguishes between positive and negative infinities.

The infinity representation is important as it allows operations to continue past overflow.

Operations dealing with infinities are well defined by the IEEE 754-1985 Standard.

Not a Number

The value NaN (Not a Number) is used to represent values that do not represent real

numbers. The NaN exponent field is all 1s and the fraction field is non-zero. There are two

categories of NaN; the QNaN (quiet NaN) and the SNaN (signalling NaN). A QNaN is a

NaN with the most significant fraction field bit set. QNaN is allowed to freely propagate

through most arithmetic operations; this NaN tends to appear when an operation produced

mathematically undefined results. A SNaN fraction field significant bit is clear. The SNaN is

used to signal an exception when it appears out of an operation being executed. Semantically

QNaN can be considered to denote indeterminate operations, while SNaN indicates invalid

operations.
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17.2.1 Floating-point Number Line

The floating-point number line in FIGURE 17-1 represents the floating-point numbers used in

the processor.

FIGURE 17-1 Floating-point Number Line

17.3 IEEE Operations

The response of each operation to operands with 0, Normal, Infinite, and NaN numbers are

described in this section. The response to Subnormal numbers are described in section 17.8,

Subnormal Operations, on page 428.

The result of each operation is concluded by one of the following:

■ A number is written to the destination f register (rd).

■ A number is written to the destination register and an IEEE flag is set.

■ An IEEE flag is set and an IEEE trap is generated (rd is unchanged).

Each instruction is defined with one or more operands. Most instructions generate a result.

The FCMP{E} instruction does not generate a result, instead it set the fccN bits.
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17.3.1 Addition

The floating-point addition instruction is shown in TABLE 17-3.

TABLE 17-3 Floating-point Addition

ADDITION Instruction

FADD rs1, rs2 [rs2, rs1] → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

+0, +0 +0 no +0 no

+0, -0
+0 (FSR.RD=0,1,2)
-0 (FSR.RD=3)

no
+0 (FSR.RD=0,1,2)
-0 (FSR.RD=3)

no

-0, -0 -0 no -0 no

0, +Normal +Normal no +Normal no

0, -Normal -Normal no -Normal no

0, +Infinity +Infinity no +Infinity no

0, -Infinity -Infinity no -Infinity no

Normal, +Infinity +Infinity

set ofc,
set ofa,
set nvc,
set nva

no
set ofc,
set nvc,
ieee trap

Normal, -Infinity -Infinity

set ofc,
set ofa,
set nvc,
set nva

no
set ofc,
set nvc,
ieee trap

+Normal, +Normal May overflow, see 17.5.3 May overflow, see 17.5.3

+Normal, -Normal Normal Normal

-Normal, +Normal Normal Normal

-Normal, -Normal May underflow, see 17.5.4 May underflow, see 17.5.4

+Infinity, +Infinity +Infinity no +Infinity no

+Infinity, -Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

-Infinity, +Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

-Infinity, -Infinity -Infinity no -Infinity no
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17.3.2 Subtraction

The floating-point subtraction instruction is shown in TABLE 17-4.

TABLE 17-4 Floating-point Subtraction

SUBTRACTION Instruction

rs1 - rs2

FSUB rs1, rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

+0, +0 +0 no +0 no

+0, -0 -0 no -0 no

-0, +0 -0 no -0 no

-0, -0 +0 no +0 no

0, +Normal -Normal no -Normal no

0, -Normal +Normal no +Normal no

0, +Infinity -Infinity no -Infinity no

0, -Infinity +Infinity no +Infinity no

Normal, +Infinity -Infinity

set ufc,
set nvc,
set ufa,
set nva

no
set ufc,
set nvc,
ieee trap

Normal, -Infinity +Infinity

set ufc,
set nvc,
set ufa,
set nva

no
set ofc,
set nvc,
ieee trap

+Normal, -Normal May overflow, see 17.5.3 May overflow, see 17.5.3

Normal, +Normal Normal no Normal no

-Normal, -Normal May underflow, see 17.5.4 May underflow, see 17.5.4

+Infinity, [0, Normal] +Infinity no +Infinity no

-Infinity, [0, Normal] -Infinity no -Infinity no

+Infinity, +Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

+Infinity, -Infinity +Infinity no +Infinity no

-Infinity, +Infinity -Infinity no -Infinity no

-Infinity, -Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap
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17.3.3 Multiplication

The floating-point multiplication instruction is shown in TABLE 17-5.

TABLE 17-5 Floating-point Multiplication

MULTIPLICATION Instruction

FMUL rs1, rs2 [rs2, rs1] → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s),

Trap

+0, [+0|+Normal] +0 no +0 no

+0, [-0|-Normal] -0 no -0 no

-0, [+0|+Normal] -0 no -0 no

-0, [-0|-Normal] +0 no +0 no

+0, +Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

+0, -Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

-0, +Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

-0, -Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

Normal, Normal
May underflow/

overflow, see 17.5
May underflow/

overflow, see 17.5

[+Normal|+Infinity], +Infinity +Infinity no +Infinity no

[+Normal|+Infinity], -Infinity -Infinity no -Infinity no

[-Normal|-Infinity], +Infinity -Infinity no -Infinity no

[-Normal|-Infinity], -Infinity +Infinity no +Infinity no
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17.3.4 Division

The floating-point division instruction is shown in TABLE 17-6.

TABLE 17-6 Floating-point Division

DIVISION Instruction

rs1 rs2

FDIV rs1, rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

0, 0
sign=0, expo=111...111,
frac=111...111 (QNaN)

set nvc,

set nva
no

set nvc,
ieee trap

0, Normal 0 no 0 no

0, Infinity 0 no 0 no

+Normal, +0 +Infinity
set nvc,
set nva

no
set dzc,
set nvc,
ieee trap

+Normal, -0 -Infinity
set nvc,
set nva

no
set dzc,
set nvc,
ieee trap

-Normal, +0 -Infinity
set nvc,
set nva

no
set dzc,
set nvc,
ieee trap

-Normal, -0 +Infinity
set nvc,
set nva

no
set dzc,
set nvc,
ieee trap

Normal, Normal
May underflow/overflow,

see 17.5
May underflow/overflow,

see 17.5

Infinity, Infinity QNaN
set nvc,
set nva

no
set nvc,
ieee trap

+Infinity, +Normal +Infinity no +Infinity no

+Infinity, -Normal -Infinity no -Infinity no

-Infinity, +Normal -Infinity no -Infinity no

-Infinity, -Normal +Infinity no +Infinity no
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17.3.5 Square Root

The floating-point square root instruction is shown in TABLE 17-7.

17.3.6 Compare

Two f registers are compared. The result of the compare is reflected in the fccN bits of the

FSR registers, shown in TABLE 17-8.

The FCMPE version of the instruction relates to Subnormal operations, see TABLE 17-16,

Results from NaN Operands, on page 427.

TABLE 17-7 Floating-point Square Root

SQUARE ROOT Instruction

sq root of rs2

FSQRT rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

+0 +0 no +0 no

-0 -0
set nvc,
set nva

no
set nvc,
ieee trap

+Normal
May underflow/overflow,

see 17.5
May underflow/overflow,

see 17.5

[-Normal|-Infinity]
QNaN

(sign=0, expo=111...111,
frac=111...111)

set nvc,
set nva

no
set nvc,
ieee trap

+Infinity + Infinity no + Infinity no

TABLE 17-8 Number Compare

FP NUMBER
COMPARE Instruction

FCMP{E} rs1, rs2

RESULT from the operation includes one or more of the following:
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● The fcc bit set.

Masked Exception, TEM=0 Enabled Exception, TEM=1

FP Condition Code Setting
(fccN)

Flag(s)
FP Condition Code Setting

(fccN)
Flag(s), Trap

+0, +0 fcc=0 (rs1 = rs2) no fcc=0 (rs1 = rs2) no

-0, -0 fcc=0 (rs1 = rs2) no fcc=0 (rs1 = rs2) no

+0, [+Normal|+Infinity] fcc=1 (rs1 < rs2) no fcc=1 (rs1 < rs2) no

-0, [-Normal|-Infinity] fcc=0 (rs1 = rs2) no fcc=0 (rs1 = rs2) no

-0, [+0|+Normal|+Infinity] fcc=1 (rs1 < rs2) no fcc=1 (rs1 < rs2) no
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17.3.7 Precision Conversion

Details of the precision conversion operations are shown in TABLE 17-9.

Examples:

■ FsTOd (7FD1.0000) = 7FFA.2000.0000.0000

■ FsTOd (FDD1.0000) = FFFA.2000.0000.0000

■ FdTOs (7FFA.2000.0000.0000) = 7FD1.0000

■ FdTOs (FFFA.2000.0000.0000) = FFD1.0000

+0, [-0|-Normal|-Infinity] fcc=2 (rs1 > rs2) no fcc=2 (rs1 > rs2) no

Normal, Normal =, >, or < no =, >, or < no

TABLE 17-9 Precision Conversion

PRECISION CONVERSION
Operations

single operand

FsTOd rs2 → rd
FdTOs rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM=0 Enabled Exception, TEM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

FsTOd ±0
FdTOs ±0

±0 no ±0 no

FsTOd ±Normal ±Normal no ±Normal no

FdTOs ±Normal
May underflow/

overflow, see 17.4.
May underflow/

overflow, see 17.4.

FsTOd ±Infinity
FdTOs ±Infinity

±Infinity no ±Infinity no

TABLE 17-8 Number Compare (Continued)

FP NUMBER
COMPARE Instruction

FCMP{E} rs1, rs2

RESULT from the operation includes one or more of the following:
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● The fcc bit set.

Masked Exception, TEM=0 Enabled Exception, TEM=1

FP Condition Code Setting
(fccN)

Flag(s)
FP Condition Code Setting

(fccN)
Flag(s), Trap
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17.3.8 Floating-point to Integer Number Conversion

The floating-point to integer number conversion instruction is shown in TABLE 17-10.

TABLE 17-10 Floating-point to Integer Number Conversion

FP to Int NUMBER CONVERSION
Instruction

single operand

FsTOi rs2 → rd
FsTOx rs2 → rd
FdTOi rs2 → rd
FdTOx rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM.NVM=0 Enabled Exception, TEM.NVM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

SP/DP
Int

+0 000...000 no 000...000 no

-0 111...111 no 111...111 no

+Infinity 011...111 no no
set nvc,
ieee trap

-Infinity 100...000 no no
set nvc,
ieee trap

SP Int

+Normal < 231 Integer representation of
the Normal number

no
Integer representation of

the Normal number
no

+Normal ≥ 231 011...111
set nvc,

set nva
no

set nvc,
ieee trap

-Normal > –[231 + 1]
Integer representation of

the Normal number
no

Integer representation of
the Normal number

no

-Normal ≤–[231 + 1] 100...000
set nvc,

set nva
no

set nvc,
ieee trap

DP Int

+Normal < 263 Integer representation of
the Normal number

no
Integer representation of

the Normal number
no

+Normal ≥ 263 011...111
set nvc,

set nva
no

set nvc,
ieee trap

-Normal > –[263 + 1]
Integer representation of

the Normal number
no

Integer representation of
the Normal number

no

-Normal ≤ –[263 + 1] 100...000 no 100...000 no
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17.3.9 Integer to Floating-point Number Conversion

The integer to floating-point number conversion instruction is shown in TABLE 17-11.

17.3.10 Copy/Move Operations

Floating-point numbers are not modified by the copy and move instructions: FMOV, FABS,

and FNEG. The copy/move instructions will not generate an unfinished_FPop or

unimplemented_FPop exception, but they will generate the fp_disabled exception if the FPU

is disabled.

The processor performs the appropriate sign bit transformation but will not cause an invalid

exception and will not perform a QNaN to SNaN transformation.

These are single operand instructions that use the rs2 register as the source operand.

TABLE 17-11 Integer to Floating-point Number Conversion

Int to FP NUMBER CONVERSION
Instruction

single operand

FiTOs rs2 → rd
FiTOd rs2 → rd
FxTOs rs2 → rd
FxTOd rs2 → rd

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception, TEM.NXM=0 Enabled Exception, TEM.NXM=1

Destination register
written (rd)

Flag(s)
Destination register

written (rd)
Flag(s), Trap

SP/DP
FP

0 ±0 no ±0 no

SP FP

+Integer < 223 FP representation of
+Normal

no
FP representation of

+Normal
no

+Integer ≥ 223 Integer is rounded to 23
msb and converted.

set nvc,

set nxc
no

set nvc,
ieee trap

-Integer > –[223 + 1]
FP representation of

+Normal
no

FP representation of
+Normal

no

-Integer ≤ –[223 + 1]
Integer is rounded to 23

msb and converted.

set nvc,

set nxc
no

set nvc,
ieee trap

DP FP

+Integer < 252 FP representation of
+Normal

no
FP representation of

+Normal
no

+Integer ≥ 252 Integer is rounded to 52
msb and converted.

set nvc,

set nxc
no

set nvc,
ieee trap

-Integer > –[252 + 1]
FP representation of

+Normal
no

FP representation of
+Normal

no

-Integer ≤ –[252 + 1]
Integer is rounded to 52

msb and converted.

set nvc,

set nxc
no

set nvc,
ieee trap
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FMOV
• f register-to- f register move.

- No change to any bit, regardless of register content.

- Useful with VIS instructions.

FABS
• Changes the FP/Int sign bit to positive, if needed.

- No change to any other bit, regardless of register content.

FNEG
- Changes the FP/Int sign bit (If 0, then 1. If 1, then 0.)

- No change to any other bit, regardless of register content.

17.3.11 f Register Load/Store Operations

A load single floating-point (LDF) instruction writes to a 32-bit register. This must be

converted to a 64-bit value (FsTOd) for use with double precision instructions.

A load double floating-point (LDDF) instruction writes to a pair of adjacent, 32-bit f
registers aligned to an even boundary, and it can write to a 64-bit register. This must be

converted to a 32-bit value (FdTOs) for use with single precision instructions.

Two LDF instructions can be used to load a 64-bit value when the memory address alignment

to 64-bits is not guaranteed. Similarly, two STF instructions can be used to store a 64-bit

value when the memory address alignment to 64-bits is not guaranteed.

17.3.12 VIS Operations

VIS instructions are unaffected by floating-point models. However, the FPU must be

enabled. VIS instructions do not generate interrupts unless the FPU is disabled.

17.4 Traps and Exceptions

There are 3 trap vectors defined for floating-point operations:

■ fp_disabled

■ fp_exception_ieee_754 (see section 17.5, IEEE Traps, on page 422)
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■ fp_exception_other

fp_disabled Trap

The floating-point unit can be enabled and disabled.

fp_exception_other Trap

The fp_exception_other trap occurs when a floating-point operation cannot be completed by

the processor (unfinished_FPop) or an operation is requested that is not implemented by the

processor (unimplemented_FPop).

17.4.1 Summary of Exceptions

The floating-point unit exceptions are shown in TABLE 17-12.

TABLE 17-12 Floating-point Unit Exceptions

Description
IEEE
Flag

Trap
Abbreviation Fault Trap Type Exception/Trap Vector

FPU disabled none disable trap none
fp_disabled
(02016)

FP operation invalid (IEEE) nv

ieee trap
IEEE_745_exception
(FSR.FTT = 1)

fp_exception_ieee_754
(02116)

FP operation overflow (IEEE) of

FP operation underflow (IEEE) uf

FP operation division by zero (IEEE) dz

FP operation inexact (IEEE) nx
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17.4.2 Trap Event

When a floating-point exception causes a trap, the trap is precise. The response to traps is

described in TABLE 17-13.

17.4.3 Trap Priority

The traps generated by floating-point exceptions (fp_disabled, fp_exception_ieee_754, and

fp_exception_other) are prioritized.

17.5 IEEE Traps

The Underflow, Overflow, Inexact, Division-by-zero, and Invalid IEEE traps are supported in

standard and nonstandard modes. They are listed in TABLE 17-12, Floating-point Unit
Exceptions, on page 421 and operate according to the IEEE 754-1985 Standard.

17.5.1 IEEE Trap Enable Mask (TEM)

Individual IEEE traps (nv, of, uf, dz, and nx) are masked by the FSR.TEM bits.

TABLE 17-13 Response to Traps

fp_disabled

fp_exception_other

fp_exception_ieee_754Exception Event → unimplemented_FPop unfinished_FPop

Resulting Action ↓

Address of instruction that caused the
trap is put in the PC and pushed onto
the trap stack.

✓ ✓ ✓ ✓

The destination f register (rd) is
unchanged from its state prior to the
execution of the instruction that caused
the trap.

✓ ✓ ✓ ✓

The floating-point condition codes
(fccN) are unchanged.

✓ ✓ ✓ ✓

The FSR.aexc field is unchanged. ✓ ✓ ✓ ✓

The FSR.cexc field is unchanged. ✓ ✓ ✓
Appropriate bit is set

to 1.

The FSR.ftt field is set to: nc 3 2 1
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When a trap is masked and an exception is detected, then the appropriate FSR.cexc bit(s)

are set and the destination register is written with data shown in TABLE 17-3, TABLE 17-4,

TABLE 17-5, TABLE 17-6, TABLE 17-7, TABLE 17-8, and TABLE 17-9.

17.5.2 IEEE Invalid (nv) Trap

The IEEE invalid exception (nv) is generated when the source operand is a NaN (signalling

or quiet), or the result cannot fit in the integer format.

The nv trap for an invalid case can be masked using the FSR register.

17.5.3 IEEE Overflow (of) Trap

When an overflow occurs the inexact flag is also set.

If an overflow occurs and the IEEE Overflow (of) and Invalid (nv) traps are enabled

(FSR.TEM.NVM = 1), then a fp_exception_IEEE_754 is generated. If the Overflow trap is

masked and the operation is valid, then the destination register (rd) receives Infinity.

The Overflow Trap is caused when the result of an arithmetic operation exceeds the range

supported by the floating-point or integer number precision. This can happen in many

different cases as listed in the tables of this section.

17.5.4 IEEE Underflow (uf) Trap

When a Normal number underflows the inexact flag is also set. Underflow is detected before

rounding.

The Underflow condition leads to a Subnormal result unless gross underflow is detected. In

that case the result is 0 and the inexact flag is raised.

Underflow is discussed in detail in section 17.6, Underflow Operation, on page 424.

17.5.5 IEEE Divide-by-Zero (DZ) Trap

When a number is divided by zero, the Divide-by-zero flag is asserted and an ieee_exception
is generated, if enabled. The dz flag and trap can only be generated by the FDIV instruction.
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17.5.6 IEEE Inexact (nx) Trap

When an inexact condition occurs, the processor sets the FSR.aexc.nxa and/or the

FSR.cexc.nxc bits whenever the rounded result of an operation differs from the precise

result. The floating-point/integer conversions that generate inexact exceptions are shown in

TABLE 17-14.

The Inexact (nx) flag is asserted for most an overflow or underflow conditions.

The Inexact trap is caused when the ideal result cannot fit into the destination format:

■ most square root operations

■ some add, subtract, multiply, and divide operations

■ some number and precision conversion operations

17.6 Underflow Operation

Underflow occurs when the result of an operation (before rounding) is less than that

representable by a Normal number.

TABLE 17-14 FP ↔ Integer Conversions that Generate Inexact Exceptions

Instruction Conversion Description
Unmasked Exception,
TEM=0

Masked Exception,
TEM=1

FsTOi
FdTOi

FP to 32-bit integer when the source operand is not between

−(231 − 1) and 231, then the result is inexact.
Integer number, nx nx ieee trap

FsTOx
FdTOx

FP to 64-bit integer when the source operand is not between

−(263 − 1) and 263, then the result is inexact.
Integer number, nx nx ieee trap

FiTOs
Integer to FP when the 32-bit integer source operand

magnitude is not exactly representable in single precision

(23-bit fraction).1

1. Even if the operand is > 224 − 1, if enough of its trailing bits are zeros, it may still be exactly representable.

Single Precision
Normal, nx

nx ieee trap

FxTOs
Integer to FP when the 64-bit integer source operand

magnitude is not exactly representable in single precision

(23-bit fraction).1

Single Precision
Normal, nx

nx ieee trap

FxTOd
Integer to FP when the 64-bit integer source operand

magnitude is not exactly representable in double precision

(52-bit fraction).2

2. Even if the operand is > 253 − 1, if enough of its trailing bits are zeros, it may still be exactly representable.

Double Precision
Normal, nx

nx ieee trap
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After rounding, the tiny number (underflow) is usually represented by a Subnormal number,

but may equal the smallest Normal number if the unrounded result is just below the range of

Normal numbers and the rounding mode (specified in FSR.RD) moves it into the Normal

number range. The underflow result will be zero, Subnormal, or the smallest Normal value.

Compatibility Note – The FPU does not support exponent wrapping for underflow or

overflow.

17.6.1 Trapped Underflow

The FPU will trap on underflow if the FSR.TEM.UFM bit is set to 1. Since tininess is detected

before rounding, trapped underflow occurs when the exact unrounded result has a magnitude

between zero and the smallest representable Normal number in the precision of the

destination format.

When underflow is trapped, the destination and other registers are left unchanged, see

section 17.4.2, Trap Event, on page 422.

17.6.2 Untrapped Underflow

The FPU will not generate an underflow trap when an underflow occurs, if the FSR.TEM.UFM
bit is set to 0.

If the result causes an underflow and the result after rounding is exact, then the FPU will not

generate an inexact trap.

Tininess detection before rounding is summarized in TABLE 17-15.

Define a few terms:

■ u is the unrounded (exact) value of the result.

■ r is the rounded value of u (occurs when there is no trap generated)

■ Underflow is when: 0 < |u| < smallest Normal number.

TABLE 17-15 Underflow Exception Summary

Underflow : enabled (UFM = 1) masked (UFM = 0) masked (UFM = 0)

Inexact : don’t care (NXM = x) enabled (NXM = 1) masked (NXM = 0)

u = r

exact
result

r is minimum Normal none none none

r is Subnormal set ufc, ieee trap none none

r is Zero none none none
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17.7 IEEE NaN Operations

When a NaN operand appears or a NaN result is generated, and the invalid (nv) trap is

enabled (FSR.TEM.NVM = 1), then the fp_exception_ieee_754 occurs.

If the invalid (nv) trap is masked (FSR.TEM.NVM = 0), then a signalling NaN operand is

transformed into a quiet NaN. A quiet NaN operand will propagate to the destination register.

Subnormals operations are described in TABLE 17-16, Results from NaN Operands, on

page 427.

Whenever a NaN is created from non NaN operands, the nv flag is set.

17.7.1 Signaling and Quiet NaNs

SNaN and QNaN numbers are unsigned, the sign bit is an extension of the NaN’s fraction

field.

SNaN operands propagate to the destination register as a QNaN result when the nv exception

is masked. All operations with NaN operands keep the sign bit unchanged including a

FSQRT operation.

NaNs are generated for the conditions shown in section 17.7.4, NaN Results from Operands
without NaNs, on page 428.

17.7.2 SNaN to QNaN Transformation

The signalling to quiet NaN transformation causes:

u r

inexact
result

r is minimum Normal set ufc, ieee trap set nxc, ieee trap set ufc, set ufa

r is Subnormal set ufc, ieee trap set nxc, ieee trap set ufc, set ufa

r is Zero set ufc, ieee trap set nxc, ieee trap set ufc, set ufa

set nxc means FSR.cexc.nxc set to 1
set ufc means FSR.cexc.ufc set to 1
set ufa means FSR.aexc.ufa set to 1
ieee trap means fp_exception_ieee_754

TABLE 17-15 Underflow Exception Summary (Continued)

Underflow : enabled (UFM = 1) masked (UFM = 0) masked (UFM = 0)

Inexact : don’t care (NXM = x) enabled (NXM = 1) masked (NXM = 0)
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• The most significant bits of the operand fraction are copied to the most significant bits of

the result’s fraction. In conversion to a narrower format, excess low-order bits of the

operand fraction are discarded. In conversion to a wider format, unwritten low-order bits

of the result fraction are set to 0.

• The quiet bit (the most significant bit of the result fraction) is set to 1 (the NaN

transformation produces a QNaN).

• The sign bit is copied from the operand to the result without modification.

17.7.3 Operations with NaN Operands

Operations with NaN operands may assert the IEEE invalid trap flag (nv). These operations

are listed in TABLE 17-16.

If the Invalid Trap is enabled (FSR.TEM.NVM = 1), then a trap event occurs as described in

section 17.4.2, Trap Event, on page 422.

TABLE 17-16 Results from NaN Operands

Operation

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception,
TEM.NVM=0

Enabled Exception,
TEM.NVM=1

rd or fcc register written flag set
rd or fcc

register written
flag set

One Operand rs2 → rd

Any QNaN
QNaN,

see note1 no
QNaN,

see note1 no

Any SNaN
SNaN → QNaN,

see note1
set nvc,

set nva
no

set nvc,
ieee trap

Two Operand rs1, rs2 [rs2, rs1] → rd

FADD, FSUB,
FMUL, FDIV

QNaN, QNaN QNaNrs2 no QNaNrs2 no

QNaN, anything except SNaN
and QNan

QNaN no QNaN no

SNaN, SNaN
SNaNrs2 → QNaN,

see note1
set nvc,

set nva
no

set nvc,
ieee trap

SNaN, anything except SNaN
SNaN → QNaN,

see note1
set nvc,

set nva
no

set nvc,
ieee trap

FCMPEs,d [SNaN or QNaN], anything fcc=3 (unordered)
set nvc,

set nva
no

set nvc,
ieee trap
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Note – Notice from TABLE 17-16 that the compare and cause exception if unordered
instruction (FCMPEs,d) will cause an invalid (nv) exception if either operand is a quiet or

signalling NaN. The FCMP instruction causes an exception for signalling NaNs only.

17.7.4 NaN Results from Operands without NaNs

The following operations generate NaNs, see section 17.3, IEEE Operations, on page 411,

for details.

• FSQRT [−Normal, or −0]

- FDIV ±0

17.8 Subnormal Operations

The handling of Subnormals is different for standard and nonstandard floating-point modes.

The handling of operands and results are described separately in the following sections.

17.8.1 Response to Subnormal Operands

The FPU responds to Subnormal operands and results in either hardware or by generating an

fp_exception_other (with FSR.ftt = 2, unfinished_FPop).

FCMPs,d SNaN, anything fcc=3 (unordered)
set nvc,

set nva
no

set nvc,
ieee trap

FCMPs,d QNaN, anything except SNaN fcc=3 (unordered) no
fcc=3

(unordered)
no

1. For the Fs,dTOs,d and other instructions, see section 17.7.2, SNaN to QNaN Transformation, on page 426.

TABLE 17-16 Results from NaN Operands (Continued)

Operation

RESULT from the operation includes one or more of the following:
● Number in f register, see Trap Event note, page 422.
● Exception bit set, see TABLE 17-12.
● Trap occurs, see abbreviations in TABLE 17-12.
● Underflow/Overflow may occur.

Masked Exception,
TEM.NVM=0

Enabled Exception,
TEM.NVM=1

rd or fcc register written flag set
rd or fcc

register written
flag set
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The response of the FPU depends on the operating mode of the floating-point unit. This is

controlled by the FSR.NS bit.

Standard Mode

In Standard mode, the FPU generally traps when a Subnormal operand is detected or a

Subnormal result is generated. In this situation, the system software must perform or

complete the operation.

The FPU supports the following in Standard mode:

• Some cases of Subnormal operands are handled in hardware.

• Gross underflow results are supported in hardware for FdTOs, FMULs,d, and FDIVs,d
instructions.

Nonstandard Mode

In Nonstandard mode the FPU generally flushes Subnormal operands to 0 (with the same

sign as the SbN number) and proceeds to use the value in the operation. Subnormal results

(those that would otherwise cause an unfinished_FPop) are also flushed to 0 in Nonstandard

mode.

If the higher priority invalid operation (nv) or divide-by-zero (dz) condition occurs, then the

corresponding condition(s) are flagged in the FSR.cexc register field. If the trap is enabled

(FSR.TEM register), then an fp_exception_ieee_754 trap occurs. If the trap is disabled, then

the corresponding condition(s) are also flagged in the FSR.aexc register field.

If neither the invalid nor divide-by-zero conditions occur, then an inexact condition plus any

other detected floating-point exception conditions are flagged in the FSR.cexc register field.

If an IEEE trap is enabled (FSR.TEM register), then an fp_exception_ieee_754 trap occurs. If

the trap is disabled, then the corresponding condition(s) are also flagged in the FSR.aexc
register field.

17.8.2 Subnormal Number Generation

Handling of the FMULs, FMULd, FDIVs, FDIVd, and FdTOs instructions requires further

explanation.

Define:

■ Signr = sign of result,

■ RTEff = round nearest effective truncate or round truncate,

■ RP = round to +Infinity,

■ RM = round to −Infinity,

■ RND = FSR.RD,
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■ Er = biased exponent result,

■ Erb = the biased exponent result before rounding,

■ E(rs1) = biased exponent of rs1 operand, and

■ P_rs1 = precision of the rs1 operand.

The value of the constants dependent on precision type, see TABLE 17-17.

■ For FMULs and FMULd: Er = E(rs1) + E(rs2) − EBIAS.

■ For FDIVs and FDIVd: Er = E(rs1) − E(rs2) + EBIAS − 1.

When two Normal operands of FMULs,d and FDIVs,d generate a Subnormal result, the Erb

is calculated using the algorithm shown in code example 17-1.

CODE EXAMPLE 17-1 Normal Operands Generating a Subnormal Result Pseudocode

• For FdTOs, Er = E(rs2) − EBIAS(P_rs2) + EBIAS(P_rd), where P_rs2 is the larger

precision of the source and P_rd is the smaller precision of the destination.

Even though 0 ≤ [E(rs1) or E(rs2)] ≤ 255 for each single precision biased operand

exponent, the computed biased exponent result (Er) can be 0 ≤ Er ≤ 255 or can even be

negative. For example, for the FMULs instruction:

TABLE 17-17 Subnormal Handling Constants per Destination Register Precision

Destination
Register
Precision
(P)

Number of Bits in
Exponent Field

Exponent Bias
(EBIAS)

Exponent Max
(EMAX)

Exponent Gross Underflow
(EGUF)

Single 8 127 255 -24

Double 11 1023 2047 -53

If (fraction_msb overflows)   // i.e., fraction_msb >= 1’d2

{

   Erb = Er + 1

}

ELSE

{

   Erb = Er

}
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• If E(rs1) = E(rs2) = +127, then Er = +127 (127 + 127 − 127)

• If E(rs1) = E(rs2) = 0, then Er = −127 (0 + 0 − 127)

Overflow Result
■ If the appropriate trap enable masks are not set (FSR.OFM = 0 and FSR.NXM = 0), then

set FSR.aexc and FSR.cexc overflow and inexact flags: FSR.ofa = 1,

FSR.nxa = 1, FSR.ofc = 1, and FSR.nxc = 1. No trap is generated.

■ If any or both of the appropriate trap enable masks are set (FSR.OFM = 1 or
FSR.NXM = 1), then only an IEEE overflow trap is generated: FSR.ftt = 1. The

particular FSR.cexc bit that is set follows the SPARC V9 architecture:

◆ If FSR.OFM = 0 and FSR.NXM = 1, then FSR.nxc = 1.

● If FSR.OFM = 1 (independent of FSR.NXM), then FSR.ofc = 1 and FSR.nxc = 0.

Gross Underflow Zero result
■ Result = 0 (with correct sign).

■ If the appropriate trap enable masks are not set (FSR.UFM = 0 and FSR.NXM = 0), then

set the FSR.aexc and FSR.cexc underflow and inexact flags: FSR.ufa = 1,

FSR.nxa = 1, FSR.ufc = 1, and FSR.nxc = 1. A trap is not generated.

■ If either or both of the appropriate trap enable masks are set (FSR.UFM = 1 or
FSR.NXM = 1), then only an IEEE underflow trap is generated: FSR.ftt = 1 and
FSR.cexc.uf = 1. The particular FSR.cexc bit that is set diverges from previous

UltraSPARC implementations to follow the SPARC V9 architecture:

◆ If FSR.UFM = 0 and FSR.NXM = 1, then FSR.nxc = 1.

◆ If FSR.UFM = 1, independent of FSR.NXM, then FSR.ufc = 1 and FSR.nxc = 0.

Subnormal Handling Override
• Result is an QNaN or SNaN

■ Subnormal + SNaN = QNaN, invalid exception generated

◆ Standard mode: No unfinished_FPop

◆ Nonstandard mode: No FSR.NX

■ Subnormal + QNaN = QNaN, no exception generated

◆ Standard mode: No unfinished_FPop

◆ Nonstandard mode: No FSR.NX

• Result already generates an exception (Divide-by-zero or Invalid operation)

■ FSQRT(number less than zero) = invalid

• Result is Infinity:
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■ Subnormal + Infinity = Infinity, no exception generated

◆ Standard mode: No unfinished_FPop

◆ Nonstandard mode: No FSR.nx

■ Standard mode: Subnormal × Infinity = Infinity

■ Nonstandard mode: Subnormal × Infinity = QNaN with nv exception (Subnormal is

flushed to zero)

• Result is zero:

■ Subnormal × 0 = 0, no exception generated

◆ Standard mode: No unfinished_FPop

◆ Nonstandard mode: No FSR.nx
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CHAPTER 18

Reset and RED_state

This chapter examines RED_state (Reset, Error, and Debug state) in the following

sections:

• RED_state Characteristics

• Resets

• RED_state Trap Vector

• Machine States

18.1 RED_state Characteristics

A reset or trap that sets PSTATE.RED (including a trap in RED_state) will clear the DCU

Control Register, including enable bits for I-cache, D-cache, I-MMU, D-MMU, and virtual

and physical watchpoints. The characteristics of RED_state include the following:

• The default access in RED_state is non-cacheable; therefore, there must be

non-cacheable scratch memory somewhere in the system.

• The D-cache, watchpoints, and D-MMU can be enabled by software in RED_state, but

any trap will disable them again.

• The I-MMU and consequently the I-cache are always disabled in RED_state. Disabling

overrides the enable bits in the DCU Control Register.

When PSTATE.RED is explicitly set by a software write, there are no side-effects other than

the I-MMU is disabled. Software must create the appropriate state itself.

A trap when TL = MAXTL − 1 immediately brings the processor into RED_state. In

addition, a trap when TL = MAXTL immediately brings the processor into error_state.

Upon error_state entry, the processor automatically recovers through watchdog reset

(WDR) into RED_state. A trap to error_state immediately triggers WDR. A Signal
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Monitor (SIGM) instruction generates a software-initiated reset (SIR) trap on the local

processor. A trap to software-initiated reset causes an SIR trap on the processor and brings

the processor into RED_state.

During the RED_state, the caches continue to snoop and maintain coherence if DVMA or

other processors are still issuing cacheable accesses.

Note – A recommended way to exit RED_state is with a DONE or RETRY. Exiting

RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL is not recommended

and may result in an instruction access error.

18.2 Resets

Reset priorities from highest to lowest are Power-on Reset (POR), System Reset, externally

initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).

18.2.1 Power-on Reset (POR)

A Power-on Reset (POR) occurs when the POK pin is activated and stays asserted until the

processor is within its specified operating range. When the POK pin is active, all other resets

and traps are ignored. POR has a trap type of 1 at physical address offset 2016. Any pending

external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown. The

following bits must be initialized before the caches are enabled:

• In the I-cache, valid bits must be cleared and Microtag (Utag) bits must be set so that each

way within a set has a unique Utag value.

• In the D-cache, valid bits must be cleared and Utag bits must be set so that each way

within a set has a unique Utag value.

• All L2-cache tags and data

The I-MMU and D-MMU TLBs must also be initialized. The P-cache valid bits must be

initialized before any floating-point loads are executed.

The MCU Refresh Control Register, as well as the Fireplane Configuration Register, must be

initialized after a POR.

In SSM systems, the Utags contained in memory must be initialized before any Fireplane

transactions are generated.
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Caution – Executing a DONE or RETRY instruction when TSTATE is not initialized after a

POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using wrpr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is

not at the risk of damaging the chip.

18.2.2 System Reset

A System Reset occurs when the Reset pin is activated. When the Reset pin is active, all

other resets and traps are ignored. System Reset has a trap type of 1 at physical address

offset 2016. Any pending external transactions are canceled.

Note – Memory refresh continues uninterrupted during a System Reset. System interface,

L2-cache configuration, and memory controller configuration are preserved across a System

Reset.

18.2.3 Externally Initiated Reset (XIR)

An externally initiated reset (XIR) is sent to the processor through an external hardware pin.

It causes a SPARC V9 XIR, which has a trap type 316 at physical address offset 6016. XIR

has higher priority than all other resets except POR and System Reset.

XIR affects only one processor rather than the entire system. Memory state, cache state, and

most Control Status Register states are unchanged. System coherency is not guaranteed to be

maintained through an XIR reset. The saved PC and nPC will only be approximate because

the trap is not precise with respect to pipeline state.

18.2.4 Watchdog Reset (WDR) and error_state

The processor enters error_state when a trap occurs at TL = MAXTL.

The processor automatically exits error_state using WDR. The processor signals itself

internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x4016. WDR sets the processor in a state where it is prepared for diagnosis of

failures.

WDR affects only one processor rather than the entire system. CWP updates due to window

traps that cause watchdog traps are the same as the no watchdog trap case.
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18.2.5 Software-Initiated Reset (SIR)

A software-initiated reset (SIR) is initiated by an SIR instruction within any processor. This

per-processor reset has a trap type 4 at physical address offset 8016. SIR affects only one

processor rather than the entire system.

18.3 RED_state Trap Vector

When the UltraSPARC III Cu processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state trap vector base address (RSTVaddr);

the base address is at virtual address FFFF FFFF F000 000016, which passes through to

physical address 7FF F000 000016.

18.4 Machine States

TABLE 18-1 shows the machine states created as a result of any reset or after RED_state is

entered. RSTVaddr is often abbreviated as RSTV in the table.

TABLE 18-1 Machine State After Reset and in RED_state (1 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡

Integer Registers Unknown Unchanged Unchanged

Floating-Point

Registers

Unknown Unchanged Unchanged

L2-cache

Control Register

0 0 Unchanged

RSTVaddr value VA = FFFF FFFF F000 000016

PA = 7FF F000 000016

PC
nPC

RSTV | 2016

RSTV | 2416

RSTV | 2016

RSTV | 2416

RSTV | 4016

RSTV | 4416

RSTV | 6016

RSTV | 6416

RSTV | 8016

RSTV | 8416

RSTV | A016

RSTV | A416
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PSTATE MM 0 (TSO) 0 (TSO) 0 (TSO)

RED 1

(RED_state)

1

(RED_state)

1 (RED_state)

PEF 1 (FPU on) 1 (FPU on) 1 (FPU on)

AM 0 (Full 64-bit

address

0 (Full 64-bit

address

0 (Full 64-bit address)

PRIV 1 (Privileged

mode)

1 (Privileged

mode)

1 (Privileged mode)

IE 0 (Disable

interrupts)

0 (Disable

interrupts)

0 (Disable interrupts)

AG 1 (Alternate

globals

selected)

1 (Alternate

globals

selected)

1 (Alternate globals selected)

CLE 0 (Current

little-endian)

0 (Current

little-endian)

PSTATE.TLE

TLE 0 (Trap

little-endian)

0 (Trap

little-endian)

Unchanged

IG 0 (Interrupt

globals not

selected)

0 (Interrupt

globals not

selected)

0 (Interrupt globals not selected)

MG 0 (MMU

globals not

selected)

0 (MMU

globals not

selected)

0 (MMU globals not selected)

TBA<63:15> Unknown Unchanged Unchanged

Y Unknown Unchanged Unchanged

PIL Unknown Unchanged Unchanged

CWP Unknown Unchanged Unchanged except for register window traps

TT[TL] 1 1 Unchanged 3 4 Trap type

CCR Unknown Unchanged Unchanged

ASI Unknown Unchanged Unchanged

TL MAXTL MAXTL Min(TL + 1, MAXTL)

TPC[TL]
TNPC[TL]

Unknown

Unknown

Unchanged

Unchanged

PC
nPC

PC & ~1F16

nPC = PC + 4

PC
nPC

TABLE 18-1 Machine State After Reset and in RED_state (2 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡
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TSTATE CCR Unknown Unchanged CCR

ASI Unknown Unchanged ASI

PSTATE Unknown Unchanged PSTATE

CWP Unknown Unchanged CWP

PC Unknown Unchanged PC

nPC Unknown Unchanged nPC

TICK NPT 1 1 Unchanged Unchanged Unchanged

counter Restart at 0 Restart at 0 Count Restart at 0 Count

CANSAVE Unknown Unchanged Unchanged

CANRESTORE Unknown Unchanged Unchanged

OTHERWIN Unknown Unchanged Unchanged

CLEANWIN Unknown Unchanged Unchanged

WSTATE OTHER Unknown Unchanged Unchanged

NORMAL Unknown Unchanged Unchanged

VER MANUF 003E16

IMPL 001516

MASK Mask dependent

MAXTL 5

MAXWIN 7

FSR All 0 0 Unchanged

FPRS All Unknown Unchanged Unchanged

Non-SPARC V9 ASRs

SOFTINT Unknown Unchanged Unchanged

TICK_COMPARE INT_DIS
TICK_CMPR

1 (off)

0

1 (off)

0

Unchanged

Unchanged

STICK NPT 1 1 Unchanged

counter 0 0 Count

STICK_COMPARE INT_DIS 1 (off) 1 (off) Unchanged

TICK_CMPR 0 0 Unchanged

TABLE 18-1 Machine State After Reset and in RED_state (3 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡
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PCR S1 Unknown Unchanged Unchanged

S0 Unknown Unchanged Unchanged

UT (trace user) Unknown Unchanged Unchanged

ST (trace

system)

Unknown Unchanged Unchanged

PRIV (privileged

access)

Unknown Unchanged Unchanged

PIC All Unknown Unknown Unknown

GSR IM 0 0 Unchanged

others Unknown Unchanged Unchanged

DCR MS 0 0 Unchanged

SI 0 0 Unchanged

RPE 0 0 Unchanged

BPE 0 0 Unchanged

OBS 0 0 Unchanged

IFPOE 0 0 Unchanged

IPE 0 0 Unchanged

DPE 0 0 Unchanged

Non-SPARC V9 ASIs

Fireplane

Information

DCUCR WE 0 (off) 0 (off)0 Unchanged

All others 0 (off) 0 (off) 0 (off)

INSTRUCTION_TR
AP

All 0 (off) 0 (off) Unchanged

VA_WATCHPOINT Unknown Unchanged Unchanged

PA_WATCHPOINT Unknown Unchanged Unchanged

TABLE 18-1 Machine State After Reset and in RED_state (4 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡
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I-SFSR, D-SFSR ASI Unknown Unchanged Unchanged

FT Unknown Unchanged Unchanged

E Unknown Unchanged Unchanged

CTXT Unknown Unchanged Unchanged

PRIV Unknown Unchanged Unchanged

W Unknown Unchanged Unchanged

OW (overwrite) Unknown Unchanged Unchanged

FV (SFSR valid) 0 0 Unchanged

NF Unknown Unchanged Unchanged

TM Unknown Unchanged Unchanged

DMMU_SFAR Unknown Unchanged Unchanged

INTR_DISPATCH All 0 0 Unchanged

INTR_RECEIVE BUSY 0 0 Unchanged

MID Unknown Unchanged Unchanged

ESTATE_ERR_EN All 0 (all off) 0 (all off) Unchanged

AFAR PA Unknown Unchanged Unchanged

AFSR All 0 Unchanged Unchanged

Rfr_CSR All Unknown Unchanged Unchanged

Mem_Timing_CSR All Unknown Unchanged Unchanged

Mem_Addr_Dec All Unknown Unchanged Unchanged

Mem_Addr_Cntl All Unknown Unchanged Unchanged

Other Processor-Specific States

Processor and L2-cache tags,

Microtags and data (includes data,

instruction, prefetch, and write caches)

Unknown Unchanged Unchanged

Cache snooping Enabled

Instruction Queue Empty

Store Queue Empty Empty Unchanged

TABLE 18-1 Machine State After Reset and in RED_state (5 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡
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‡
Processor states are only updated according to the table if RED_state is entered because of a reset or trap. If RED_state is entered because the

PSTATE.RED bit was explicitly set to 1, then software must create the appropriate states itself.

I-TLB, D-TLB1 Mappings in #2

(2-way

set-associative)

Unknown Unchanged Unchanged

Mappings in #0

(fully

set-associative)

Unknown Unknown and

invalid

Unchanged

E (side-effect) bit 1 1 1

NC
(non-cacheable)

bit

1 1 1

1. The V, L, U, and G bits are cleared at reset.

TABLE 18-1 Machine State After Reset and in RED_state (6 of 6)

Name Fields Hard_POR System Reset WDR XIR SIR RED_state‡
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APPENDIX A

Instruction Definitions

Related instructions are grouped into subsections. Each subsection consists of the following

parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) that

uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash (—)

indicates that the field is reserved for future versions of the architecture and shall be zero

in any instance of the instruction. If the processor encounters nonzero values in these

fields, its behavior is undefined.

3. A description of the features, restrictions, and exception-causing conditions.

4. A list of exceptions that can occur as a consequence of attempting to execute the

instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss, fast_ECC_error,
ECC_error (corrected ECC_error), WDR, and interrupts are not listed because they can

occur on any instruction. Instructions not implemented in hardware shall generate an

illegal_instruction exception and therefore will not generate any of the other exceptions

listed. The illegal_instruction exception is not listed because it can occur on any

instruction that triggers an instruction breakpoint or contains an invalid field.

Instruction Latencies and Execution rates are provided in Chapter 4 “Instruction Execution.”
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TABLE A-2 summarizes the instruction set; the instruction definitions follow the table. Within

TABLE A-2 and throughout this chapter, certain opcodes are marked with mnemonic

superscripts. The superscripts and their meanings are defined in TABLE A-1.

TABLE A-1 Opcode Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is zero

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and (S)TICK.NPT = 1

PPIC Privileged action if PCR.PRIV = 1

TABLE A-2 Instruction Set (1 of 6)

Operation Name Page
Ext. to
V9?

ADD, ADDcc Add (and modify condition codes) page 454

ADDC, ADDCcc Add with carry (and modify condition codes) page 454

ALIGNADDRESS{_LITTLE} Calculate address for misaligned data page 455 3

AND, ANDcc And (and modify condition codes) page 517

ANDN, ANDNcc And not (and modify condition codes) page 517

ARRAY(8,16,32) Three-Dimensional array addressing instructions page 457 3

BPcc Branch on integer condition codes with prediction page 474

BiccD Branch on integer condition codes page 605

BMASK Set the GSR.MASK field page 468 3

BPr Branch on contents of integer register with prediction (also known

as BRr)

page 469

BSHUFFLE Permute bytes as specified by GSR.MASK page 468 3

CALL Call and link page 476

CASAPASI Compare and swap word in alternate space page 477

CASXAPASI Compare and swap doubleword in alternate space page 477

DONEP Return from trap page 479

EDGE(8,16,32){,L,N,LN} Edge handling instructions page 480 3

FABS(s,d,q) Floating-point absolute value page 493

FADD(s,d,q) Floating-point add page 483

FALIGNDATA Perform data alignment for misaligned data page 455 3

FAND{S} Logical AND operation page 514 3

FANDNOT(1,2){S} Logical AND operation with one inverted source page 514 3

FBfccD Branch on floating-point condition codes page 603

FBPfcc Branch on floating-point condition codes with prediction page 471
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FCMP(s,d,q) Floating-point compare page 486

FCMPE(s,d,q) Floating-point compare (exception if unordered) page 486

FCMP(GT,LE,NE,EQ)(16,32) Pixel compare operations page 550 3

FDIV(s,d,q) Floating-point divide page 494

FdMULq Floating-point multiply double to quad page 494

FEXPAND Pixel expansion page 558 3

FiTO(s,d,q) Convert integer to floating-point page 491

FLUSH Flush instruction memory page 497

FLUSHW Flush register windows page 499

FMOV(s,d,q) Floating-point move page 493

FMOV(s,d,q)cc Move floating-point register if condition is satisfied page 524

FMOV(s,d,q)r Move floating-point register if integer register contents satisfy

condition

page 529

FMUL(s,d,q) Floating-point multiply page 494

FMUL8x16 8x16 partitioned product page 545 3

FMUL8x16(AU,AL) 8x16 upper/lower α partitioned product page 545 3

FMUL8(SU,UL)x16 8x16 upper/lower partitioned product page 546 3

FMULD8(SU,UL)x16 8x16 upper/lower partitioned product page 548 3

FNAND{S} Logical NAND operation page 514 3

FNEG(s,d,q) Floating-point negate page 493

FNOR{S} Logical NOR operation page 514 3

FNOT(1,2){S} Copy negated source page 514 3

FONE{S} One fill page 514 3

FOR{S} Logical OR operation page 514 3

FORNOT(1,2){S} Logical OR operation with one inverted source page 514 3

FPACK(16,32, FIX) Pixel packing page 554,

page 556,

page 557

3

FPADD(16,32){S} Pixel add (single) 16- or 32-bit page 542 3

FPMERGE Pixel merge page 559 3

FPSUB(16,32){S} Pixel subtract (single) 16- or 32-bit page 542 3

FsMULd Floating-point multiply single to double page 494

FSQRT(s,d,q) Floating-point square root page 496

FSRC(1,2){S} Copy source page 514 3

F(s,d,q)TOi Convert floating-point to integer page 488

F(s,d,q)TO(s,d,q) Convert between floating-point formats page 489

F(s,d,q)TOx Convert floating-point to 64-bit integer page 488

TABLE A-2 Instruction Set (2 of 6)

Operation Name Page
Ext. to
V9?
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FSUB(s,d,q) Floating-point subtract page 483

FXNOR{S} Logical XNOR operation page 514 3

FXOR{S} Logical XOR operation page 514 3

FxTO(s,d,q) Convert 64-bit integer to floating-point page 491

FZERO{S} Zero fill page 514 3

ILLTRAP Illegal instruction page 500

JMPL Jump and link page 501

LDDD Load integer doubleword page 612

LDDAD, PASI Load integer doubleword from alternate space page 614

LDDA ASI_NUCLEUS_QUAD* Atomic quad load page 510 3

LDDF Load double floating-point page 502

LDDFAPASI Load double floating-point from alternate space page 460

LDDFA ASI_BLK* Block loads page 460 3

LDDFA ASI_FL* Short floating-point loads (VIS I) page 580 3

LDF Load floating-point page 502

LDFAPASI Load floating-point from alternate space page 502

LDFSRD Load floating-point state register lower page 611

LDQF Load quad floating-point page 502

LDQFAPASI Load quad floating-point from alternate space page 502

LDSB Load signed byte page 506

LDSBAPASI Load signed byte from alternate space page 508

LDSH Load signed halfword page 506

LDSHAPASI Load signed halfword from alternate space page 508

LDSTUB Load-store unsigned byte page 512

LDSTUBAPASI Load-store unsigned byte in alternate space page 513

LDSW Load signed word page 506

LDSWAPASI Load signed word from alternate space page 508

LDUB Load unsigned byte page 506

LDUBAPASI Load unsigned byte from alternate space page 508

LDUH Load unsigned halfword page 506

LDUHAPASI Load unsigned halfword from alternate space page 508

LDUW Load unsigned word page 506

LDUWAPASI Load unsigned word from alternate space page 508

LDX Load extended page 506

LDXAPASI Load extended from alternate space page 508

LDXFSR Load floating-point state register page 502

MEMBAR Memory barrier page 519

TABLE A-2 Instruction Set (3 of 6)

Operation Name Page
Ext. to
V9?
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MOVcc Move integer register if condition is satisfied page 524

MOVr Move integer register on contents of integer register page 536

MULSccD Multiply step (and modify condition codes) page 616

MULX Multiply 64-bit integers page 537

NOP No operation page 538

OR, ORcc Inclusive OR (and modify condition codes) page 517

ORN, ORNcc Inclusive OR not (and modify condition codes) page 517

PDIST Pixel component distance page 552 3

POPC Population Count page 559

PREFETCH Prefetch data page 560

PREFETCHAPASI Prefetch data from alternate space page 560

RDASI Read ASI register page 568

RDASRPASR Read ancillary state register page 568

RDCCR Read condition codes register page 568

RDDCRP Read dispatch control register page 568

RDFPRS Read floating-point registers state register page 568

RDGSR Read graphic status register page 568

RDPC Read program counter page 568

RDPCRP Read performance control register page 568

RDPICPPIC Read performance instrumentation counters page 568

RDPRP Read privileged register page 566

RDSOFTINTP Read per-processor soft interrupt register page 568

RDSTICKPNPT Read system TICK register page 568

RDSTICK_CMPR Read system TICK compare register page 568

RDTICKPNPT Read TICK register page 568

RDTICK_CMPRP Read TICK compare register page 568

RDYD Read Y register page 619

RESTORE Restore caller’s window page 572

RESTOREDP Window has been restored page 574

RETRYP Return from trap and retry page 479

RETURN Return page 570

SAVE Save caller’s window page 572

SAVEDP Window has been saved page 574

SDIVD, SDIVccD 32-bit signed integer divide (and modify condition codes) page 608

SDIVX 64-bit signed integer divide page 537

SETHI Set high 22 bits of low word of integer register page 577

SHUTDOWN Shut down the processor page 582 3

TABLE A-2 Instruction Set (4 of 6)

Operation Name Page
Ext. to
V9?
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SIAM Set Interval Arithmetic Mode (VIS II)

SIR Software-initiated reset page 583

SLL Shift left logical (IU) page 578

SLLX Shift left logical, extended (IU) page 578

SMULD, SMULccD Signed integer multiply (and modify condition codes) page 616

SRA Shift right arithmetic (IU) page 578

SRAX Shift right arithmetic, extended (IU) page 578

SRL Shift right logical (IU) page 578

SRLX Shift right logical, extended (IU) page 578

STB Store byte (IU) page 588

STBAPASI Store byte into alternate space (IU) page 589

STBARD Store barrier page 619

STDD Store doubleword page 622

STDAD, PASI Store doubleword into alternate space page 623

STDF Store double floating-point (FP) page 584

STDFAPASI Store double floating-point into alternate space (FP) page 586

STDFA ASI_BLK* Block stores page 460 3

STDFA ASI_FL* Short floating-point stores (VIS I) page 580 3

STDFA ASI_PST* Partial Store instructions page 540 3

STF Store floating-point (FP) page 584

STFAPASI Store floating-point into alternate space (FP) page 586

STFSRD Store floating-point state register (FP) page 621

STH Store halfword (IU) page 588

STHAPASI Store halfword into alternate space (IU) page 589

STQF Store quad floating-point (FP) page 584

STQFAPASI Store quad floating-point into alternate space (FP) page 586

STW Store word (IU) page 588

STWAPASI Store word into alternate space (IU) page 589

STX Store extended (IU) page 588

STXAPASI Store extended into alternate space (IU) page 589

STXFSR Store extended floating-point state register (MS) page 584

SUB, SUBcc Subtract (and modify condition codes) page 591

SUBC, SUBCcc Subtract with carry (and modify condition codes) page 591

SWAPD Swap integer register with memory page 625

SWAPAD, PASI Swap integer register with memory in alternate space page 626

TADDcc, TADDccTVD Tagged add and modify condition codes (trap on overflow) page 592,

page 628

TABLE A-2 Instruction Set (5 of 6)

Operation Name Page
Ext. to
V9?
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Tcc Trap on integer condition codes page 595

TSUBcc, TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) page 593,

page 629

UDIVD, UDIVccD Unsigned integer divide (and modify condition codes) page 608

UDIVX 64-bit unsigned integer divide page 537

UMULD, UMULccD Unsigned integer multiply (and modify condition codes) page 616

WRASI Write ASI register page 600

WRASRPASR Write ancillary state register page 600

WRCCR Write condition codes register page 600

WRDCRP Write dispatch control register page 600

WRFPRS Write floating-point registers state register page 600

WRGSR Write graphic status register page 600

WRPCRP Write performance control register page 600

WRPICPPIC Write performance instrumentation counters register page 600

WRPRP Write privileged register page 597

WRSOFTINTP Write per-processor soft interrupt register page 600

WRSOFTINT_CLRP Clear bits of per-processor soft interrupt register page 600

WRSOFTINT_SETP Set bits of per-processor soft interrupt register page 600

WRTICK_CMPRP Write TICK compare register page 600

WRSTICKP Write System TICK register page 600

WRSTICK_CMPRP Write System TICK compare register page 600

WRYD Write Y register page 630

XNOR, XNORcc Exclusive NOR (and modify condition codes) page 517

XOR, XORcc Exclusive OR (and modify condition codes) page 517

TABLE A-2 Instruction Set (6 of 6)

Operation Name Page
Ext. to
V9?
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A.1 Add

Format (3)

Description

ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1, and write the sum into r[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit;

that is, they compute “r[rs1] + r[rs2] + icc.c” or

“r[rs1] + sign_ext(simm13) + icc.c” and write the sum into r[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).

Overflow occurs on addition if both operands have the same sign and the sign of the sum is

different.

Opcode Op3 Operation

ADD 00 0000 Add

ADDcc 01 0000 Add and modify condition codes

ADDC 00 1000 Add with Carry

ADDCcc 01 1000 Add with Carry and modify condition codes

Assembly Language Syntax

add regrs1, reg_or_imm, regrd

addcc regrs1, reg_or_imm, regrd

addc regrs1, reg_or_imm, regrd

addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Programming Note – ADDC and ADDCcc read the 32-bit condition codes’ carry bit

(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

Compatibility Note – ADDC and ADDCcc were named ADDX and ADDXcc, respectively,

in the SPARC V8 architecture.

Exceptions

None

A.2 Alignment Instructions (VIS I)

Format (3)

Opcode opf Operation

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned data access

ALIGNADDRESS_LITTLE 0 0001 1010 Calculate address for misaligned data access

little-endian

FALIGNDATA 0 0100 1000 Perform data alignment for misaligned data

Assembly Language Syntax

alignaddr regrs1, regrs2, regrd

alignaddrl regrs1, regrs2, regrd

faligndata fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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Description

ALIGNADDRESS adds two integer values, r[rs1] and r[rs2], and stores the result (with

the least significant three bits forced to zero in the integer register r[rd]. The least

significant three bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s-

complement of the least significant 3 bits of the result is stored in GSR.align.

Note – ALIGNADDR_LITTLE generates the opposite-endian byte ordering for a subsequent

FALIGNDATA operation.

FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1 and rs2
to form a 128-bit (16-byte) intermediate value. The contents of the first source operand form

the more-significant 8 bytes of the intermediate value, and the contents of the second source

operand form the less-significant 8 bytes of the intermediate value. Bytes in the intermediate

value are numbered from most significant (byte 0) to least significant (byte 15). Eight bytes

are extracted from the intermediate value and stored in the 64-bit floating-point destination

register specified by rd. GSR.align, specifying the number of the most significant byte to

extract (therefore, the least significant byte extracted from the intermediate value is

numbered GSR.align+7).

A byte-aligned 64-bit load can be performed as shown in CODE EXAMPLE A-1.

CODE EXAMPLE A-1 Byte-Aligned 64-bit Load

Programming Note – For good performance, the result of FALIGNDATA should not be

used as a source operand for a 32-bit FP or VIS instruction in the next three instruction

groups.

Exceptions

fp_disabled

alignaddr Address, Offset, Address

ldd [Address], %f0

ldd [Address + 8], %f2

faligndata %f0, %f2, %f4
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A.3 Three-Dimensional Array Addressing

Instructions (VIS I)

Format (3)

Description

These instructions convert three-dimensional (3D) fixed-point addresses contained in

r[rs1] to a blocked-byte address; they store the result in r[rd]. Fixed-point addresses

typically are used for address interpolation for planar reformatting operations. Blocking is

performed at the 64-byte level to maximize L2-cache block reuse, and at the 64 KB level to

maximize TLB entry reuse, regardless of the orientation of the address interpolation. These

instructions specify an element size of 8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits

(ARRAY32). The second operand, r[rs2], specifies the power-of-2 size of the X and Y

dimensions of a 3D image array. The legal values for rs2 and their meanings are shown in

TABLE A-3. Illegal values produce undefined results in the destination register, r[rd].

Opcode opf Operation

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address

Assembly Language Syntax

array8 regrs1, regrs2, regrd

array16 regrs1, regrs2, regrd

array32 regrs1, regrs2, regrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address formats

illustrated in FIGURE A-2 through FIGURE A-4.

FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Array8)

FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Array16)

TABLE A-3 Three-Dimensional r[rs2] Array X/Y Dimensions

r[rs2] value Number of elements

0 64

1 128

2 256

3 512

4 1024

5 2048

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

Lower

513 9

XYZ

Middle

1717 17

XYZ

Upper

+ isrc2+ 2 isrc2
20
+ 2 isrc2

15 3

XYZ

Lower

614 10

XYZ

Middle

1818 18

XYZ

Upper

+ isrc2+ 2 isrc2
21
+ 2 isrc2

0

0
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FIGURE A-4 Three-Dimensional Array Blocked-Address Format (Array32)

The bits above Z upper are set to zero. The number of zeroes in the least significant bits is

determined by the element size. An element size of 8 bits has no zeroes, an element size of

16 bits has one zero, and an element size of 32 bits has two zeroes. Bits in X and Y above

the size specified by r[rs2] are ignored.

The code fragment in CODE EXAMPLE A-2 shows assembly of components along an

interpolated line at the rate of one component per clock.

CODE EXAMPLE A-2 Three-Dimensional Array Addressing Example

Note – To maximize reuse of L2-cache and TLB data, software should block array

references of a large image to the 64 KB level. This means processing elements within a

32x64x64 block.

Exceptions

None

add Addr, DeltaAddr, Addr

array8 Addr, %g0, bAddr

ldda [bAddr] ASI_FL8_PRIMARY, data

faligndata data, accum, accum

26 4

XYZ

Lower

715 11

XYZ

Middle

1919 19

XYZ

Upper

+ isrc2+ 2 isrc2
22
+ 2 isrc2

00

0
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A.4 Block Load and Block Store (VIS I)

Format (3) LDDFA

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_BLK_AIUP 7016 64-byte block load/store from/to primary address

space, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUS 7116 64-byte block load/store from/to secondary

address space, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUPL 7816 64-byte block load/store from/to primary address

space, little-endian, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUSL 7916 64-byte block load/store from/to secondary

address space, little-endian, privilege mode access

only

LDDFA
STDFA

ASI_BLK_P F016 64-byte block load/store from/to primary address

space

LDDFA
STDFA

ASI_BLK_S F116 64-byte block load/store from/to secondary

address space

LDDFA
STDFA

ASI_BLK_PL F816 64-byte block load/store from/to primary address

space, little-endian

LDDFA
STDFA

ASI_BLK_SL F916 64-byte block load/store from/to secondary

address space, little-endian

STDFA ASI_BLK_COMMIT_P E016 64-byte block commit store to primary address

space

STDFA ASI_BLK_COMMIT_S E116 64-byte block commit store to secondary address

space

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
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Format (3) STDFA

Description

A block load (BLD) or block store (BST) instruction uses an LDDFA or STDFA instruction

combined with a block transfer ASI. Block transfer ASIs allow BLDs and BSTs to be

performed accessing the same address space as normal loads and stores. Little-endian ASIs

(those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed

to be big-endian. Byte swapping is performed separately for each of the eight

double-precision registers used by the instruction. Endianness does not matter if these

instructions are only being used for a block copy operation.

A BST with commit forces the data to be written to memory and invalidates copies in all

caches present. As a result, a BST with commit maintains coherency with the I-cache.1 It

does not, however, flush instructions that have already been fetched into the pipeline before

executing the modified code. If a BST with commit is used to write modified instructions, a

FLUSH instruction must still be executed to guarantee that the instruction pipeline is flushed.

LDDFA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned memory area

into the eight double-precision floating-point registers specified by rd. The lowest addressed

eight bytes in memory are loaded into the lowest numbered double-precision destination

register. An illegal_instruction exception occurs if the floating-point registers are not aligned

on an eight double-precision register boundary. The least significant six bits of the memory

address must be zero or a mem_address_not_aligned exception occurs.

STDFA with a block transfer ASI stores data from the eight double-precision floating-point

registers specified by rs1 to a 64-byte-aligned memory area. The lowest addressed eight

bytes in memory are stored from the lowest numbered double-precision rd. An

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

1. All store instructions in the processor coherently update the instruction cache. In general SPARC V9 implementations,

the store instructions (other than BST with Commit) do not maintain data coherency between instruction and data caches.

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
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illegal_instruction exception occurs if the floating-point registers are not aligned on an eight

register boundary. The least significant six bits of the memory address must be zero or a

mem_address_not_aligned exception occurs.

ASIs E016 and E116 are only used for BST with commit operations; they are not used for

BLD operations.

Programming Note – In the UltraSPARC III Cu processor, BLD does not offer a

performance advantage over normal loads. For high performance, we recommend the use of

prefetch instructions and 8-byte loads. BST and BST commit can offer performance

advantage and are used in high performance UltraSPARC III Cu libraries.

Programming Note – BLD does not provide register dependency interlocks, as ordinary

load instructions do.

Before BLD data can be referenced, a second BLD (to a different set of registers) or a

MEMBAR #Sync must be performed. If a second BLD is used to synchronize against

returning data, the processor will continue execution before all data has been returned. The

programmer is then responsible for scheduling instructions so registers are only used when

they become valid.

To determine when data is valid, the programmer must count instruction groups containing

floating-point operate (FPop) instructions (not FP loads or stores). The lowest numbered

destination register of the first BLD may be referenced in the first instruction group

following the second BLD, using an FPop instruction only.

The second lowest numbered destination register of the first BLD may be referenced in the

second instruction group containing an FPop instruction, and so on.

If this block-load/block-load synchronization mechanism is used, the initial reference to the

BLD data must be an FPop instruction (not an FP store), and only instruction groups with

FPop instructions are counted when determining BLD data availability.

If these rules are violated, data from before or after the BLD may be returned by a reference

to any of the BLD’s destination registers.

If a MEMBAR #Sync is used to synchronize on BLD data, there are no restrictions on data

usage, although performance will be lower than if block-load/block-load synchronization is

used. No other MEMBARs can be used to provide data synchronization for BLD.

FPop instructions can be issued in a single instruction group with FP stores. If block-load/

block-load synchronization is used, FPops and FP stores can be interlaced. This allows an

FPop instruction, such as FMOVD or FALIGNDATA, to reference the returning data before

using the data in any FP store (normal store or BST).

The processor also continues execution, without register interlocks, before all the store data

for BSTs are transferred from the register file.
A-462 UltraSPARC III Cu User’s Manual • January 2004



If store source registers are overwritten before the next BST or MEMBAR #Sync instruction,

then the following rule must be observed: The first register can be overwritten in the same

instruction group as the BST, the second register can be overwritten in the instruction group

following the BST, and so on. If this rule is violated, the BST may use the old or the new

(overwritten) data.

When determining correctness for a code sample, note that the processor may interlock more

than what is required above. For example, there may be partial register interlocks, such as on

the lowest number register.

Code that does not meet the above constraints may appear to work on a particular processor.

However, to be portable across all processors similar to the UltraSPARC III Cu processor, all

of the above rules should be followed.

Rules

Note – These instructions are used for transferring large blocks of data (more than

256 bytes), for example, in C library routines bcopy() and bfill(). They do not allocate

in the data cache or L2-cache on a miss. They update the L2-cache on a hit. One BLD and,

in the most extreme cases, up to fifteen (maximum) BSTs can be outstanding on the

interconnect at one time.

To simplify the implementation, BLD destination registers may or may not interlock like

ordinary load instructions. Before the BLD data is referenced, a second BLD (to a different

set of registers) or a MEMBAR #Sync must be performed. If a second BLD is used to

synchronize with returning data, then it continues execution before all data have been

returned. The lowest number register being loaded can be referenced in the first instruction

group following the second BLD, the second lowest number register can be referenced in the

second group, and so on. If this rule is violated, data from before or after the load may be

returned.

Similarly, BST source data registers are not interlocked against completion of previous load

instructions (even if a second BLD has been performed). The previous load data must be

referenced by some other intervening instruction, or an intervening MEMBAR #Sync must be

performed. If the programmer violates these rules, data from before or after the load may be

used. The load continues execution before all of the store data have been transferred. If store

data registers are overwritten before the next BST or MEMBAR #Sync instruction, then the

following rule must be observed. The first register can be overwritten in the same instruction

group as the BST, the second register can be overwritten in the instruction group following

the BST, and so on. If this rule is violated, the store may store correct data or the overwritten

data.

There must be a MEMBAR #Sync or a trap following a BST before a DONE, RETRY, or WRPR
to PSTATE instruction is executed. If this is rule is violated, instructions after the DONE,

RETRY, or WRPR to PSTATE may not see the effects of the updated PSTATE register.
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BLD does not follow memory model ordering with respect to stores. In particular,

read-after-write and write-after-read hazards to overlapping addresses are not detected. The

side-effects bit (TTE.E) associated with the access is ignored. Some ordering considerations

are as follows:

• If ordering with respect to earlier stores is important (for example, a BLD that overlaps

previous stores), then there must be an intervening MEMBAR #StoreLoad or stronger

MEMBAR.

• If ordering with respect to later stores is important (for example, a BLD that overlaps a

subsequent store), then there must be an intervening MEMBAR #LoadStore or a

reference to the BLD data. This restriction does not apply when a trap is taken, so the trap

handler does not have to worry about pending BLDs.

• If the BLD overlaps a previous or later store and there is no intervening MEMBAR, then the

trap or data referencing the BLD may return data from before or after the store.

BST does not follow memory model ordering with respect to loads, stores, or flushes. In

particular, read-after-write, write-after-write, flush-after-write, and write-after-read hazards

to overlapping addresses are not detected. The side-effects bit associated with the access is

ignored. Some ordering considerations follow:

• If ordering with respect to earlier or later loads or stores is important, then there must be

an intervening reference to the load data (for earlier loads) or an appropriate MEMBAR
instruction. This restriction does not apply when a trap is taken, so the trap handler does

not have to worry about pending BSTs.

• If the BST overlaps a previous load and there is no intervening load data reference or

MEMBAR #StoreLoad instruction, then the load may return data from before or after the

store and the contents of the block are undefined.

• If the BST overlaps a later load and there is no intervening trap or MEMBAR
#LoadStore instruction, then the contents of the block are undefined.

• If the BST overlaps a later store or flush and there is no intervening trap or MEMBAR
#Sync instruction, then the contents of the block are undefined.

• If the ordering of two successive BST instructions (overlapping or not) is required, then a

MEMBAR #Sync must occur between the BST instructions.

Block operations do not obey the ordering restrictions of the currently selected processor

memory model (TSO, PSO, RMO). Block operations always execute under an RMO memory

ordering model. Explicit MEMBAR instructions are required to order block operations among

themselves or with respect to normal memory operations. In addition, block operations do

not conform to dependence order on the issuing processor; that is, no read-after-write,

write-after-read, or write-after-write checking occurs between block operations. Explicit

MEMBAR #Sync instructions are required to enforce dependence ordering between block

operations that reference the same address.

Typically, BLD and BST will be used in loops where software can ensure that the data being

loaded and the data being stored do not overlap. The loop will be preceded and followed by

the appropriate MEMBARs to ensure that there are no hazards with loads and stores outside the

loops. CODE EXAMPLE A-3 demonstrates the loop.
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CODE EXAMPLE A-3 Byte-Aligned Block Copy Inner Loop with BLD/BST

Note that the loop must be unrolled two times to achieve maximum performance. All FP registers

are double-precision. Eight versions of this loop are needed to handle all the cases of doubleword

misalignment between the source and destination.

loop:

faligndata %f0, %f2, %f34

faligndata %f2, %f4, %f36

faligndata %f4, %f6, %f38

faligndata %f6, %f8, %f40

faligndata %f8, %f10, %f42

faligndata %f10, %f12, %f44

faligndata %f12, %f14, %f46

addcc %l0, -1, %l0

bg,pt l1

fmovd %f14, %f48

! (end of loop handling)

l1: ldda [regaddr] ASI_BLK_P, %f0

stda %f32, [regaddr] ASI_BLK_P

faligndata %f48, %f16, %f32

faligndata %f16, %f18, %f34

faligndata %f18, %f20, %f36

faligndata %f20, %f22, %f38

faligndata %f22, %f24, %f40

faligndata %f24, %f26, %f42

faligndata %f26, %f28, %f44

faligndata %f28, %f30, %f46

addcc %l0, -1, %l0

be,pnt done

fmovd %f30, %f48

ldda [regaddr] ASI_BLK_P, %f16

stda %f32, [regaddr] ASI_BLK_P
ba loop

faligndata %f48, %f0, %f32

done: !(end of loop processing)
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Bcopy Code

To achieve the highest Bcopy bandwidths, use prefetch instructions and floating-point loads

instead of BLD instructions. Using prefetch instructions to bring memory data into the

prefetch cache hides all of the latency to memory. This allows a Bcopy loop to run at

maximum bandwidth. CODE EXAMPLE A-4 shows how to modify the standard UltraSPARC I

bcopy() loop to use PREFETCH and floating-point load instructions instead of BLDs.

CODE EXAMPLE A-4 High-Performance UltraSPARC III Cu bcopy() Preamble Code (1 of 2)

preamble:

prefetch [srcaddr],1

prefetch [srcaddr+0x40],1

prefetch [srcaddr+0x80],1

prefetch [srcaddr+0xc0],1

lddf [srcaddr],%f0

prefetch [srcaddr+0x100],1

lddf [srcaddr+0x8],%f2

lddf [srcaddr+0x10],%f4

faligndata %f0,%f2,%f32

lddf [srcaddr+0x18],%f6

faligndata %f2,%f4,%f34

lddf [srcaddr+0x20],%f8

faligndata %f4,%f6,%f36

lddf [srcaddr+0x28],%f10

faligndata %f6,%f8,%f38

lddf [srcaddr+0x30],%f12

faligndata %f8,%f10,%f40

lddf [srcaddr+0x38],%f14

faligndata %f10,%f12,%f42

lddf [srcaddr+0x40],%f16

subcc count,0x40,count

bpe <exit>

add srcaddr,0x40,srcaddr

loop:

1 fmovd %f16,%f0

1 lddf [srcaddr+0x8],%f2

2 faligndata %f12,%f14,%f44

2 lddf [srcaddr+0x10],%f4

3 faligndata %f14,%f0,%f46
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Exceptions

fp_disabled
PA_watchpoint (recognized on only the first 8 bytes of a transfer)

VA_watchpoint (recognized on only the first 8 bytes of a transfer)

illegal_instruction (misaligned rd)

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

3 stda %f32,[dstaddr] ASI_BLK_P

3 lddf [srcaddr+0x18],%f6

4 faligndata %f0,%f2,%f32

4 lddf [srcaddr+0x20],%f8

5 faligndata %f2,%f4,%f34

5 lddf [srcaddr+0x28],%f10

6 faligndata %f4,%f6,%f36

6 lddf [srcaddr+0x30],%f12

7 faligndata %f6,%f8,%f38

7 lddf [srcaddr+0x38],%f14

8 faligndata %f8,%f10,%f40

8 lddf [srcaddr+0x40],%f16

8 prefetch [srcaddr+0x100],1

9 faligndata %f10,%f12,%f42

9 subcc count,0x40,count

9 add dstaddr,0x40,dstaddr

9 bpg loop

1 add srcaddr,0x40,srcaddr

CODE EXAMPLE A-4 High-Performance UltraSPARC III Cu bcopy() Preamble Code (2 of 2)
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A.5 Byte Mask and Shuffle Instructions (VIS II)

Format (3)

Description

BMASK adds two integer registers, r[rs1] and r[rs2], and stores the result in the integer

register r[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers specified by rs1 (more

significant half) and rs2 (less significant half) to form a 16-byte value. Bytes in the

concatenated value are numbered from most significant to least significant, with the most

significant byte being byte 0. BSHUFFLE extracts 8 of the 16 bytes and stores the result in

the 64-bit floating-point register specified by rd. Bytes in the rd register are also numbered

from most to least significant, with the most significant being byte 0. The following table

indicates which source byte is extracted from the concatenated value for each byte in rd.

Opcode opf Operation

BMASK 0 0001 1001 Set the GSR.MASK field in preparation for a

following BSHUFFLE instruction

BSHUFFLE 0 0100 1100 Permute bytes as specified by GSR.MASK

Assembly Language Syntax

bmask regrs1, regrs2, regrd

bshuffle fregrs1, fregrs2, fregrd

Destination Byte (in r[rd]) Source Byte

0 (most significant) (r[rs1] r[rs2])[GSR.mask<31:28>]

1 (r[rs1] r[rs2])[GSR.mask<27:24>]

2 (r[rs1] r[rs2])[GSR.mask<23:20>]

3 (r[rs1] r[rs2])[GSR.mask<19:16>]

4 (r[rs1] r[rs2])[GSR.mask<15:12>]

5 (r[rs1] r[rs2])[GSR.mask<11:8>]

6 (r[rs1] r[rs2])[GSR.mask<7:4>]

7 (least significant) (r[rs1] r[rs2])[GSR.mask<3:0>]

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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Note – The BMASK instruction uses the MS pipeline; therefore it cannot be grouped with a

store, non-prefetchable load, or a special instruction. The integer rd register result is

available after a two-cycle latency. A younger BMASK can be grouped with an older

BSHUFFLE (BMASK is “break-after”).

Results have a four-cycle latency to other dependent instructions executed in FGA and FGM

pipelines. The FGA pipeline is used to execute BSHUFFLE. The GSR mask must be set at or

before the instruction group previous to the BSHUFFLE (GSR.mask dependency).

BSHUFFLE is fully pipelined (one per cycle).

Exceptions

fp_disabled

A.6 Branch on Integer Register with Prediction

(BPr)

Format (2)

Opcode rcond Operation Register Contents Test

— 000 Reserved —

BRZ 001 Branch on Register Zero r[rs1] = 0

BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1] ≤ 0

BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rs1] ≠ 0

BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0

BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] ≥ 0

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo
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Programming Note – To set the annul bit for BPr instructions, append “,a” to the

opcode mnemonic. For example, use “brz,a %i3, label.” In the preceding table, braces

signify that the “,a” is optional. To set the branch prediction bit p, append either “,pt” for

predict taken or “,pn” for predict not taken to the opcode mnemonic. If neither “,pt” nor

“,pn” is specified, the assembler shall default to “,pt.”

Programming Note – Both BP and BR represent branch on integer register with

prediction. They are, in fact, the same instruction.

Description

These instructions branch based on the contents of r[rs1]. They treat the register contents

as a signed integer value.

A BPr instruction examines all 64 bits of r[rs1] according to the rcond field of the

instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is,

the instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 * sign_ext(d16hi d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the

annul bit. If the branch is not taken and the annul bit (a) is one, the delay instruction is

annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be

taken. A one in the p bit indicates that the branch is expected to be taken; a zero indicates

that the branch is expected not to be taken.

Implementation Note – The UltraSPARC III Cu processor does not implement this

instruction by tagging each register value. The UltraSPARC III Cu processor looks at the full

64-bit register to determine a negative or zero.

Assembly Language Syntax

brz{,a}{,pt|,pn} regrs1, label

brlez{,a}{,pt|,pn} regrs1, label

brlz{,a}{,pt|,pn} regrs1, label

brnz{,a}{,pt|,pn} regrs1, label

brgz{,a}{,pt|,pn} regrs1, label

brgez{,a}{,pt|,pn} regrs1, label
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Exceptions

illegal_instruction (if rcond = 0002 or 1002)

A.7 Branch on Floating-Point Condition Codes

with Prediction (FBPfcc)

Format (2)

Opcode cond Operation fcc Test

FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater G or U

FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less L or U

FBPLG 0010 Branch on Less or Greater L or G

FBPNE 0001 Branch on Not Equal L or G or U

FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal E or U

FBPGE 1011 Branch on Greater or Equal E or G

FBPUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBPLE 1101 Branch on Less or Equal E or L

FBPULE 1110 Branch on Unordered or Less or Equal E or L or U

FBPO 1111 Branch on Ordered E or L or G

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
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Programming Note – To set the annul bit for FBPfcc instructions, append “,a” to the

opcode mnemonic. For example, use “fbl,a %fcc3,label.” In the preceding table,

braces signify that the “,a” is optional. To set the branch prediction bit, append either

“,pt” (for predict taken) or “,pn” (for predict not taken) to the opcode mnemonic. If neither

“,pt” nor “,pn” is specified, the assembler shall default to “,pt.” To select the appropriate

floating-point condition code, include “%fcc0”, “%fcc1”, “%fcc2”, or “%fcc3” before

the label.

Description

Unconditional branches and Fcc-conditional branches are described.

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

Assembly Language Syntax

fba{,a}{,pt|,pn} %fccn, label

fbn{,a}{,pt|,pn} %fccn, label

fbu{,a}{,pt|,pn} %fccn, label

fbg{,a}{,pt|,pn} %fccn, label

fbug{,a}{,pt|,pn} %fccn, label

fbl{,a}{,pt|,pn} %fccn, label

fbul{,a}{,pt|,pn} %fccn, label

fblg{,a}{,pt|,pn} %fccn, label

fbne{,a}{,pt|,pn} %fccn, label (synonym: fbnz)

fbe{,a}{,pt|,pn} %fccn, label (synonym: fbz)

fbue{,a}{,pt|,pn} %fccn, label

fbge{,a}{,pt|,pn} %fccn, label

fbuge{,a}{,pt|,pn} %fccn, label

fble{,a}{,pt|,pn} %fccn, label

fbule{,a}{,pt|,pn} %fccn, label

fbo{,a}{,pt|,pn} %fccn, label
A-472 UltraSPARC III Cu User’s Manual • January 2004



• Unconditional branches (FBPA, FBPN) — If its annul field is zero, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the Branch

Never’s annul field is zero, the following (delay) instruction is executed; if the annul field

is one, the following instruction is annulled (not executed). In no case does an FBPN
cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional

PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).”

If the annul field of the branch instruction is one, the delay instruction is annulled (not

executed). If the annul field is zero, the delay instruction is executed.

• Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN)

evaluate one of the four floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as

selected by cc0 and cc1, according to the cond field of the instruction, producing either

a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a

PC-relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).”

If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the

value of the annul field. If a conditional branch is not taken and the annul field (a) is one,

the delay instruction is annulled (not executed). Note: The annul bit has a different effect

on conditional branches than it does on unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected to be

taken. A one in the p bit indicates that the branch is expected to be taken. A zero indicates

that the branch is expected not to be taken.

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction

is not executed and instead, a fp_disabled exception is generated.

Compatibility Note – Unlike the SPARC V8 architecture, the SPARC V9 architecture

does not require an instruction between a floating-point compare operation and a

floating-point branch (FBfcc, FBPfcc).

Exceptions

fp_disabled
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A.8 Branch on Integer Condition Codes with

Prediction (BPcc)

Format (2)

Opcode cond Operation icc Test

BPA 1000 Branch Always 1

BPN 0000 Branch Never 0

BPNE 1001 Branch on Not Equal not Z

BPE 0001 Branch on Equal Z

BPG 1010 Branch on Greater not (Z or (N xor V))

BPLE 0010 Branch on Less or Equal Z or (N xor V)

BPGE 1011 Branch on Greater or Equal not (N xor V)

BPL 0011 Branch on Less N xor V

BPGU 1100 Branch on Greater Unsigned not (C or Z)

BPLEU 0100 Branch on Less or Equal Unsigned C or Z

BPCC 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C

BPCS 0101 Branch on Carry Set (Less than, Unsigned) C

BPPOS 1110 Branch on Positive not N

BPNEG 0110 Branch on Negative N

BPVC 1111 Branch on Overflow Clear not V

BPVS 0111 Branch on Overflow Set V

cc1 cc0 Condition Code

00 icc

01 —

10 xcc

11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0
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Programming Note – To set the annul bit for BPcc instructions, append “,a” to the

opcode mnemonic. For example, use “bgu,a %icc,label.” Braces in the preceding table

signify that the “,a” is optional. To set the branch prediction bit, append to an opcode

mnemonic either “,pt” for predict taken or “,pn” for predict not taken. If neither “,pt”

nor “,pn” is specified, the assembler shall default to “,pt.” To select the appropriate integer

condition code, include “%icc” or “%xcc” before the label.

Description

Unconditional branches and conditional branches are described below:

• Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)

instruction for this branch type (op2 = 1) is used in SPARC V9 as an instruction prefetch;

that is, the effective address (PC + (4 × sign_ext(disp19))) specifies an address of

an instruction that is expected to be executed soon. If the Branch Never’s annul field is

one, then the following (delay) instruction is annulled (not executed). If the annul field is

zero, then the following instruction is executed. In no case does a Branch Never cause a

transfer of control to take place.

Assembly Language Syntax

ba{,a}{,pt|,pn} i_or_x_cc, label

bn{,a}{,pt|,pn} i_or_x_cc, label (or: iprefetch label)

bne{,a}{,pt|,pn} i_or_x_cc, label (synonym: bnz)

be{,a}{,pt|,pn} i_or_x_cc, label (synonym: bz)

bg{,a}{,pt|,pn} i_or_x_cc, label

ble{,a}{,pt|,pn} i_or_x_cc, label

bge{,a}{,pt|,pn} i_or_x_cc, label

bl{,a}{,pt|,pn} i_or_x_cc, label

bgu{,a}{,pt|,pn} i_or_x_cc, label

bleu{,a}{,pt|,pn} i_or_x_cc, label

bcc{,a}{,pt|,pn} i_or_x_cc, label (synonym: bgeu)

bcs{,a}{,pt|,pn} i_or_x_cc, label (synonym: blu)

bpos{,a}{,pt|,pn} i_or_x_cc, label

bneg{,a}{,pt|,pn} i_or_x_cc, label

bvc{,a}{,pt|,pn} i_or_x_cc, label

bvs{,a}{,pt|,pn} i_or_x_cc, label
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BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed

control transfer to the address “PC + (4 × sign_ext(disp19)).” If the annul field of

the branch instruction is one, then the delay instruction is annulled (not executed). If the

annul field is zero, then the delay instruction is executed.

• Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate

one of the two integer condition codes (icc or xcc), as selected by cc0 and cc1,

according to the cond field of the instruction, producing either a TRUE or FALSE result.

If TRUE, the branch is taken; that is, the instruction causes a PC-relative, delayed control

transfer to the address

“PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the

value of the annul field. If a conditional branch is not taken and the annul field (a) is one,

the delay instruction is annulled (not executed). Note: The annul bit has a different effect

for conditional branches than it does for unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is

expected to be taken. A one in the p bit indicates that the branch is expected to be taken;

a zero indicates that the branch is expected not to be taken.

Exceptions

illegal_instruction (cc1 cc0 = 012 or 112)

A.9 Call and Link

Format (1)

Opcode op Operation

CALL 01 Call and Link

Assembly Language Syntax

call label

31 030 29

01 disp30
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Description

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to

address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is

30 bits wide, the target address lies within a range of –231 to +231 minus four bytes. The

PC-relative displacement is formed by sign-extending the 30-bit word displacement field to

62 bits and appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL,

into r[15] (out register 7).

Exceptions

None

A.10 Compare and Swap

Format (3)

Opcode op3 Operation

CASAPASI 11 1100 Compare and Swap Word from Alternate Space

CASXAPASI 11 1110 Compare and Swap Extended from Alternate Space

Assembly Language Syntax

casa [regrs1] imm_asi, regrs2, regrd

casa [regrs1] %asi, regrs2, regrd

casxa [regrs1] imm_asi, regrs2, regrd

casxa [regrs1] %asi, regrs2, regrd

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
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Description

Concurrent processes use these instructions for synchronization and memory updates. Uses

of compare-and-swap include spin-lock operations, updates of shared counters, and updates

of linked-list pointers. The last two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in register r[rs2] with the doubleword in

memory pointed to by the doubleword address in r[rs1]. If the values are equal, the value

in r[rd] is swapped with the doubleword pointed to by the doubleword address in

r[rs1]. If the values are not equal, the contents of the doubleword pointed to by r[rs1]
replaces the value in r[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register r[rs2] with a word in

memory pointed to by the word address in r[rs1]. If the values are equal, then the

low-order 32 bits of register r[rd] are swapped with the contents of the memory word

pointed to by the address in r[rs1] and the high-order 32 bits of register r[rd] are set to

zero. If the values are not equal, the memory location remains unchanged, but the

zero-extended contents of the memory word pointed to by r[rs1] replace the low-order 32

bits of r[rd] and the high-order 32 bits of register r[rd] are set to zero.

A compare-and-swap instruction comprises three operations: a load, compare, and swap. The

overall instruction is atomic; that is, no intervening interrupts or deferred traps are

recognized by the processor and no intervening update resulting from a compare-and-swap,

swap, load, load-store unsigned byte, or store instruction to the doubleword containing the

addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics. When

compare-and-swap is used for synchronization, the same consideration should be given to

memory barriers as if a load, store, or swap instruction were used.

A compare-and-swap operation behaves as if it performs a store, either of a new value from

r[rd] or of the previous value in memory. The addressed location must be writable, even if

the values in memory and r[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if

i = 1, the address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address in r[rs1] is not properly

aligned. CASXA and CASA cause a privileged_action exception if PSTATE.PRIV = 0 and

bit 7 of the ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.
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Programming Note – Compare and Swap (CAS) and Compare and Swap Extended

(CASX) synthetic instructions are available for “big-endian” memory accesses. Compare and

Swap Little (CASL) and Compare and Swap Extended Little (CASXL) synthetic instructions

are available for “little-endian” memory accesses.

The compare-and-swap instructions do not affect the condition codes.

Exceptions

privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.11 DONE and RETRY

Format (3)

Opcode op3 fcn Operation

DONEP 11 1110 0 Return from Trap (skip trapped instruction)

RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2–31 Reserved

Assembly Language Syntax

done

retry

10 op3fcn —

31 1924 18 02530 29
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Description

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI, CCR,

and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting

PC ←TPC[TL] (the saved value of PC on trap) and nPC ←TNPC[TL] (the saved value of

nPC on trap).

The DONE instruction skips the trapped instruction by setting PC ←TNPC[TL] and

nPC ←TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control transfer instruction

produces undefined results.

Programming Note – Use the DONE and RETRY instructions to return from privileged

trap handlers.

Exceptions

privileged_opcode
illegal_instruction (if TL = 0 or fcn = 2–31)

A.12 Edge Handling Instructions (VIS I, VIS II)

Opcode opf Operation

EDGE8 0 0000 0000 Eight 8-bit edge boundary processing

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC

EDGE8L 0 0000 0010 Eight 8-bit edge boundary processing little-endian

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing, little-endian, no CC

EDGE16 0 0000 0100 Four 16-bit edge boundary processing

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC

EDGE16L 0 0000 0110 Four 16-bit edge boundary processing little-endian

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing, little-endian, no CC

EDGE32 0 0000 1000 Two 32-bit edge boundary processing

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC

EDGE32L 0 0000 1010 Two 32-bit edge boundary processing little-endian

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing, little-endian, no CC
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Format (3)

Description

These instructions handle the boundary conditions for parallel pixel scan line loops, where

src1 is the address of the next pixel to render and src2 is the address of the last pixel in

the scan line.

EDGE8L(N), EDGE16L(N), and EDGE32L(N) are little-endian versions of EDGE8(N),

EDGE16(N), and EDGE32(N). They produce an edge mask that is bit reversed from their

big-endian counterparts but are otherwise identical. This makes the mask consistent with the

mask produced by the graphics compare operations (see Section A.44, “Pixel Compare

(VIS I)”) and with the Partial Store instruction (see Section A.41, “Partial Store (VIS I)”) on

little-endian data.

A 2-bit (EDGE32), 4-bit (EDGE16), or 8-bit (EDGE8) pixel mask is stored in the least

significant bits of r[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the three least significant bits (LSBs) of r[rs1],

and the right edge mask is computed from the three LSBs of r[s2], according to

TABLE A-4 (TABLE A-5 for little-endian byte ordering).

Assembly Language Syntax

edge8 regrs1, regrs2, regrd

edge8n regrs1, regrs2, regrd

edge8l regrs1, regrs2, regrd

edge8ln regrs1, regrs2, regrd

edge16 regrs1, regrs2, regrd

edge16n regrs1, regrs2, regrd

edge16l regrs1, regrs2, regrd

edge16ln regrs1, regrs2, regrd

edge32 regrs1, regrs2, regrd

edge32n regrs1, regrs2, regrd

edge32l regrs1, regrs2, regrd

edge32ln regrs1, regrs2, regrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Appendix A Instruction Definitions A-481



2. If 32-bit address masking is disabled (PSTATE.AM = 0, 64-bit addressing) and the upper

61 bits of r[rs1] are equal to the corresponding bits in r[rs2], r[rd] is set to the

right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.AM = 1, 32-bit addressing) and bits 31:3 of

r[rs1] match bits 31:3 of r[rs2], r[rd] is set to the right edge mask ANDed with

the left edge mask.

4. Otherwise, r[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBCC instruction with the same

operands (see Section A.64, “Subtract”).

The EDGE(8,16,32)(L)N instructions do not set the integer condition codes.

Exceptions

None

TABLE A-4 Edge Mask Specification

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 1000 0000

8 001 0111 1111 1100 0000

8 010 0011 1111 1110 0000

8 011 0001 1111 1111 0000

8 100 0000 1111 1111 1000

8 101 0000 0111 1111 1100

8 110 0000 0011 1111 1110

8 111 0000 0001 1111 1111

16 00x 1111 1000

16 01x 0111 1100

16 10x 0011 1110

16 11x 0001 1111

32 0xx 11 10

32 1xx 01 11
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A.13 Floating-Point Add and Subtract

TABLE A-5 Edge Mask Specification (Little-Endian)

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 0000 0001

8 001 1111 1110 0000 0011

8 010 1111 1100 0000 0111

8 011 1111 1000 0000 1111

8 100 1111 0000 0001 1111

8 101 1110 0000 0011 1111

8 110 1100 0000 0111 1111

8 111 1000 0000 1111 1111

16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111

16 11x 1000 1111

32 0xx 11 01

32 1xx 10 11

Opcode op3 opf Operation

FADDs 11 0100 0 0100 0001 Add Single

FADDd 11 0100 0 0100 0010 Add Double

FADDq 11 0100 0 0100 0011 Add Quad

FSUBs 11 0100 0 0100 0101 Subtract Single

FSUBd 11 0100 0 0100 0110 Subtract Double

FSUBq 11 0100 0 0100 0111 Subtract Quad
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Format (3)

Description

The floating-point add instructions add the floating-point register(s) specified by the rs1
field and the floating-point register(s) specified by the rs2 field. The instructions then write

the sum into the floating-point register(s) specified by the rd field.

The floating-point subtract instructions subtract the floating-point register(s) specified by the

rs2 field from the floating-point register(s) specified by the rs1 field. The instructions then

write the difference into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd

faddd fregrs1, fregrs2, fregrd

faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd

fsubd fregrs1, fregrs2, fregrd

fsubq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5
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Compatibility Note – When FSR.NS = 0, the processor operates in standard

floating-point mode. FADD or FSUB with a subnormal result causes a fp_exception_other
exception with FSR.ftt = unfinished_FPop, system software emulates the instruction, and

the correct numerical result is calculated. The UltraSPARC II and UltraSPARC III Cu class

of processors operate identically in this case.

When FSR.NS = 1, the processor operates in “nonstandard” floating-point mode. When

FSR.NS = 1, and FADD or FSUB produces a subnormal result on UltraSPARC II class of

processors, the result is replaced by zero in hardware, without trapping. On the

UltraSPARC III Cu processor, a fp_exception_other exception occurs with

FSR.ftt = unfinished_FPop (even though the processor is operating in nonstandard

floating-point mode), then system software emulates the instruction, and the correct

numerical result is calculated (instead of replacing the result with zero).

So the processor may produce a different (albeit more accurate) result than in previous

processors in the following situation:

FADD or FSUB produces a subnormal result

FSR.NS = 1

Notes –
1) The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

2) For FADDs, FADDd, FSUBs, FSUBd, a fp_exception_other with ftt = unfinished_FPop
can occur if either operand is NaN.

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)

fp_exception_other (ftt = unimplemented_FPop (FADDq and FSUBq only))

fp_exception_other (ftt = unifinished_FPop (FADDs, FADDd, FSUBs, FSUBd only))
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A.14 Floating-Point Compare

Format (3)

Opcode op3 opf Operation

FCMPs 11 0101 0 0101 0001 Compare Single

FCMPd 11 0101 0 0101 0010 Compare Double

FCMPq 11 0101 0 0101 0011 Compare Quad

FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered

FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered

FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

Assembly Language Syntax

fcmps %fccn, fregrs1, fregrs2

fcmpd %fccn, fregrs1, fregrs2

fcmpq %fccn, fregrs1, fregrs2

fcmpes %fccn, fregrs1, fregrs2

fcmped %fccn, fregrs1, fregrs2

fcmpeq %fccn, fregrs1, fregrs2

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0
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Description

These instructions compare the floating-point register(s) specified by the rs1 field with the

floating-point register(s) specified by the rs2 field, and set the selected floating-point

condition code (fccn) as shown below.

The “?” in the preceding table means that the comparison is unordered. The unordered

condition occurs when one or both of the operands to the compare is a signalling or quiet

NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)

instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

Compatibility Note – Unlike the SPARC V8 architecture, the SPARC V9 architecture

does not require an instruction between a floating-point compare operation and a

floating-point branch (FBfcc, FBPfcc).

SPARC V8 floating-point compare instructions are required to have a zero in the r[rd]
field. In SPARC V9, bits 26 and 25 of the r[rd] field specify the floating-point condition

code to be set. Legal SPARC V8 code will work on SPARC V9 because the zeroes in the

r[rd] field are interpreted as fcc0 and the FBfcc instruction branches according to

fcc0.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

Exceptions

fp_disabled
fp_exception_ieee_754 (NV)

fp_exception_other (ftt = unimplemented_FPop (FCMPq, FCMPEq only))

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)
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A.15 Convert Floating-Point to Integer

Format (3)

Description

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 64-bit integer in the floating-point register(s) specified by

rd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 32-bit integer in the floating-point register specified by rd.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the

FSR register is ignored.

Opcode op3 opf Operation

FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer

FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer

FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer

FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer

FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer

FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer

Assembly Language Syntax

fstox fregrs2, fregrd

fdtox fregrs2, fregrd

fqtox fregrs2, fregrd

fstoi fregrs2, fregrd

fdtoi fregrs2, fregrd

fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5
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If the floating-point operand’s value is too large to be converted to an integer of the specified

size or is a NaN or infinity, then a fp_exception_ieee_754 “invalid” exception occurs.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

The following floating-point to integer conversion instructions generate an unfinished_FPop
exception for certain ranges of floating-point operands, as shown in TABLE A-6.

Exceptions

fp_disabled
fp_exception_ieee_754 (NV, NX)

unfinished_FPop
fp_exception_other (ftt = unimplemented_FPop (FqTOi, FqTOx only))

A.16 Convert Between Floating-Point Formats

TABLE A-6 Floating-Point to Integer unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FsTOi result < − 231, result ≥ 231, Inf, NaN

FsTOx |result| ≥ 252, Inf, NaN

FdTOi result < − 231, result ≥ 231, Inf, NaN

FdTOx |result| ≥ 252, Inf, NaN

Opcode op3 opf Operation

FsTOd 11 0100 0 1100 1001 Convert Single to Double

FsTOq 11 0100 0 1100 1101 Convert Single to Quad

FdTOs 11 0100 0 1100 0110 Convert Double to Single

FdTOq 11 0100 0 1100 1110 Convert Double to Quad

FqTOs 11 0100 0 1100 0111 Convert Quad to Single

FqTOd 11 0100 0 1100 1011 Convert Quad to Double
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Format (3)

Description

These instructions convert the floating-point operand in the floating-point register(s) specified

by rs2 to a floating-point number in the destination format. They write the result into the

floating-point register(s) specified by rd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF, and

NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is a

signalling NaN.

Notes –
1) The UltraSPARC III Cu processor does not implement (in hardware) the instructions that

refer to a quad floating-point register. Execution of such an instruction generates

fp_exception_other (with ftt = unimplemented_FPop), which causes a trap. Supervisor

software then emulates these instructions.

2) For FdTOs and FsTOd, a fp_exception_other with ftt = unfinished_FPop can occur if

source operand is NaN or subnormal or out of range of the destination format.

Assembly Language Syntax

fstod fregrs2, fregrd

fstoq fregrs2, fregrd

fdtos fregrs2, fregrd

fdtoq fregrs2, fregrd

fqtos fregrs2, fregrd

fqtod fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5
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The following floating-point to floating-point conversion instructions generate an

unfinished_FPop exception for certain ranges of floating-point operands, as shown in

TABLE A-7.

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, NV, NX)

fp_exception_other (ftt = unimplemented_FPop (FsTOq, FdTOq, FqTOs, FqTOd only))

unfinished_FPop
fp_exception_other (ftt = unfinished_FPop (FdTOs and FsTOd only))

A.17 Convert Integer to Floating-Point

Format (3)

TABLE A-7 Floating-Point/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FdTOs |result| ≥ 252, |result| <2-31, operand < − 222, operand ≥ 222, NaN

Opcode op3 opf Operation

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5
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Description

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point

registers specified by rs2 into a floating-point number in the destination format.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point

register(s) specified by rs2 into a floating-point number in the destination format. All write

their result into the floating-point register(s) specified by rd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Note – The UltraSPARC III Cu processor does not implement (in hardware) the instructions

that refer to a quad floating-point register. Execution of such an instruction generates

fp_exception_other (with ftt = unimplemented_FPop), which causes a trap. Supervisor

software then emulates these instructions.

The following integer to floating-point conversion instructions generate an unfinished_FPop
exception for certain ranges of integer operands, as shown in TABLE A-8.

Exceptions

fp_disabled
fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))

unfinished_FPop
fp_exception_other (ftt = unimplemented_FPop (FiTOq, FxTOq only))

Assembly Language Syntax

fxtos fregrs2, fregrd

fxtod fregrs2, fregrd

fxtoq fregrs2, fregrd

fitos fregrs2, fregrd

fitod fregrs2, fregrd

fitoq fregrs2, fregrd

TABLE A-8 Integer/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FiTOs operand < − 222, operand ≥ 222

FxTOs operand < − 222, operand ≥ 222

FxTOd operand < − 251, operand ≥ 251
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A.18 Floating-Point Move

Format (3)

Opcode op3 opf Operation

FMOVs 11 0100 0 0000 0001 Move Single

FMOVd 11 0100 0 0000 0010 Move Double

FMOVq 11 0100 0 0000 0011 Move Quad

FNEGs 11 0100 0 0000 0101 Negate Single

FNEGd 11 0100 0 0000 0110 Negate Double

FNEGq 11 0100 0 0000 0111 Negate Quad

FABSs 11 0100 0 0000 1001 Absolute Value Single

FABSd 11 0100 0 0000 1010 Absolute Value Double

FABSq 11 0100 0 0000 1011 Absolute Value Quad

Assembly Language Syntax

fmovs fregrs2, fregrd

fmovd fregrs2, fregrd

fmovq fregrs2, fregrd

fnegs fregrs2, fregrd

fnegd fregrs2, fregrd

fnegq fregrs2, fregrd

fabss fregrs2, fregrd

fabsd fregrs2, fregrd

fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5
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Description

The single-precision versions of these instructions copy the contents of a single-precision

floating-point register to the destination. The double-precision versions copy the contents of

a double-precision floating-point register to the destination. The quad-precision versions

copy a quad-precision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

Exceptions

fp_disabled
fp_exception_other (ftt = unimplemented_FPop (FMOVq, FNEGq, FABSq only))

A.19 Floating-Point Multiply and Divide

Opcode op3 opf Operation

FMULs 11 0100 0 0100 1001 Multiply Single

FMULd 11 0100 0 0100 1010 Multiply Double

FMULq 11 0100 0 0100 1011 Multiply Quad

FsMULd 11 0100 0 0110 1001 Multiply Single to Double

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad

FDIVs 11 0100 0 0100 1101 Divide Single

FDIVd 11 0100 0 0100 1110 Divide Double

FDIVq 11 0100 0 0100 1111 Divide Quad
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Format (3)

Description

The floating-point multiply instructions multiply the contents of the floating-point register(s)

specified by the rs1 field by the contents of the floating-point register(s) specified by the

rs2 field. The instructions then write the product into the floating-point register(s) specified

by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-precision

operands, without underflow, overflow, or rounding error. Similarly, FdMULq provides the

exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s)

specified by the rs1 field by the contents of the floating-point register(s) specified by the

rs2 field. The instructions then write the quotient into the floating-point register(s) specified

by the rd field.

Rounding is performed as specified by the FSR.RD field.

Assembly Language Syntax

fmuls fregrs1, fregrs2, fregrd

fmuld fregrs1, fregrs2, fregrd

fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd

fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd

fdivd fregrs1, fregrs2, fregrd

fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5
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Notes –
1) The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

2) For FDIVs and FDIVd, a fp_exception_other with ftt = unfinished_FPop can occur if

the divide unit detects certain unusual conditions.

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)

fp_exception_other (ftt = unimplemented_FPop (FMULq, FdMULq, FDIVq)

fp_exception_other (ftt = unifinished_FPop (FMULs, FMULd, FSMULd, FDIVs, FDIV))

A.20 Floating-Point Square Root

Format (3)

Opcode op3 opf Operation

FSQRTs 11 0100 0 0010 1001 Square Root Single

FSQRTd 11 0100 0 0010 1010 Square Root Double

FSQRTq 11 0100 0 0010 1011 Square Root Quad

Assembly Language Syntax

fsqrts fregrs2, fregrd

fsqrtd fregrs2, fregrd

fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5
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Description

These SPARC V9 instructions generate the square root of the floating-point operand in the

floating-point register(s) specified by the rs2 field and place the result in the destination

floating-point register(s) specified by the rd field. Rounding is performed as specified by the

FSR.RD field.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

For FSQRTs and FSQRTd a fp_exception_other (with ftt = unfinished_FPop) can occur if

the operand to the square root is positive denormalized.

Exceptions

fp_disabled
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))

fp_exception_other (unimplemented_FPop) (Quad forms)

fp_exception_other (unfinished_FPop) (FSQRTs, FSQRTd)

A.21 Flush Instruction Memory

Format (3)

Opcode op3 Operation

FLUSH 11 1011 Flush Instruction Memory

Assembly Language Syntax

flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
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Description

FLUSH ensures that the doubleword specified as the effective address is consistent across any

local caches, and in a multiprocessor system, will eventually become consistent everywhere.

In the following discussion PFLUSH refers to the processor that executed the FLUSH
instruction.

FLUSH ensures that instruction fetches from the specified effective address by PFLUSH appear

to execute after any loads, stores, and atomic load-stores to that address issued by PFLUSH

prior to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will

eventually become visible to the instruction fetches of all other processors. FLUSH behaves

as if it were a store with respect to MEMBAR-induced orderings. See Section A.34, “Memory

Barrier.”

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if i = 0,

or “r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address bits of the

effective address are unused and should be supplied as zeroes by software. Bit 2 of the

address is ignored because FLUSH operates on at least a doubleword.

Programming Note –

1. Typically, FLUSH is used in self-modifying code. The use of self-modifying code is

discouraged.

2. The order in which memory is modified can be controlled by means of FLUSH and

MEMBAR instructions interspersed appropriately between stores and atomic load-stores.

FLUSH is needed only between a store and a subsequent instruction fetch from the

modified location. When multiple processes may concurrently modify live (that is,

potentially executing) code, the programmer must ensure that the order of update

maintains the program in a semantically correct form at all times.

3. The memory model guarantees in a uniprocessor that data loads observe the results of the

most recent store, even if there is no intervening FLUSH.

4. FLUSH may be time consuming.

5. In a multiprocessor system, the time it takes for a FLUSH to take effect is dependent on

the system. No mechanism is provided to ensure or test completion.

6. Because FLUSH is designed to act on a doubleword and on some implementations FLUSH
may trap to system software, system software should provide a user-call service routine

for flushing arbitrarily sized regions of memory. On some processor implementations, this

routine would issue a series of FLUSH instructions; on others, it might issue a single trap

to system software that would then flush the entire region.

On an UltraSPARC III Cu processor:

• A FLUSH instruction flushes the processor pipeline and synchronizes the processor.

• The instruction cache is kept coherent so there is no need to perform any action on it.
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• The address provided with the FLUSH instruction is ignored. However, for portability

across all SPARC V9 implementations, software must supply the target effective address

in FLUSH instructions.

FLUSH synchronizes code and data spaces after code space is modified during program

execution. The FLUSH effective address is ignored. FLUSH does not access the data MMU

and cannot generate a data MMU miss or exception.

SPARC V9 specifies that the FLUSH instruction has no latency on the issuing processor. In

other words, a store to instruction space prior to the FLUSH instruction is visible immediately

after the completion of FLUSH. When a FLUSH operation is performed, the processor

guarantees that earlier code modifications will be visible across the whole system.

Exceptions

None

A.22 Flush Register Windows

Format (3)

Description

FLUSHW causes all active register windows except the current window to be flushed to

memory at locations determined by privileged software. FLUSHW behaves as a NOP if there

are no active windows other than the current window. At the completion of the FLUSHW
instruction, the only active register window is the current one.

Opcode op3 Operation

FLUSHW 10 1011 Flush Register Windows

Assembly Language Syntax

flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0
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Programming Note – The FLUSHW instruction can be used by application software to

switch memory stacks or to examine register contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than one

active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is

based on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the

CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2) mod NWINDOWS).

Programming Note – Typically, the spill handler saves a window on a memory stack and

returns to re-execute the FLUSHW instruction. Thus, FLUSHW traps and re-executes until all

active windows other than the current window have been spilled.

Exceptions

spill_n_normal
spill_n_other

A.23 Illegal Instruction Trap

Format (2)

Opcode op op2 Operation

ILLTRAP 00 000 illegal_instruction trap

Assembly Language Syntax

illtrap const22

00 000 const22—

31 2124 02530 29 22
A-500 UltraSPARC III Cu User’s Manual • January 2004



Description

The ILLTRAP instruction causes an illegal_instruction exception. The const22 value is

ignored by the hardware; specifically, this field is not reserved by the architecture for any

future use.

Compatibility Note – Except for its name, this instruction is identical to the SPARC V8

UNIMP instruction.

Exceptions

illegal_instruction

A.24 Jump and Link

Format (3)

Description

The JMPL instruction causes a register-indirect delayed control transfer to the address given

by “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into

register r[rd].

Opcode op3 Operation

JMPL 11 1000 Jump and Link

Assembly Language Syntax

jmpl address, regrd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—
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If either of the low-order two bits of the jump address is nonzero, a

mem_address_not_aligned exception occurs.

Programming Note – A JMPL instruction with rd = 15 functions as a register-indirect

call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is

“r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL
instruction, or “r[15] + 8” if a leaf routine (one that does not use the SAVE instruction) is

entered by a CALL instruction or by a JMPL instruction with rd = 15.

Exceptions

mem_address_not_aligned

A.25 Load Floating-Point

† Encoded floating-point register value.

Format (3)

Opcode op3 rd Operation

LDF 10 0000 0–31 Load Floating-Point Register

LDDF 10 0011
†

Load Double Floating-Point Register

LDQF 10 0010
†

Load Quad Floating-Point Register

LDXFSR 10 0001 1 Load Floating-Point State Register

— 10 0001 2–31 Reserved

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Description

The load single floating-point instruction (LDF) copies a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword

from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) traps to software.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions

that have not finished execution to complete and then loads a doubleword from memory into

the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effective

address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

LDF causes a mem_address_not_aligned exception if the effective memory address is not

word aligned. LDXFSR causes a mem_address_not_aligned exception if the address is not

doubleword aligned. If the floating-point unit is not enabled (per FPRS.FEF and

PSTATE.PEF) or if no FPU is present, then a load floating-point instruction causes a

fp_disabled exception.

LDDF requires doubleword aligned. If word alignment is used, then the LDDF causes a

LDDF_mem_address_not_aligned exception. The trap handler software shall emulate the

LDDF instruction and return.

Programming Note – In SPARC V8, some compilers issued sequences of

single-precision loads when they could not determine that doubleword or quadword operands

were properly aligned. For SPARC V9, since emulation of misaligned loads is expected to be

fast, we recommend that compilers issue sets of single-precision loads only when they can

determine that doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the

destination floating-point register(s) is undefined.

Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ldx [address], %fsr
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In an UltraSPARC III Cu processor, an LDDF instruction causes a

LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit

(doubleword) aligned.

Exceptions

illegal_instruction (op3=2116 and rd = 2–31)

fp_disabled
LDDF_mem_address_not_aligned (LDDF only)

mem_address_not_aligned
data_access_exception
PA_watchpoint
VA_watchpoint
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.26 Load Floating-Point from Alternate Space

† Encoded floating-point register value.

Format (3)

Opcode op3 rd Operation

LDFAPASI 11 0000 0–31 Load Floating-Point Register from Alternate Space

LDDFAPASI 11 0011
†

Load Double Floating-Point Register from Alternate Space

LDQFAPASI 11 0010
†

Load Quad Floating-Point Register from Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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Description

The load single floating-point from alternate space instruction (LDFA) copies a word from

memory into f[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a

word-aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) traps to software.

Load floating-point from alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register

if i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not

word aligned. If the floating-point unit is not enabled (per FPRS.FEF and PSTATE.PEF) or

if no FPU is present, then load floating-point from alternate space instructions cause a

fp_disabled exception.

LDDFA with certain target ASIs is defined to be a 64-byte block-load instruction. See

Section A.4, “Block Load and Block Store (VIS I)” for details.

Implementation Note – LDFA and LDDFA cause a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

LDDF requires doubleword alignment. If word alignment is used, then the LDDF causes a

LDDF_mem_address_not_aligned exception. The trap handler software shall emulate the

LDDF instruction and return.

Assembly Language Syntax

lda [regaddr] imm_asi, fregrd

lda [reg_plus_imm] %asi, fregrd

ldda [regaddr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

ldqa [regaddr] imm_asi, fregrd

ldqa [reg_plus_imm] %asi, fregrd
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Programming Note – In SPARC V8, some compilers issued sequences of

single-precision loads when they could not determine that doubleword or quadword operands

were properly aligned. For SPARC V9, since emulation of misaligned loads is expected to be

fast, compilers should issue sets of single-precision loads only when they can determine that

doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the

destination floating-point register(s) is undefined.

In an UltraSPARC III Cu processor, an LDDFA instruction causes an

LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit

(doubleword) aligned.

Exceptions

illegal_instruction (LDQFA only)

fp_disabled
LDDF_mem_address_not_aligned (LDDFA only)

mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.27 Load Integer

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word
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Format (3)

Description

The load integer instructions copy a byte, a halfword, a word, or an extended word from

memory. All copy the fetched value into r[rd]. A fetched byte, halfword, or word is

right-justified in the destination register r[rd]; it is either sign-extended or zero-filled on

the left, depending on whether the opcode specifies a signed or unsigned operation,

respectively.

Load integer instructions access the primary address space (ASI = 8016). The effective

address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not halfword

aligned. LDUW and LDSW cause a mem_address_not_aligned exception if the effective

address is not word aligned. LDX causes a mem_address_not_aligned exception if the address

is not doubleword aligned.

Compatibility Note – The SPARC V8 LD instruction has been renamed LDUW in

SPARC V9. The LDSW instruction is new in SPARC V9.

Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions

mem_address_not_aligned (all except LDSB, LDUB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.28 Load Integer from Alternate Space

Format (3)

Opcode op3 Operation

LDSBAPASI 01 1001 Load Signed Byte from Alternate Space

LDSHAPASI 01 1010 Load Signed Halfword from Alternate Space

LDSWAPASI 01 1000 Load Signed Word from Alternate Space

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate Space

LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate Space

LDUWAPASI 01 0000 Load Unsigned Word from Alternate Space

LDXAPASI 01 1011 Load Extended Word from Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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Description

The load integer from alternate space instructions copy a byte, halfword, word, or an

extended word from memory. All copy the fetched value into r[rd]. A fetched byte,

halfword, or word is right-justified in the destination register r[rd]; it is either

sign-extended or zero-filled on the left, depending on whether the opcode specifies a signed

or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI)

to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The

access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective

address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUHA and LDSHA cause a mem_address_not_aligned exception if the address is not

halfword aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if the

effective address is not word aligned; LDXA causes a mem_address_not_aligned exception if

the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

Assembly Language Syntax

ldsba [regaddr] imm_asi, regrd

ldsha [regaddr] imm_asi, regrd

ldswa [regaddr] imm_asi, regrd

lduba [regaddr] imm_asi, regrd

lduha [regaddr] imm_asi, regrd

lduwa [regaddr] imm_asi, regrd (synonym: lda)

ldxa [regaddr] imm_asi, regrd

ldsba [reg_plus_imm] %asi, regrd

ldsha [reg_plus_imm] %asi, regrd

ldswa [reg_plus_imm] %asi, regrd

lduba [reg_plus_imm] %asi, regrd

lduha [reg_plus_imm] %asi, regrd

lduwa [reg_plus_imm] %asi, regrd (synonym: lda)

ldxa [reg_plus_imm] %asi, regrd
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Exceptions

privileged_action
mem_address_not_aligned (all except LDSBA and LDUBA)

data_access_exception
PA_watchpoint
VA_watchpoint
fast_data_access_MMU_miss
fast_data_access_protection
data_access_error

A.29 Load Quadword, Atomic (VIS I)

Format (3) LDDA

Description

ASIs 2416 and 2C16 are used with the LDDA instruction to atomically read a 128-bit, virtually

addressed data item. They are intended to be used by a TLB miss handler to access TSB

entries without requiring locks. The data is placed in an even/odd pair of 64-bit registers. The

lowest address 64 bits are placed in the even register; the highest-address 64 bits are placed

Opcode imm_asi ASI Value Operation

LDDA ASI_NUCLEUS_QUAD_LDD 2416 128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L 2C16 128-bit atomic load, little-endian

LDDA ASI_QUAD_LDD_PHYS 3416 128-bit atomic load

LDDA ASI_QUAD_LDD_PHYS_L 3c16 128-bit atomic load, little endian

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18 14 13 5 4

rd11 010011 simm_13rs1 i=1

rd11 010011 imm_asirs1 rs2i=0
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in the odd numbered register. The reference is made from the nucleus context. ASIs 2416 and

2C16 are translated by the MMU into physical addresses according to normal translation rules

for the nucleus context.

To reduce the number of locked pages in D-TLB, a new ASI load instruction, atomic quad

load physical (ldda ASI_QUAD_LDD_PHYS), was added. It allows a full TTE entry

(128 bits, tag and data) in TSB to be read directly with PA, bypassing the VA-to-PA

translation. In today’s D-TLB miss handler, a TTE entry is read using two ldx instructions.

ASIs 3416 and 3C16 are not translated by the MMU and addresses provided are interpreted

directly as physical addresses.

Since quad load with these ASIs bypasses the D-MMU, the physical address is set equal to

the truncated virtual address, that is, PA[42:0]=VA[42:0]. Internally in hardware, the physical

page attribute bits of these ASIs are hardcoded (not coming from DCU Control Register) as

follows:

        CP = 1, CV = 0, IE = 0, E = 0, P = 0, W = 0, NFO = 0, Size = 8 K

Note that (CP, CV) = 10 means it is cacheable in L2-cache, W-cache, and P-cache, but not

D-cache (since D-cache is VA-indexed). Therefore, this atomic quad load physical instruction

can only be used with cacheable PA.

Semantically, ASI_QUAD_LDD_PHYS is like a combination of

ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

An illegal_instruction occurs if an odd “rd” register number is used. If non-privileged

software tries to use this ASI, a privileged_action exception occurs. If the physical address of

the data referenced matches the watchpoint register

(ASI_DMMU_PA_WATCHPOINT_REG), the PA_watchpoint exception occurs.

In addition to the usual traps for LDDA using a privileged ASI, a data_access_exception trap

occurs for a non-cacheable access or if a quadword-load ASI is used with any instruction

other than LDDA. A mem_address_not_aligned trap is taken if the access is not aligned on a

128-byte boundary.

Exceptions

privileged_action
PA_watchpoint (recognized on only the first 8 bytes of an access)

VA_watchpoint (recognized on only the first 8 bytes of an access)

illegal_instruction (misaligned rd)

mem_address_not_aligned
data_access_exception (an attempt to access a page marked as non-cacheable)

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
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A.30 Load-Store Unsigned Byte

Format (3)

Description

The load-store unsigned byte instruction copies a byte from memory into r[rd], then

rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the

destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or

deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,

LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same

doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Exceptions

data_access_exception
data_access_error
fast_data_access_MMU_miss

Opcode op3 Operation

LDSTUB 00 1101 Load-Store Unsigned Byte

Assembly Language Syntax

ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.31 Load-Store Unsigned Byte to Alternate

Space

Format (3)

Description

The load-store unsigned byte into alternate space instruction copies a byte from memory into

r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is

right-justified in the destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or

deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,

LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same

doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is

zero; otherwise, it is not privileged. The effective address is “r[rs1] + r[rs2]” if i = 0,

or “r[rs1] + sign_ext(simm13)” if i = 1.

Opcode op3 Operation

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate Space

Assembly Language Syntax

ldstuba [regaddr] imm_asi, regrd

ldstuba [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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LDSTUBA causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is

zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Exceptions

privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.32 Logical Operate Instructions (VIS I)

Opcode opf Operation

FZERO 0 0110 0000 Zero fill

FZEROS 0 0110 0001 Zero fill, single-precision

FONE 0 0111 1110 One fill

FONES 0 0111 1111 One fill, single-precision

FSRC1 0 0111 0100 Copy src1

FSRC1S 0 0111 0101 Copy src1, single-precision

FSRC2 0 0111 1000 Copy src2

FSRC2S 0 0111 1001 Copy src2, single-precision

FNOT1 0 0110 1010 Negate (ones-complement) src1

FNOT1S 0 0110 1011 Negate (ones-complement) src1, single-precision

FNOT2 0 0110 0110 Negate (ones-complement) src2

FNOT2S 0 0110 0111 Negate (ones-complement) src2, single-precision

FOR 0 0111 1100 Logical OR

FORS 0 0111 1101 Logical OR, single-precision

FNOR 0 0110 0010 Logical NOR

FNORS 0 0110 0011 Logical NOR, single-precision

FAND 0 0111 0000 Logical AND
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Format (3)

FANDS 0 0111 0001 Logical AND, single-precision

FNAND 0 0110 1110 Logical NAND

FNANDS 0 0110 1111 Logical NAND, single-precision

FXOR 0 0110 1100 Logical XOR

FXORS 0 0110 1101 Logical XOR, single-precision

FXNOR 0 0111 0010 Logical XNOR

FXNORS 0 0111 0011 Logical XNOR, single-precision

FORNOT1 0 0111 1010 Negated src1 OR src2

FORNOT1S 0 0111 1011 Negated src1 OR src2, single-precision

FORNOT2 0 0111 0110 src1 OR negated src2

FORNOT2S 0 0111 0111 src1 OR negated src2, single-precision

FANDNOT1 0 0110 1000 Negated src1 AND src2

FANDNOT1S 0 0110 1001 Negated src1 AND src2, single-precision

FANDNOT2 0 0110 0100 src1 AND negated src2

FANDNOT2S 0 0110 0101 src1 AND negated src2, single-precision

Assembly Language Syntax

fzero fregrd

fzeros fregrd

fone fregrd

fones fregrd

fsrc1 fregrs1, fregrd

fsrc1s fregrs1, fregrd

fsrc2 fregrs2, fregrd

fsrc2s fregrs2, fregrd

fnot1 fregrs1, fregrd

fnot1s fregrs1, fregrd

fnot2 fregrs2, fregrd

Opcode opf Operation

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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Description

The standard 64-bit versions of these instructions perform 1 of 16 64-bit logical operations

between the 64-bit floating-point registers specified by rs1 and rs2. The result is stored in

the 64-bit floating-point destination register specified by rd. The 32-bit (single-precision)

version of these instructions perform 32-bit logical operations.

Note – For good performance, the result of a single logical should not be used as part of a

64-bit graphics instruction source operand in the next three instruction groups. Similarly, the

result of a standard logical should not be used as a 32-bit graphics instruction source operand

in the next three instruction groups.

Exceptions

fp_disabled

fnot2s fregrs2, fregrd

for fregrs1, fregrs2, fregrd

fors fregrs1, fregrs2, fregrd

fnor fregrs1, fregrs2, fregrd

fnors fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fxor fregrs1, fregrs2, fregrd

fxors fregrs1, fregrs2, fregrd

fxnor fregrs1, fregrs2, fregrd

fxnors fregrs1, fregrs2, fregrd

fornot1 fregrs1, fregrs2, fregrd

fornot1s fregrs1, fregrs2, fregrd

fornot2 fregrs1, fregrs2, fregrd

fornot2s fregrs1, fregrs2, fregrd

fandnot1 fregrs1, fregrs2, fregrd

fandnot1s fregrs1, fregrs2, fregrd

fandnot2 fregrs1, fregrs2, fregrd

fandnot2s fregrs1, fregrs2, fregrd

Assembly Language Syntax
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A.33 Logical Operations

Format (3)

Opcode op3 Operation

AND 00 0001 AND

ANDcc 01 0001 AND and modify cc’s

ANDN 00 0101 AND Not

ANDNcc 01 0101 AND Not and modify cc’s

OR 00 0010 Inclusive OR

ORcc 01 0010 Inclusive OR and modify cc’s

ORN 00 0110 Inclusive OR Not

ORNcc 01 0110 Inclusive OR Not and modify cc’s

XOR 00 0011 Exclusive OR

XORcc 01 0011 Exclusive OR and modify cc’s

XNOR 00 0111 Exclusive NOR

XNORcc 01 0111 Exclusive NOR and modify cc’s

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

These instructions implement bitwise logical operations. They compute

“r[rs1] op r[rs2]” if i = 0, or “r[rs1] op sign_ext(simm13)” if i = 1, and

write the result into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition codes

(icc and xcc). They set the condition codes as follows:

• icc.v, icc.c, xcc.v, and xcc.c to zero

- icc.n to bit 31 of the result

- xcc.n to bit 63 of the result

- icc.z to one if bits 31:0 of the result are zero (otherwise to zero)

- xcc.z to one if all 64 bits of the result are zero (otherwise to zero)

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before applying the

main (AND or OR) operation.

Programming Note – XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc

logical operations, respectively.

Exceptions

None

Assembly Language Syntax

and regrs1, reg_or_imm, regrd

andcc regrs1, reg_or_imm, regrd

andn regrs1, reg_or_imm, regrd

andncc regrs1, reg_or_imm, regrd

or regrs1, reg_or_imm, regrd

orcc regrs1, reg_or_imm, regrd

orn regrs1, reg_or_imm, regrd

orncc regrs1, reg_or_imm, regrd

xor regrs1, reg_or_imm, regrd

xorcc regrs1, reg_or_imm, regrd

xnor regrs1, reg_or_imm, regrd

xnorcc regrs1, reg_or_imm, regrd
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A.34 Memory Barrier

Format (3)

Description

The memory barrier instruction, MEMBAR, has two complementary functions: to express

order constraints between memory references and to provide explicit control of

memory-reference completion. The membar_mask field in the suggested assembly

language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing

before the MEMBAR and memory references following it in a program. The particular classes

of memory references are specified by the mmask field. Memory references are classified as

loads (including load instructions LDSTUB(A), SWAP(A), CASA, and CASXA) and stores

(including store instructions LDSTUB(A), SWAP(A), CASA, CASXA, and FLUSH). The mmask
field specifies the classes of memory references subject to ordering, as described. MEMBAR
applies to all memory operations in all address spaces referenced by the issuing processor,

but it has no effect on memory references by other processors. When the cmask field is

nonzero, completion as well as order constraints are imposed, and the order imposed can be

more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from memory and

cannot be modified by another processor. A store has been performed when the value stored

has become visible, that is, when the previous value can no longer be read by any processor.

In specifying the effect of MEMBAR, instructions are considered to be executed as if they

were processed in a strictly sequential fashion, with each instruction completed before the

next has begun.

Opcode op3 Operation

MEMBAR 10 1000 Memory Barrier

Assembly Language Syntax

MEMBAR membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6

4

7

cmask
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The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-9 specifies the

order constraint that each bit of mmask (selected when set to one) imposes on memory

references appearing before and after the MEMBAR. From zero to four, mask bits may be

selected in the mmask field.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,

described in TABLE A-10, specify additional constraints on the order of memory references

and the processing of instructions. If cmask is zero, then MEMBAR enforces the partial

ordering specified by the mmask field; if cmask is nonzero, then completion and partial

order constraints are applied.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that rs1 = 15,

rd = 0, and i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

TABLE A-9 MEMBAR mmask Encodings

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction must be visible to

all processors before the effect of any stores following the MEMBAR; equivalent to the

deprecated STBAR instruction.

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been performed before

the effects of any stores following the MEMBAR are visible to any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction must be visible to

all processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been performed before

any loads following the MEMBAR may be performed.

TABLE A-10 MEMBAR cmask Encodings

Mask Bit Function Name Description

cmask[2] Synchronization

barrier

#Sync All operations (including non-memory reference operations)

appearing prior to the MEMBAR must have been performed and the

effects of any exceptions be visible before any instruction after the

MEMBAR may be initiated.

cmask[1] Memory issue

barrier

#MemIssue All memory reference operations appearing prior to the MEMBAR
must have been performed before any memory operation after the

MEMBAR may be initiated.

cmask[0] Lookaside

barrier

#Lookaside A store appearing prior to the MEMBAR must complete before any

load following the MEMBAR referencing the same address can be

initiated.
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Compatibility Note – MEMBAR with mmask = 816 and cmask = 016 (“MEMBAR
#StoreStore”) is identical in function to the SPARC V8 STBAR instruction, which is

deprecated.

The information included in this section should not be used for the decision as to when

MEMBARs should be added to software that needs to be compliant across all

UltraSPARC-based platforms. The operations of block load/block store (BLD/BST) on an

UltraSPARC III Cu processor are generally more ordered with respect to other operations,

compared to UltraSPARC I and UltraSPARC II processors. Code written and found to

“work” on the UltraSPARC III Cu processor may not work on UltraSPARC I and

UltraSPARC II processors if it does not follow the rules for BLD/BST specified for those

processors. Code that happens to work on UltraSPARC I and UltraSPARC II processors may

not work on the UltraSPARC III Cu processor if it did not meet the coding guidelines

specified for those processors. In no case is the coding requirement for the

UltraSPARC III Cu processor more restrictive than that of the UltraSPARC I and

UltraSPARC II processors.

Software developers should not use the information in this section for determining the need

for MEMBARs but instead should rely on the SPARC V9 MEMBAR rules. These

UltraSPARC III Cu rules are less restrictive than SPARC V9, UltraSPARC I, and

UltraSPARC II rules and are never more restrictive.

MEMBAR Rules

The UltraSPARC III Cu hardware uses the following rules to guide the interlock

implementation.

1. Non-cacheable load or store with side-effect bit on will always be blocked.

2. Cacheable or non-cacheable BLD will not be blocked.

3. VA<12:5> of a load (cacheable or non-cacheable) will be compared with the VA<12:5> of

all entries in store queue. When a matching is detected, this load (cacheable or

non-cacheable) will be blocked.

4. An insertion of MEMBAR is required if strong ordering is desired while not fitting

rules 1 to 3.

TABLE A-11 and TABLE A-12 reflect the hardware interlocking mechanism implemented in the

UltraSPARC III Cu processor. The tables are read from Row to Column, the first memory

operation in program order being in Row followed by the memory operation found in

Column. The following two symbols are used as table entries:

• # — No intervening operation required because Fireplane-compliant systems

automatically order R before C.

• M — MEMBAR #Sync or MEMBAR #MemIssue or MEMBAR #StoreLoad required.
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For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a

strong ordering is desired, the MEMBAR rules summarized in TABLE A-11 reflect

UltraSPARC III Cu’s hardware implementation.

TABLE A-11 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:
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load # # # # # # # # # M M # M M

load from internal ASI # # # # # # # # # # # # # #

store M # # # # M # M # M M # M M

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # M M # M M

load_nc_e # # # # # # # # # M M # M M

store_nc_e M # # # # # # M # M M # M M

load_nc_ne # # # # # # # # # M M # M M

store_nc_ne M # # # # M # M # M M # M M

bload M # M # M M M M M M M # M M

bstore M # M # M M M M M M M # M M

bstore_commit M # M # M M M M M M M # M M

bload_nc M # M # M M M M M M M # M M

bstore_nc M # M # M M M M M M M # M M
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When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE A-12 reflect the UltraSPARC III Cu processor’s hardware

implementation.

Special Rules for Quad LDD (ASI 2416 and ASI 2C16)

MEMBAR is only required before quad LDD if VA<12:5> of a preceding store to the same

address space matches VA<12:5> of the quad LDD.

Exceptions

None

TABLE A-12 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:
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load # # # # # # # # # # # # # #

load from internal ASI # # # # # # # # # # # # # #

store # # # # # # # # # M # # # #

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # # # # # #

load_nc_e # # # # # # # # # # # # # #

store_nc_e # # # # # # # # # M # # M #

load_nc_ne # # # # # # # # # # # # # #

store_nc_ne # # # # # # # # # M # # M #

bload # # # # # # # # # # # # # #

bstore # # # # # # # # # M # # # #

bstore_commit M # M # M M M M M M M # M M

bload_nc # # # # # # # # # # # # # #

bstore_nc # # # # # # # # # # # # M #
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A.35 Move Floating-Point Register on Condition

(FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc /xcc Test

FMOVA 11 0101 1000 Move Always 1

FMOVN 11 0101 0000 Move Never 0

FMOVNE 11 0101 1001 Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))

FMOVLE 11 0101 0010 Move if Less or Equal Z or (N xor V)

FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)

FMOVL 11 0101 0011 Move if Less N xor V

FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)

FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)

FMOVCC 11 0101 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C

FMOVPOS 11 0101 1110 Move if Positive not N

FMOVNEG 11 0101 0110 Move if Negative N

FMOVVC 11 0101 1111 Move if Overflow Clear not V

FMOVVS 11 0101 0111 Move if Overflow Set V
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For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

FMOVFA 11 0101 1000 Move Always 1

FMOVFN 11 0101 0000 Move Never 0

FMOVFU 11 0101 0111 Move if Unordered U

FMOVFG 11 0101 0110 Move if Greater G

FMOVFUG 11 0101 0101 Move if Unordered or Greater G or U

FMOVFL 11 0101 0100 Move if Less L

FMOVFUL 11 0101 0011 Move if Unordered or Less L or U

FMOVFLG 11 0101 0010 Move if Less or Greater L or G

FMOVFNE 11 0101 0001 Move if Not Equal L or G or U

FMOVFE 11 0101 1001 Move if Equal E

FMOVFUE 11 0101 1010 Move if Unordered or Equal E or U

FMOVFGE 11 0101 1011 Move if Greater or Equal E or G

FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal E or G or U

FMOVFLE 11 0101 1101 Move if Less or Equal E or L

FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal E or L or U

FMOVFO 11 0101 1111 Move if Ordered E or L or G

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20
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Encoding of the opf_cc Field

Encoding of opf Field (opf_cc opf_low)

opf_cc Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 —

110 xcc

111 —

Instruction Variation opf_cc opf_low opf

FMOVScc %fccn,rs2,rd 0nn 00 0001 0 nn00 0001

FMOVDcc %fccn,rs2,rd 0nn 00 0010 0 nn00 0010

FMOVQcc %fccn,rs2,rd 0nn 00 0011 0 nn00 0011

FMOVScc %icc, rs2,rd 100 00 0001 1 0000 0001

FMOVDcc %icc, rs2,rd 100 00 0010 1 0000 0010

FMOVQcc %icc, rs2,rd 100 00 0011 1 0000 0011

FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001

FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010

FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011
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For Integer Condition Codes

Programming Note – To select the appropriate condition code, include %icc or %xcc
before the registers.

Assembly Language Syntax

fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}geu)

fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}lu)

fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd
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For Floating-Point Condition Codes

Description

These instructions copy the floating-point register(s) specified by rs2 to the floating-point

register(s) specified by rd if the condition indicated by the cond field is satisfied by the

selected condition code. The condition code used is specified by the opf_cc field of the

instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note – In general, branches cause the processor’s performance to degrade.

Frequently, the MOVcc and FMOVcc instructions can be used to avoid branches. For

example, the following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B

Assembly Language Syntax

fmov{s,d,q}a %fccn, fregrs2, fregrd

fmov{s,d,q}n %fccn, fregrs2, fregrd

fmov{s,d,q}u %fccn, fregrs2, fregrd

fmov{s,d,q}g %fccn, fregrs2, fregrd

fmov{s,d,q}ug %fccn, fregrs2, fregrd

fmov{s,d,q}l %fccn, fregrs2, fregrd

fmov{s,d,q}ul %fccn, fregrs2, fregrd

fmov{s,d,q}lg %fccn, fregrs2, fregrd

fmov{s,d,q}ne %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}ue %fccn, fregrs2, fregrd

fmov{s,d,q}ge %fccn, fregrs2, fregrd

fmov{s,d,q}uge %fccn, fregrs2, fregrd

fmov{s,d,q}le %fccn, fregrs2, fregrd

fmov{s,d,q}ule %fccn, fregrs2, fregrd

fmov{s,d,q}o %fccn, fregrs2, fregrd
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fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches and may boost performance

significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would

improve performance.

Exceptions

fp_disabled
fp_exception_other (ftt = unimplemented_FPop (opf_cc = 1012 or 1112 and quad forms))

A.36 Move Floating-Point Register on Integer

Register Condition (FMOVr)

Opcode op3 rcond Operation Test

— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0

FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —

FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] ≠ 0

FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0

FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0
Appendix A Instruction Definitions A-529



Format (4)

Encoding of opf_low Field

Description

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,

these instructions copy the contents of the floating-point register(s) specified by the rs2 field

to the floating-point register(s) specified by the rd field. If the contents of r[rs1] do not

satisfy the condition, the floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not

modify any condition codes.

Implementation Note – The UltraSPARC III Cu processor does not implement this

instruction by tagging each register value; it looks at the full 64-bit register to determine a

negative or zero.

Instruction variation opf_low

FMOVSrcond rs1, rs2, rd 0 0101

FMOVDrcond rs1, rs2, rd 0 0110

FMOVQrcond rs1, rs2, rd 0 0111

Assembly Language Syntax

fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1
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Exceptions

fp_disabled
fp_exception_other (unimplemented_FPop (rcond = 0002 or 1002 and quad forms))

A.37 Move Integer Register on Condition

(MOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcc Test

MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xor V))

MOVLE 10 1100 0010 Move if Less or Equal Z or (N xor V)

MOVGE 10 1100 1011 Move if Greater or Equal not (N xor V)

MOVL 10 1100 0011 Move if Less N xor V

MOVGU 10 1100 1100 Move if Greater Unsigned not (C or Z)

MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C or Z)

MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N

MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOVVS 10 1100 0111 Move if Overflow Set V
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For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

MOVFA 10 1100 1000 Move Always 1

MOVFN 10 1100 0000 Move Never 0

MOVFU 10 1100 0111 Move if Unordered U

MOVFG 10 1100 0110 Move if Greater G

MOVFUG 10 1100 0101 Move if Unordered or Greater G or U

MOVFL 10 1100 0100 Move if Less L

MOVFUL 10 1100 0011 Move if Unordered or Less L or U

MOVFLG 10 1100 0010 Move if Less or Greater L or G

MOVFNE 10 1100 0001 Move if Not Equal L or G or U

MOVFE 10 1100 1001 Move if Equal E

MOVFUE 10 1100 1010 Move if Unordered or Equal E or U

MOVFGE 10 1100 1011 Move if Greater or Equal E or G

MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal E or G or U

MOVFLE 10 1100 1101 Move if Less or Equal E or L

MOVFULE 10 1100 1110 Move if Unordered or Less or Equal E or L or U

MOVFO 10 1100 1111 Move if Ordered E or L or G

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
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For Integer Condition Codes

cc2 cc1 cc0 Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 Reserved

110 xcc

111 Reserved

Assembly Language Syntax

mova i_or_x_cc, reg_or_imm11, regrd

movn i_or_x_cc, reg_or_imm11, regrd

movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)

move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)

movg i_or_x_cc, reg_or_imm11, regrd

movle i_or_x_cc, reg_or_imm11, regrd

movge i_or_x_cc, reg_or_imm11, regrd

movl i_or_x_cc, reg_or_imm11, regrd

movgu i_or_x_cc, reg_or_imm11, regrd

movleu i_or_x_cc, reg_or_imm11, regrd

movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)

movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)

movpos i_or_x_cc, reg_or_imm11, regrd

movneg i_or_x_cc, reg_or_imm11, regrd

movvc i_or_x_cc, reg_or_imm11, regrd

movvs i_or_x_cc, reg_or_imm11, regrd
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Programming Note – To select the appropriate condition code, include %icc or %xcc
before the register or immediate field.

For Floating-Point Condition Codes

Programming Note – To select the appropriate condition code, include %fcc0, %fcc1,

%fcc2, or %fcc3 before the register or immediate field.

Description

These instructions test to see if cond is TRUE for the selected condition codes. If so, they

copy the value in r[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into r[rd].

The condition code used is specified by the cc2, cc1, and cc0 fields of the instruction. If

the condition is FALSE, then r[rd] is not changed.

These instructions copy an integer register to another integer register if the condition is

TRUE. The condition code that is used to determine whether the move will occur can be

either integer condition code (icc or xcc) or any floating-point condition code (fcc0,
fcc1, fcc2, or fcc3).

Assembly Language Syntax

mova %fccn, reg_or_imm11, regrd

movn %fccn, reg_or_imm11, regrd

movu %fccn, reg_or_imm11, regrd

movg %fccn, reg_or_imm11, regrd

movug %fccn, reg_or_imm11, regrd

movl %fccn, reg_or_imm11, regrd

movul %fccn, reg_or_imm11, regrd

movlg %fccn, reg_or_imm11, regrd

movne %fccn, reg_or_imm11, regrd (synonym: movnz)

move %fccn, reg_or_imm11, regrd (synonym: movz)

movue %fccn, reg_or_imm11, regrd

movge %fccn, reg_or_imm11, regrd

movuge %fccn, reg_or_imm11, regrd

movle %fccn, reg_or_imm11, regrd

movule %fccn, reg_or_imm11, regrd

movo %fccn, reg_or_imm11, regrd
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These instructions do not modify any condition codes.

Programming Note – In general, branches cause the processor performance to degrade.

Frequently, the MOVcc and FMOVcc instructions can be used to avoid branches. For

example, consider the C language if-then-else statement:

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3 ! X = 1
or %g0,0,%i3 ! X = 0

label:...

This takes four instructions including a branch. With MOVcc, this could be coded as

cmp %i0,%i2
or %g0,1,%i3 ! assume X = 1
movle %xcc,0,%i3 ! overwrite with X = 0

This approach takes only three instructions and no branches and may boost performance

significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would

increase performance.

Exceptions

illegal_instruction (cc2 cc1 cc0 = 1012 or 1112)

fp_disabled (cc2 cc1 cc0 = 0002, 0012 , 0102 , or 0112 and the FPU is disabled)
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A.38 Move Integer Register on Register Condition

(MOVr)

Format (3)

Opcode op3 rcond Operation Test

— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0

MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —

MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] ≠ 0

MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0

MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Assembly Language Syntax

movrz regrs1, reg_or_imm10, regrd (synonym: movre)

movrlez regrs1, reg_or_imm10, regrd

movrlz regrs1, reg_or_imm10, regrd

movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)

movrgz regrs1, reg_or_imm10, regrd

movrgez regrs1, reg_or_imm10, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
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Description

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,

these instructions copy r[rs2] (if i = 0) or sign_ext(simm10) (if i = 1) into r[rd].

If the contents of r[rs1] do not satisfy the condition, then r[rd] is not modified. These

instructions treat the register contents as a signed integer value; they do not modify any

condition codes.

Implementation Note – The UltraSPARC III Cu processor does not implement this

instruction by tagging each register value; it looks at the full 64-bit register to determine a

negative or zero.

Exceptions

illegal_instruction (rcond = 0002 or 1002)

A.39 Multiply and Divide (64-bit)

Format (3)

Opcode op3 Operation

MULX 00 1001 Multiply (signed or unsigned)

SDIVX 10 1101 Signed Divide

UDIVX 00 1101 Unsigned Divide

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if

i = 1, and writes the 64-bit product into r[rd]. MULX can be used to calculate the 64-bit

product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or

“r[rs1] ÷ sign_ext(simm13)” if i = 1, and write the 64-bit result into r[rd].

SDIVX operates on the operands as signed integers and produces a corresponding signed

result. UDIVX operates on the operands as unsigned integers and produces a corresponding

unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest

negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

Exceptions

division_by_zero

A.40 No Operation

Assembly Language Syntax

mulx regrs1, reg_or_imm, regrd

sdivx regrs1, reg_or_imm, regrd

udivx regrs1, reg_or_imm, regrd

Opcode op op2 Operation

NOP 0 0000 100 No Operation
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Format (2)

Description

The NOP instruction changes no program-visible state (except that of the PC and nPC).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions

None

Assembly Language Syntax

nop

31 24 02530 29 22 21

00 op op2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A.41 Partial Store (VIS I)

Format (3)

Opcode imm_asi ASI Value Operation

STDFA ASI_PST8_P C016 Eight 8-bit conditional stores to primary address space

STDFA ASI_PST8_S C116 Eight 8-bit conditional stores to secondary address space

STDFA ASI_PST8_PL C816 Eight 8-bit conditional stores to primary address space, little-endian

STDFA ASI_PST8_SL C916 Eight 8-bit conditional stores to secondary address space, little-endian

STDFA ASI_PST16_P C216 Four 16-bit conditional stores to primary address space

STDFA ASI_PST16_S C316 Four 16-bit conditional stores to secondary address space

STDFA ASI_PST16_PL CA16 Four 16-bit conditional stores to primary address space, little-endian

STDFA ASI_PST16_SL CB16 Four 16-bit conditional stores to secondary address space, little-endian

STDFA ASI_PST32_P C416 Two 32-bit conditional stores to primary address space

STDFA ASI_PST32_S C516 Two 32-bit conditional stores to secondary address space

STDFA ASI_PST32_PL CC16 Two 32-bit conditional stores to primary address space, little-endian

STDFA ASI_PST32_SL CD16 Two 32-bit conditional stores to secondary address space, little-endian

Assembly Language Syntax1

1. The original assembly language syntax for a partial store instruction (“stda
fregrd, [regrs1] regrs2, imm_asi”) has been deprecated because of

inconsistency with the rest of the SPARC assembly language. Over time,

assemblers will support the new syntax for this instruction. In the meantime,

some assemblers may recognize only the original syntax.

stda fregrd, regrs2, [regrs1] imm_asi

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
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Description

The partial store instructions are selected by one of the partial store ASIs with the STDFA
instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register specified

by rd are conditionally stored at the address specified by r[rs1], using the mask specified

in r[rs2]. The value in r[rs2] has the same format as the result specified by the pixel

compare instructions (see Section A.44, “Pixel Compare (VIS I)”). The most significant bit

of the mask (not the entire register) corresponds to the most significant part of the

floating-point register specified by rd. The data is stored in little-endian form in memory if

the ASI name has an “L” suffix; otherwise, it is stored in big-endian format.

A partial store instruction can cause a virtual (or physical) watchpoint exception when the

following conditions are met:

• The virtual (physical) address in r[rs1] matches the address in the VA (PA) Data

Watchpoint Register.

• The byte store mask in r[rs2] indicates that a byte is to be stored.

• The Virtual (Physical) Data Watchpoint Mask in DCUCR indicates that one or more of the

bytes to be stored at the watched address is being watched.

Watchpoint exceptions on partial store instructions behaves as if every partial store always

stores all 8 bytes. The DCUCR Data Watchpoint masks are only checked for nonzero value

(watchpoint enabled). The byte store mask (r[rs2]) in the partial store instruction is

ignored, and a watchpoint exception can occur even if the mask is zero (that is, no store will

take place).

ASIs C016-C516 and C816-CD16 are only used for partial store operations. In particular, they

should not be used with the LDDFA instruction.

Note – If the byte ordering is little-endian, the byte enables generated by this instruction are

swapped with respect to big-endian.

Exceptions

fp_disabled
illegal_instruction (When i = 1, no immediate mode is supported.)

PA_watchpoint
VA_watchpoint
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
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A.42 Partitioned Add/Subtract Instructions (VIS I)

Format (3)

Opcode opf Operation

FPADD16 0 0101 0000 Four 16-bit Add

FPADD16S 0 0101 0001 Two 16-bit Add

FPADD32 0 0101 0010 Two 32-bit Add

FPADD32S 0 0101 0011 One 32-bit Add

FPSUB16 0 0101 0100 Four 16-bit Subtract

FPSUB16S 0 0101 0101 Two 16-bit Subtract

FPSUB32 0 0101 0110 Two 32-bit Subtract

FPSUB32S 0 0101 0111 One 32-bit Subtract

Assembly Language Syntax

fpadd16 fregrs1, fregrs2, fregrd

fpadd16s fregrs1, fregrs2, fregrd

fpadd32 fregrs1, fregrs2, fregrd

fpadd32s fregrs1, fregrs2, fregrd

fpsub16 fregrs1, fregrs2, fregrd

fpsub16s fregrs1, fregrs2, fregrd

fpsub32 fregrs1, fregrs2, fregrd

fpsub32s fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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Description

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds

or subtracts between the corresponding fixed-point values contained in the source operands

(the 64-bit floating-point registers specified by rs1 and rs2). For subtraction, the second

operand (rs2) is subtracted from the first operand(rs1). The result is placed in the 64-bit

destination register specified by rd.

The single-precision versions of these instructions (FPADD16S, FPSUB16S, FPADD32S,

FPSUB32S) perform two 16-bit or one 32-bit partitioned add(s) or subtract(s); only the low

32 bits of the destination register are affected.

Note – For good performance, the result of a single FPADD should not be used as part of a

source operand of a 64-bit graphics instruction in the next instruction group. Similarly, the

result of a standard FPADD should not be used as a 32-bit graphics instruction source

operand in the next three instruction groups.

Exceptions

fp_disabled

A.43 Partitioned Multiply Instructions (VIS I)

Opcode opf Operation

FMUL8x16 0 0011 0001 8-bit x 16-bit Partitioned Product

FMUL8x16AU 0 0011 0011 8-bit x 16-bit Upper α Partitioned Product

FMUL8x16AL 0 0011 0101 8-bit x 16-bit Upper α Partitioned Product

FMUL8SUx16 0 0011 0110 Upper 8-bit x 16-bit Partitioned Product

FMUL8ULx16 0 0011 0111 Lower Unsigned 8-bit x 16-bit Partitioned Product

FMULD8SUx16 0 0011 1000 Upper 8-bit x 16-bit Partitioned Product

FMULD8ULx16 0 0011 1001 Lower Unsigned 8-bit x 16-bit Partitioned Product
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Format (3)

Description

Notes – For good performance, the result of a partitioned multiply should not be used as a

32-bit graphics instruction source operand in the next three instruction groups.

Programming Note – When software emulates an 8-bit unsigned by16-bit signed

multiply, the unsigned value must be zero-extended and the 16-bit value sign-extended before

the multiplication.

Note – For good performance, the result of a partitioned multiply should not be used as a

source operand of a 32-bit graphics instruction in the next three instruction groups.

The following sections describe the versions of partitioned multiplies.

Exceptions

fp_disabled

Assembly Language Syntax

fmul8x16 fregrs1, fregrs2, fregrd

fmul8x16au fregrs1, fregrs2, fregrd

fmul8x16al fregrs1, fregrs2, fregrd

fmul8sux16 fregrs1, fregrs2, fregrd

fmul8ulx16 fregrs1, fregrs2, fregrd

fmuld8sux16 fregrs1, fregrs2, fregrd

fmuld8ulx16 fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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A.43.1 FMUL8x16 Instruction

FMUL8x16 multiplies each unsigned 8-bit value (that is, a pixel) in f[rs1] by the

corresponding (signed) 16-bit fixed-point integer in the 64-bit floating-point register specified

by rs2; it rounds the 24-bit product (assuming binary point between bits 7 and 8) and stores

the upper 16 bits of the result into the corresponding 16-bit field in the 64-bit floating-point

destination register specified by rd. FIGURE A-5 illustrates the operation.

Note – This instruction treats the pixel values as fixed-point with the binary point to the left

of the most significant bit. Typically, this operation is used with filter coefficients as the

fixed-point rs2 value and image data as the rs1 pixel value. Appropriate scaling of the

coefficient allows various fixed-point scaling to be realized.

FIGURE A-5 FMUL8x16 Operation

A.43.2 FMUL8x16AU Instruction

FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is used for

all four multiplies. This value is the most significant 16 bits of the 32-bit register f[rs2],

which is typically a proportional value. FIGURE A-6 illustrates the operation.

0151631

rs1

rd

24 23 8 7

rs2

015163132474863

015163132474863

× MSB × MSB × MSB × MSB
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FIGURE A-6 FMUL8x16AU Operation

A.43.3 FMUL8x16AL Instruction

FMUL8x16AL is the same as FMUL8x16AU, except that the least significant 16 bits of the

32-bit register f[rs2] are used as a proportional value. FIGURE A-7 illustrates the operation.

FIGURE A-7 FMUL8x16AL Operation

A.43.4 FMUL8SUx16 Instruction

FMUL8SUx16 multiplies the upper 8 bits of each 16-bit signed value in the 64-bit

floating-point register specified by rs1 by the corresponding signed, 16-bit fixed-point,

signed integer in the 64-bit floating-point register specified by rs2. It rounds the 24-bit

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×
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product toward the nearest representable value and then stores the upper 16 bits of the result

into the corresponding 16-bit field of the 64-bit floating-point destination register specified

by rd. If the product is exactly halfway between two integers, the result is rounded toward

positive infinity. FIGURE A-8 illustrates the operation.

FIGURE A-8 FMUL8SUx16 Operation

A.43.5 FMUL8ULx16 Instruction

FMUL8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in the 64-bit

floating-point register specified by rs1 by the corresponding fixed-point signed integer in

the 64-bit floating-point register specified by rs2. Each 24-bit product is sign-extended to

32 bits. The upper 16 bits of the sign-extended value are rounded to nearest representable

value and then stored in the corresponding 16-bit field of the 64-bit floating-point destination

register specified by rd. If the result is exactly halfway between two integers, the result is

rounded toward positive infinity. FIGURE A-9 illustrates the operation. CODE EXAMPLE A-5

shows an example.

rs1

rd

rs2

015163132474863

× MSB × MSB × MSB × MSB

015163132474863

015163132474863 56 55 40 39 24 23 8 7
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FIGURE A-9 FMUL8LUx16 Operation

CODE EXAMPLE A-5 FMUL8LUx16 Operation

A.43.6 FMULD8SUx16 Instruction

FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in f[rs1] by the

corresponding signed 16-bit fixed-point signed integer in f[rs2]. Each 24-bit product is

shifted left by 8 bits to make up a 32-bit result, which is then stored in the 64-bit

floating-point register specified by rd. FIGURE A-10 illustrates the operation.

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

rs1

rd

rs2

015163132474863

× signed-extended × signed-extended × signed-extended × signed-extended

015163132474863

015163132474863 56 55 40 39 24 23 8 7

8 MSB 8 MSB 8 MSB 8 MSB
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FIGURE A-10 FMULD8SUx16 Operation

A.43.7 FMULD8ULx16 Instruction

FMULD8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in f[rs1] by the

corresponding fixed-point signed integer in f[rs2]. Each 24-bit product is sign-extended to

32 bits and stored in the 64-bit floating-point register specified by rd. FIGURE A-11 illustrates

the operation; CODE EXAMPLE A-6 exemplifies the operation.

FIGURE A-11 FMULD8ULx16 Operation

rs1

rd

rs2

0783132394063

× ×

0151631

0151631 24 23 8 7

0000000000000000

rs1

rd

rs2

0313263

¥ ¥

0151631

0151631 24 23 8 7

sign-extended sign-extended
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CODE EXAMPLE A-6 FMULD8ULx16 Operation

A.44 Pixel Compare (VIS I)

Format (3)

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

Opcode opf Operation

FCMPGT16 0 0010 1000 Four 16-bit Compares; set rd if src1 > src2

FCMPGT32 0 0010 1100 Two 32-bit Compares; set rd if src1 > src2

FCMPLE16 0 0010 0000 Four 16-bit Compares; set rd if src1 ≤ src2

FCMPLE32 0 0010 0100 Two 32-bit Compares; set rd if src1 ≤ src2

FCMPNE16 0 0010 0010 Four 16-bit Compares; set rd if src1 ≠ src2

FCMPNE32 0 0010 0110 Two 32-bit Compares; set rd if src1 ≠ src2

FCMPEQ16 0 0010 1010 Four 16-bit Compares; set rd if src1 = src2

FCMPEQ32 0 0010 1110 Two 32-bit Compares; set rd if src1 = src2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
A-550 UltraSPARC III Cu User’s Manual • January 2004



Description

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers

specified by rs1 and rs2 are compared. The 4-bit or 2-bit results are stored in the least

significant bits in the integer destination register r[rd]. Signed comparisons are used. Bit 0

of r[rd] corresponds to the least significant 16-bit or 32-bit comparison.

For FCMPGT, each bit in the result is set if the corresponding value in the first source operand

is greater than the value in the second source operand. Less-than comparisons are made by

swapping the operands.

For FCMPLE, each bit in the result is set if the corresponding value in the first source

operand is less than or equal to the value in the second source operand. Greater-than-or-equal

comparisons are made by swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in the first source

operand is equal to the value in the second source operand.

For FCMPNE, each bit in the result is set if the corresponding value in the first source

operand is not equal to the value in the second source operand.

Exceptions

fp_disabled

Assembly Language Syntax

fcmpgt16 fregrs1, fregrs2, regrd

fcmpgt32 fregrs1, fregrs2, regrd

fcmple16 fregrs1, fregrs2, regrd

fcmple32 fregrs1, fregrs2, regrd

fcmpne16 fregrs1, fregrs2, regrd

fcmpne32 fregrs1, fregrs2, regrd

fcmpeq16 fregrs1, fregrs2, regrd

fcmpeq32 fregrs1, fregrs2, regrd
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A.45 Pixel Component Distance (PDIST) (VIS I)

Format (3)

Description

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers

specified by rs1 and rs2. The corresponding 8-bit values in the source registers are

subtracted (that is, the second source operand from the first source operand). The sum of the

absolute value of each difference is added to the integer in the 64-bit floating-point

destination register specified by rd. The result is stored in the destination register. Typically,

this instruction is used for motion estimation in video compression algorithms.

Note – For good performance, the rd operand of PDIST should not reference the result of

a non-PDIST instruction in the five previously executed instruction groups.

Exceptions

fp_disabled

Opcode opf Operation

PDIST 0 0011 1110 Distance between eight 8-bit components

Assembly Language Syntax

pdist fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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A.46 Pixel Formatting (VIS I)

Format (3)

Description

The FPACK instructions convert multiple values in a source register to a lower-precision

fixed or pixel format and stores the resulting values in the destination register. Input values

are clipped to the dynamic range of the output format. Packing applies a scale factor from

GSR.scale to allow flexible positioning of the binary point.

Opcode opf Operation

FPACK16 0 0011 1011 Four 16-bit packs into 8 unsigned bits

FPACK32 0 0011 1010 Two 32-bit packs into 8 unsigned bit

FPACKFIX 0 0011 1101 Four 16-bit packs into 16 signed bits

FEXPAND 0 0100 1101 Four 16-bit expands

FPMERGE 0 0100 1011 Two 32-bit merges

Assembly Language Syntax

fpack16 fregrs2, fregrd

fpack32 fregrs1, fregrs2, fregrd

fpackfix fregrs2, fregrd

fexpand fregrs2, fregrd

fpmerge fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
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Programming Note – For good performance, the result of an FPACK (including

FPACK32) should not be used as part of a 64-bit graphics instruction source operand in the

next three instruction groups.

FEXPAND performs the inverse of the FPACK16 operation.

FPMERGE interleaves four 8-bit values from each of two 32-bit registers into a single 64-bit

destination register.

Programming Note – The result of FEXPAND or FPMERGE should not be used as a

32-bit graphics instruction source operand in the next three instruction groups.

Exceptions

fp_disabled

A.46.1 FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register specified by

rs2, scales, truncates, and clips them into four 8-bit unsigned integers, and stores the results

in the 32-bit destination register, f[rd]. FIGURE A-12 illustrates the FPACK16 operation.
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FIGURE A-12 FPACK16 Operation

Note – FPACK16 ignores the most significant bit of GSR.scale (GSR.scale<4>).

This operation is carried out as follows:

1. Left-shift the value from the 64-bit floating-point register specified by rs2 by the number

of bits specified in GSR.scale while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of

the implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation

converts the scaled value into a signed integer (that is, round toward negative infinity). If

the resulting value is negative (that is, its most significant bit is set), zero is returned as

the clipped value. If the value is greater than 255, then 255 is delivered as the clipped

value. Otherwise, the scaled value is returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, f[rd].

015163132474863

04

x0 1 0 0GSR.scale

rs2

rd

067

19

0 0 0 0

1415 4

3
implicit binary point

07

04

GSR.scale

0910

25

1415 6

3
implicit binary point

07

0 0 0 0 0 0 0

x1 0 1 0

0 0 0

rs2 rs2

rd rd

015015
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A.46.2 FPACK32

FPACK32 takes two 32-bit fixed values from the second source operand (the 64-bit

floating-point register specified by rs2) and scales, truncates, and clips them into two 8-bit

unsigned integers. The two 8-bit integers are merged at the corresponding least significant

byte positions with each 32-bit word in the 64-bit floating-point register specified by rs1,

left-shifted by 8 bits. The 64-bit result is stored in the 64-bit floating-point register specified

by rd. Thus, successive FPACK32 instructions can assemble two pixels by using three or

four pairs of 32-bit fixed values. FIGURE A-13 illustrates the FPACK32 operation.

FIGURE A-13 FPACK32 Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from the second source operand by the number of bits

specified in GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit

immediately to the left of the implicit binary point (that is, between bits 23 and 22 for

each 32-bit word). Truncation converts the scaled value into a signed integer (that is,

015163132474863

rs2

rd

04

GSR.scale

0

37

2223 5

implicit binary point

07

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

015

56 55 40 39 24 23 8 7

rs1

31
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round toward negative infinity). If the resulting value is negative (that is, MSB is set), then

zero is returned as the clipped value. If the value is greater than 255, then 255 is delivered

as the clipped value. Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from the first source operand (the 64-bit floating-point register

specified by rs1) by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte

positions in the left-shifted value from the second source operand.

5. Store the result in the rd register.

A.46.3 FPACKFIX

FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register specified by

rs2, scales, truncates, and clips them into two 16-bit unsigned integers, and then stores the

result in the 32-bit destination register f[rd]. FIGURE A-14 illustrates the FPACKFIX
operation.

FIGURE A-14 FPACKFIX Operation

01516313263

rs2

rd

04

GSR.scale

0

37

1516 5

implicit binary point

015

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

0

31
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This operation is carried out as follows:

1. Left-shift each 32-bit value from the source operand (the 64-bit floating-point register

specified by rs2) by the number of bits specified in GSR.scale while maintaining

clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit

immediately to the left of the implicit binary point (that is, between bits 16 and 15 for

each 32-bit word). Truncation converts the scaled value into a signed integer (that is,

round toward negative infinity). If the resulting value is less than −32768, then −32768 is

returned as the clipped value. If the value is greater than 32767, then 32767 is delivered as

the clipped value. Otherwise, the scaled value is returned as the result.

3. Store the result in the 32-bit destination register f[rd].

A.46.4 FEXPAND

FEXPAND takes four 8-bit unsigned integers from f[rs2], converts each integer to a 16-bit

fixed-point value, and stores the four resulting 16-bit values in a 64-bit floating-point register

specified by rd. FIGURE A-15 illustrates the operation.

FIGURE A-15 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by four and zero-extend the results to a 16-bit fixed value.

2. Store the result in the destination register.

01516313263

rs2

rd

1215 3

07

0 0 0 0

rs2

rd

011

1516

0151631 2324 78

0 0 0 0

4
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A.46.5 FPMERGE

FPMERGE interleaves four corresponding 8-bit unsigned values in f[rs1] and f[rs2] to

produce a 64-bit value in the 64-bit floating-point destination register specified by rd. This

instruction converts from packed to planar representation when it is applied twice in

succession, for example,

R1G1B1A1, R3G3B3A3 → R1R3G1G3A1A3 → R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession, for

example, R1R2R3R4, B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2.

FIGURE A-16 illustrates the operation.

FIGURE A-16 FPMERGE Operation

Back-to-back FPMERMGEs cannot be done on adjacent cycles.

A.47 Population Count

Opcode op3 Operation

POPC 10 1110 Population Count

rd

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

rs1

rs2
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Format (3)

Description

POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in

sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not

modify the condition codes.

Note – The UltraSPARC III Cu processor does not implement this instruction in hardware;

instead it traps to software. The instruction is emulated in supervisor software.

Exceptions

illegal_instruction

A.48 Prefetch Data

Implementation Note – The PREFETCH{A} instructions are supported in the

UltraSPARC III Cu processor.

Assembly Language Syntax

popc reg_or_imm, regrd

Opcode op3 Operation

PREFETCH 10 1101 Prefetch Data

PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1
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Format (3) PREFETCH{A}

See Chapter 16 “Prefetch” for complete details on the Prefetch Instructions and a definition

of the fcn field.

Description

Prefetching is used to help manage data memory cache(s). A prefetch to a non-prefetchable

location has no effect. Chapter 9 “Memory Models” describes non-prefetchable locations.

Noncachable and non-prefetchable locations are not the same.

Variants of the prefetch instruction are used to prepare the memory system for different types

of memory accesses. Chapter 16 “Prefetch” further discusses the prefetch instructions.

In non-privileged code, a prefetch instruction has no observable effect. Its execution is

nonblocking and cannot cause an observable trap. In particular, a prefetch instruction shall

not trap if it is applied to an illegal or nonexistent memory address.

Programming Note – When software needs to prefetch 64 bytes beginning at an

arbitrary address, then issue two prefetch instructions to canvas all bytes:

prefetch[address], prefetch_fcn
prefetch[address + 63], prefetch_fcn

PREFETCH A

Prefetch instructions that do not load from an alternate address space access the primary

address space (ASI_PRIMARY{_LITTLE}). Prefetch instructions that do load from an

alternate address space contain the address space identifier (ASI) to be used for the load in

Assembly Language Syntax

prefetch [address], prefetch_fcn

prefetcha [regaddr] imm_asi, prefetch_fcn

prefetcha [reg_plus_imm] %asi, prefetch_fcn

31 24 02530 29 19 18

fcn11 op3
PREFETCHA: imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1

PREFETCH:         —
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the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7

of the ASI is zero; otherwise, it is not privileged. The effective address for these instructions

is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

See Chapter 8 “Address Space Identifiers” for acceptable ASI values used with the

PREFETCH(A) instruction.

Exceptions

illegal_instruction

A.48.1 Prefetch Instruction Variants

PREFETCH(A) instructions with fcn = 0 – 3 are implemented.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is

different from other instructions in SPARC V9 (except BPN), all of which specify specific

actions.

The prefetch instruction variants are intended to provide scalability for future improvements

in both hardware and compilers.

The prefetch variant is selected by the fcn field of the instruction. In accordance with

SPARC V9, fcn values 4–15 cause an illegal_instruction exception.

A prefetch with fcn = 16 invalidates the P-cache line corresponding to the effective address

of the prefetch. Use this characteristic to prefetch non-cacheable data after data are loaded

into registers from the P-cache. A prefetch invalidate is issued to remove the data from the

P-cache so it will not be found by a later reference. Prefetch with fcn = 20, 21, 22, 23 map

to fcn 0–3 and are a new feature of the UltraSPARC III Cu processor.

TABLE A-13 lists the types of software prefetch instructions. Note that the table contains

hexadecimal values for fcn unlike the decimal values in the explanation above.

TABLE A-13 Types of Software Prefetch Instructions

fcn
Value
(hex) Instruction Type Prefetch into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC III Cu

00 Prefetch read many P-cache and

L2-cache

weak No

01 Prefetch read once P-cache only weak No

02 Prefetch write many L2-cache only weak Yes

03 Prefetch write once1 L2-cache only weak No
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A.48.2 New Error Handling of Prefetches

Since PREFETCH,2 request for cache line ownership (RTO/R_RTO), an error occurs while

processing it will be handled differently compared to other prefetch requests with RTS/

R_RTS, as described in TABLE A-14.

04 Reserved Undefined

05 -

0F

Reserved Undefined

10 Prefetch invalidate Invalidates a P-cache

line, no data is

prefetched.

N/A

11 -

13

Reserved Undefined

14 Same as fcn = 00 weak2 No

15 Same as fcn = 01 weak2 No

16 Same as fcn = 02 weak2 Yes

17 Same as fcn = 03 weak2 No

18 -

1F

Reserved Undefined

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

2. These weak instructions may be implemented as strong in future implementations.

TABLE A-13 Types of Software Prefetch Instructions

fcn
Value
(hex) Instruction Type Prefetch into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC III Cu
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TABLE A-14 Error Handling of Prefetch Requests

Prefetch Type
L2-cache
Hit/Miss Error Type L2-cache Action

P-cache
Action

Error
Logging Trap

PREFETCH,2

(RTO/R_RTO)

Hit Tag,

Hardware-corrected

No state change None THCE Disrupting

Miss Tag,

Hardware-corrected

Install data, state

change to M

None THCE Disrupting

“Hit”

(tag error)

Tag, uncorrectable No data install,

no state change

None TUE Fatal Error

Hit Data,

Hardware-corrected

No state change None EDC Disrupting

Hit Data,

uncorrectable

No state change None EDU Disrupting

Miss Data,

Hardware-corrected

Install data, state

change to M

None CE Disrupting

Miss Data,

uncorrectable

Install uncorrected

data, state change to M

None DUE Disrupting

Miss MTag,

Hardware-corrected

Install data, state

change to M

None EMC Disrupting

Miss MTag,

uncorrectable

Install data if L2-cache

state is M or Os

None EMU Fatal Error
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A.48.2.1 New Column in Coherence Table

A new column has been added to the UltraSPARC III Cu processor Coherence Table to

describe the processor action on write prefetch RTO. Basically, the behavior of coherence

state change is the following:

• On L2-cache hit: same as Load request (no state change)

• On L2-cache miss: same as Store request (send RTO/R_RTO to get M state)

PREFETCH,0

PREFETCH,1

PREFETCH,3

Hardware

prefetch

(RTS/R_RTS)

Hit Tag,

Hardware-corrected

No state change Install data

(except

PREFETCH,

3)

THCE Disrupting

Miss Tag,

Hardware-corrected

Install data, state

change to S or E

Install data

(except

PREFETCH,

3)

THCE Disrupting

“Hit”

(tag error)

Tag,

uncorrectable

No data install,

no state change

Cancel

install

TUE Fatal Error

Hit Data,

Hardware-corrected

No state change Install data

(except

PREFETCH,

3)

EDC Disrupting

Hit Data,

uncorrectable

No state change Cancel

install

EDU Disrupting

Miss Data,

Hardware-corrected

Install data, state

change to S or E

Install data

(except

PREFETCH,

3)

CE Disrupting

Miss Data,

uncorrectable

- If RTS, cancel install,

no state change.

- If R_RTS, install

uncorrected data, state

change to Os.

Cancel

install

DUE Disrupting

Miss MTag,

Hardware-corrected

Install data, state

change to S or E

None EMC Disrupting

Miss MTag,

uncorrectable

Install data if L2-cache

state is M or Os

None EMU Fatal Error

TABLE A-14 Error Handling of Prefetch Requests (Continued)

Prefetch Type
L2-cache
Hit/Miss Error Type L2-cache Action

P-cache
Action

Error
Logging Trap
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A.49 Read Privileged Register

Format (3)

Opcode op3 Operation

RDPRP 10 1010 Read Privileged Register

rs1 Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15 FQ

16–30 —

31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —
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Description

The rs1 field in the instruction determines the privileged register that is read. There are

MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these

registers returns the value in the register indexed by the current value in the trap level

register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)

causes an illegal_instruction exception.

RDPR instructions with rs1 in the range 16 –30 are reserved; executing an RDPR instruction

with rs1 in that range causes an illegal_instruction exception.

Assembly Language Syntax

rdpr %tpc, regrd

rdpr %tnpc, regrd

rdpr %tstate, regrd

rdpr %tt, regrd

rdpr %tick, regrd

rdpr %tba, regrd

rdpr %pstate, regrd

rdpr %tl, regrd

rdpr %pil, regrd

rdpr %cwp, regrd

rdpr %cansave, regrd

rdpr %canrestore, regrd

rdpr %cleanwin, regrd

rdpr %otherwin, regrd

rdpr %wstate, regrd

rdpr %fq, regrd

rdpr %ver, regrd
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Programming Note – On this implementation with precise floating-point traps, the

address of a trapping instruction will be in the TPC[TL] register when the trap code begins

execution.

Exceptions

privileged_opcode
illegal_instruction ((rs1 = 16–30) or ((rs1 ≤ 3) and (TL = 0)))

A.50 Read State Register

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register; deprecated (see Section A.70.9, “Read Y

Register”)

— 10 1000 1 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTICKPNPT 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

— 10 1000 7−14 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

See description below 10 1000 15 STBAR, MEMBAR, or Reserved; see description below.

RDASR 10 1000 16-31 Read non-SPARC V9 ASRs

RDPCRPPCR 16 Read Performance Control Registers (PCR)

RDPICPPIC 17 Read Performance Instrumentation Counters (PIC)

RDDCRP 18 Read Dispatch Control Register (DCR)

RDGSR 19 Read Graphic Status Register (GSR)

— 20–21 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

RDSOFTINTP 22 Read per-processor Soft Interrupt Register

RDTICK_CMPRP 23 Read Tick Compare Register

RDSTICKPNPT 24 Read System TICK Register

RDSTICK_CMPRP 25 Read System TICK Compare Register

— 26–31 Reserved, do not access; attempt to access causes an
illegal_instruction exception.
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Format (3)

Description

These instructions read the state register specified by rs1 into r[rd].

Values 7–14 of rs1 are reserved for future versions of the architecture. A Read State

Register instruction with rs1 = 15, rd = 0, and i = 0 is defined to be a (deprecated) STBAR
instruction (see Section A.70.10, “Store Barrier”). An RDASR instruction with rs1 = 15,

rd = 0, and i = 1 is defined to be a MEMBAR instruction. RDASR with rs1 = 15 and rd ≠ 0

is reserved for future versions of the architecture; it causes an illegal_instruction exception.

For RDPC, the processor writes the full 64-bit program counter value to the destination

register of a CALL, JMPL, or RDPC instruction. When PSTATE.AM = 1 and a trap occurs,

the processor writes the full 64-bit program counter value to TPC[TL].

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before

reading the FPRS register.

RDGSR causes a fp_disabled exception if PSTATE.PEF = 0 or FPRS.FEF = 0.

Assembly Language Syntax

rd %ccr, regrd

rd %asi, regrd

rd %tick, regrd

rd %pc, regrd

rd %fprs, regrd

rd %pcr, regrd

rd %pic, regrd

rd %dcr, regrd

rd %gsr, regrd

rd %softint, regrd

rd %tick_cmpr, regrd

rd %sys_tick, regrd

rd %sys_tick_cmpr, regrd

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
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RDTICK causes a privileged_action exception if PSTATE.PRIV = 0 and TICK.NPT = 1.

RDSTICK causes a privileged_action exception if PSTATE.PRIV = 0 and STICK.NPT = 1.

RDPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

RDPCR causes a privileged_opcode exception due to access privilege violation.

Implementation Note – Ancillary state registers include, for example, timer, counter,

diagnostic, self-test, and trap-control registers.

Compatibility Note – The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do not

exist in SPARC V9 since the PSR, WIM, and TBR registers do not exist in SPARC V9.

Exceptions

privileged_opcode(RDDCR, RDSOFTINT, RDTICK_CMPR, RDSTICK, RDSTICK_CMPR,

and RDPCR)

illegal_instruction (RDASR with rs1 = 1 or 7–14;

RDASR with rs1 = 15 and rd ≠ 0;

RDASR with rs1 = 20–21, 26–31)

privileged_action (RDTICK with PSTATE.PRIV = 0 and TICK.NPT = 1;

RDPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1;

RDSTICK with PSTATE.PRIV = 0 and STICK.NPT = 1)

fp_disabled (RDGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)

A.51 RETURN

Opcode op3 Operation

RETURN 11 1001 Return
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Format (3)

Description

The RETURN instruction causes a delayed transfer of control to the target address and has the

window semantics of a RESTORE instruction; that is, it restores the register window prior to

the last SAVE instruction. The target address is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1. Registers r[rs1] and r[rs2] come from

the old window.

The RETURN instruction may cause an exception. It may cause a window_fill exception as

part of its RESTORE semantics, or it may cause a mem_address_not_aligned exception if

either of the two low-order bits of the target address is nonzero.

Programming Note – To re-execute the trapped instruction when returning from a user

trap handler, use the RETURN instruction in the delay slot of a JMPL instruction, for

example:

jmpl %l6,%g0 | Trapped PC supplied to user trap handler
return %l7 | Trapped nPC supplied to user trap handler

save %sp,-framesize, %sp
. . .
ret | Same as jmpl %i7 + 8, %g0
restore | Something useful like “restore

| %o2,%l2,%o0”

or,

save %sp,-framesize, %sp
. . .
return %i7 + 8
nop | Could do some useful work in the caller’s

| window, for example, “or %o1, %o2,%o0”

Assembly Language Syntax

return address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
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Programming Note – A routine that uses a register window may be structured as either:

Exceptions

mem_address_not_aligned
fill_n_normal (n = 0 – 7)

fill_n_other (n = 0 – 7)

A.52 SAVE and RESTORE

Format (3)

Description (Effect on Non-privileged State)

The SAVE instruction provides the routine executing it with a new register window. The out
registers from the old window become the in registers of the new window. The contents of

the out and the local registers in the new window are zero or contain values from the

executing process; that is, the process sees a clean window.

Opcode op3 Operation

SAVE 11 1100 Save Caller’s Window

RESTORE 11 1101 Restore Caller’s Window

Assembly Language Syntax

save regrs1, reg_or_imm, regrd

restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
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The RESTORE instruction restores the register window saved by the last SAVE instruction

executed by the current process. The in registers of the old window become the out registers

of the new window. The in and local registers in the new window contain the previous values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE behave

like normal ADD instructions, except that the source operands r[rs1] or r[rs2] are read

from the old window (that is, the window addressed by the original CWP) and the sum is

written into r[rd] of the new window (that is, the window addressed by the new CWP).

Note: CWP arithmetic is performed modulo the number of windows, NWINDOWS.

Programming Note – Typically, if a SAVE (RESTORE) instruction traps, the spill (fill)

trap handler returns to the trapped instruction to re-execute it. So, although the ADD
operation is not performed the first time (when the instruction traps), it is performed the

second time the instruction executes. The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new window in the register file

and a new software stack frame in memory.

There is a performance trade-off to consider between using SAVE/RESTORE and saving and

restoring selected registers explicitly.

Description (Effect on Privileged State)

If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to provide a

new register window and updates the state of the register windows by decrementing

CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The

trap vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap

handler is invoked with the CWP set to point to the window to be spilled (that is, old

CWP + 2).

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be cleaned.

It causes a clean_window trap if the number of unused clean windows is zero, that is,

(CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP
set to point to the window to be cleaned (that is, old CWP + 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to

restore the register window that was in use prior to the last SAVE instruction executed by the

current process. It also updates the state of the register windows by decrementing

CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is

generated. The trap vector for the fill trap is based on the values of OTHERWIN and

WSTATE. The fill trap handler is invoked with CWP set to point to the window to be filled,

that is, old CWP – 1.
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Programming Note – The vectoring of spill and fill traps can be controlled by setting the

value of the OTHERWIN and WSTATE registers appropriately.

The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by

a RETRY instruction.

Exceptions

clean_window (SAVE only)

fill_n_normal (RESTORE only, n =0 – 7)

fill_n_other (RESTORE only, n = 0 – 7)

spill_n_normal (SAVE only, n = 0 – 7)

spill_n_other (SAVE only, n = 0 – 7)

A.53 SAVED and RESTORED

Format (3)

Description

SAVED and RESTORED adjust the state of the register-windows control registers.

Opcode op3 fcn Operation

SAVEDP 11 0001 0 Window has been saved

RESTOREDP 11 0001 1 Window has been restored

— 11 0001 2–31 Reserved

Assembly Language Syntax

saved

restored

31 1924 18 02530 29

10 fcn op3 —
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SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE.

If OTHERWIN ≠ 0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN < (NWINDOWS−1), then RESTORED
increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE. If OTHERWIN ≠ 0, it

decrements OTHERWIN.

Programming Note – The spill (fill) handlers use the SAVED (RESTORED) instruction to

indicate that a window has been spilled (filled) successfully.

Normal privileged software would probably not do a SAVED or RESTORED from trap level

zero (TL = 0). However, it is not illegal to do so and doing so does not cause a trap.

Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is

likely to create an inconsistent window state. Hardware will not signal an exception,

however, since maintaining a consistent window state is the responsibility of privileged

software.

Exceptions

privileged_opcode
illegal_instruction (fcn = 2–31)

A.54 Set Interval Arithmetic Mode (VIS II)

Format (3)

Opcode opf Operation

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode

3 2
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Description

The SIAM instruction sets the GSR.IM and GSR.IRND fields as follows:

GSR.IM = mode<2>

GSR.IRND = mode<1:0>

Note – SIAM is a groupable, break-after instruction. It enables the interval rounding mode

to be changed every cycle without flushing the pipeline. FPops in the same instruction group

as an SIAM instruction use the previous rounding mode.

Exceptions

fp_disabled

Assembly Language Syntax

siam mode
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A.55 SETHI

Format (2)

Description

SETHI zeroes the least significant 10 bits and the most significant 32 bits of r[rd] and

replaces bits 31 through 10 of r[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 has a special use:

• rd = 0 and imm22 = 0: has no architectural effect and is defined to be a NOP instruction.

• rd = 0 and imm22 ≠ 0 is used to trigger hardware performance counters. See Chapter 14

“Performance Instrumentation” for details.

Programming Note – The most common form of 64-bit constant generation is creating

stack offsets whose magnitude is less than 232. The following code can be used to create the

constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note: The immediate field of

the xor instruction is sign extended and can be used to get ones in all of the upper 32 bits.

For example, to set the negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0 ! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Opcode op2 Operation

SETHI 100 Set High 22 Bits of Low Word

Assembly Language Syntax

sethi const22, regrd

sethi %hi (value), regrd

31 2224 21 02530 29

00 rd op2 imm22
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Exceptions

None

A.56 Shift

Format (3)

Opcode op3 x Operation

SLL 10 0101 0 Shift Left Logical – 32 bits

SRL 10 0110 0 Shift Right Logical – 32 bits

SRA 10 0111 0 Shift Right Arithmetic – 32 bits

SLLX 10 0101 1 Shift Left Logical – 64 bits

SRLX 10 0110 1 Shift Right Logical – 64 bits

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits

Assembly Language Syntax

sll regrs1, reg_or_shcnt, regrd

srl regrs1, reg_or_shcnt, regrd

sra regrs1, reg_or_shcnt, regrd

sllx regrs1, reg_or_shcnt, regrd

srlx regrs1, reg_or_shcnt, regrd

srax regrs1, reg_or_shcnt, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6
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Description

When i = 0 and x = 0, the shift count is the least significant five bits of r[rs2]. When

i = 0 and x = 1, the shift count is the least significant six bits of r[rs2]. When i = 1 and

x = 0, the shift count is the immediate value specified in bits 0 through 4 of the instruction.

When i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of

the instruction.

TABLE A-15 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in r[rs1] left by the number of bits specified

by the shift count, replacing the vacated positions with zeroes, and write the shifted result to

r[rd].

SRL shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by

the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result

is written to r[rd].

SRLX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the

shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted result

is written to r[rd].

SRA shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by

the shift count and replaces the vacated positions with bit 31 of r[rs1]. The high-order

32 bits of the result are all set with bit 31 of r[rs1], and the result is written to r[rd].

SRAX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the

shift count and replaces the vacated positions with bit 63 of r[rs1]. The shifted result is

written to r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-bit

shifts as noted above.

These instructions do not modify the condition codes.

TABLE A-15 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of r[rs2]

0 1 bits 5–0 of r[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction
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Programming Note – “Arithmetic left shift by 1 (and calculate overflow)” can be

effected with the ADDcc instruction.

The instruction “sra rs1,0,rd” can be used to convert a 32-bit value to 64 bits, with

sign extension into the upper word; “srl rs1,0,rd” can be used to clear the upper

32 bits of r[rd].

Exceptions

None

A.57 Short Floating-Point Load and Store (VIS I)

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_FL8_P D016 8-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL8_S D116 8-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL8_PL D816 8-bit load/store from/to primary address space, little-endian

LDDFA
STDFA

ASI_FL8_SL D916 8-bit load/store from/to secondary address space, little-endian

LDDFA
STDFA

ASI_FL16_P D216 16-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL16_S D316 16-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL16_PL DA16 16-bit load/store from/to primary address space, little-endian

LDDFA
STDFA

ASI_FL16_SL DB16 16-bit load/store from/to secondary address space, little-endian
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Format (3) LDDFA

Format (3) STDFA

Description

Short floating-point load and store instructions are selected by means of one of the short

ASIs with the LDDFA and STDFA instructions.

These ASIs allow 8- and 16-bit loads or stores to be performed to/from the floating-point

registers. Eight-bit loads can be performed to arbitrary byte addresses. For 16-bit loads, the

least significant bit of the address must be zero or a mem_address_not_aligned trap is taken.

Short loads are zero-extended to the full floating-point register. Short stores access the

low-order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise, memory is

assumed to be big-endian. Short loads and stores are typically used with the FALIGNDATA
instruction (see Section A.2, “Alignment Instructions (VIS I)”) to assemble or store 64 bits

on noncontiguous components.

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
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Exceptions

fp_disabled
PA_watchpoint
VA_watchpoint
mem_address_not_aligned (odd memory address for a 16-bit load or store)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.58 SHUTDOWN (VIS I)

Format (3)

Description

SHUTDOWN is a privileged instruction.

The SHUTDOWN instruction executes as a NOP. An external system signal is used to enter

and leave low power mode.

Because SHUTDOWN is a privileged instruction, an attempt to execute it while in

non-privileged mode causes a privileged_opcode trap.

Opcode opf Operation

SHUTDOWNP 0 1000 0000 Shut down to enter power-down mode

Assembly Language Syntax

shutdown

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— —
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Exceptions

privileged_opcode

A.59 Software-Initiated Reset

Format (3)

Description

SIR is used to generate a software-initiated reset (SIR). As with other traps, a

software-initiated reset performs different actions when TL = MAXTL than it does when

TL < MAXTL.

When executed in non-privileged mode, SIR acts like a NOP with no visible effect.

Exceptions

software_initiated_reset

Opcode op3 rd Operation

SIR 11 0000 15 Software-Initiated Reset

Assembly Language Syntax

sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1
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A.60 Store Floating-Point

† Encoded floating-point register value.

Format (3)

Description

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double

floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) traps to software.

The store floating-point state register instruction (STXFSR) waits for any currently executing

FPop instructions to complete, and then it writes all 64 bits of the FSR into memory.

Opcode op3 rd Operation

STF 10 0100 0–31 Store Floating-Point Register

STDF 10 0111
†

Store Double Floating-Point Register

STQF 10 0110
†

Store Quad Floating-Point Register

STXFSR 10 0101 1 Store Floating-Point State Register

— 10 0101 2–31 Reserved

Assembly Language Syntax

st fregrd, [address]

std fregrd, [address]

stq fregrd, [address]

stx %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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STXFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the store

will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STF requires word alignment otherwise a mem_address_not_aligned exception occurs.

STDF instruction causes a STDF_mem_address_not_aligned trap if the effective address is

32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software

shall emulate the STDF instruction and return.

STXFSR requires doubleword alignment; otherwise, it causes a mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STXFSR instruction and

return.

If the floating-point unit (FPU) is not enabled for the source register rd (per FPRS.FEF and

PSTATE.PEF) or if the FPU is not present, then a store floating-point instruction causes a

fp_disabled exception.

Programming Note – In SPARC V8, some compilers issued sets of single-precision

stores when they could not determine that doubleword or quadword operands were properly

aligned. For SPARC V9, since emulation of misaligned stores is expected to be fast, it is

recommended that compilers issue sets of single-precision stores only when they can

determine that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction (op3 = 2516 and rd = 2–31)

fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
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A.61 Store Floating-Point into Alternate Space

† Encoded floating-point register value.

Format (3)

Description

The store single floating-point into alternate space instruction (STFA) copies f[rd] into

memory.

The store double floating-point into alternate space instruction (STDFA) copies a doubleword

from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) traps to software.

Opcode op3 rd Operation

STFAPASI 11 0100 0–31 Store Floating-Point Register to Alternate Space

STDFAPASI 11 0111
†

Store Double Floating-Point Register to Alternate Space

STQFAPASI 11 0110
†

Store Quad Floating-Point Register to Alternate Space

Assembly Language Syntax

sta fregrd, [regaddr] imm_asi

sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi

stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi

stqa fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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Store floating-point into alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI register if

i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The

effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STFA requires word alignment; otherwise, a mem_address_not_aligned exception occurs.

STDFA instruction causes a STDF_mem_address_not_aligned trap if the effective address is

32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software

shall emulate the STDF instruction and return.

STDFA with certain target ASI is defined to be a 64-byte block-store instruction. See

Section A.4, “Block Load and Block Store (VIS I)” for details.

If the floating-point unit is not enabled for the source register rd (per FPRS.FEF and

PSTATE.PEF) or if the FPU is not present, store floating-point into alternate space

instructions cause a fp_disabled exception.

Implementation Notes – This check is not made for STQFA. STFA and STDFA cause a

privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Note – In SPARC V8, some compilers issued sets of single-precision

stores when they could not determine that doubleword or quadword operands were properly

aligned. For SPARC V9, since emulation of misaligned stores is expected to be fast, we

recommend that compilers issue sets of single-precision stores only when they can determine

that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only)

privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
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A.62 Store Integer

Format (3)

Description

The store integer instructions (except store doubleword) copy the whole extended (64-bit)

integer, the less significant word, the least significant halfword, or the least significant byte of

r[rd] into memory.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, store extended) instruction operates atomically.

STH causes a mem_address_not_aligned exception if the effective address is not halfword

aligned. STW causes a mem_address_not_aligned exception if the effective address is not

word aligned. STX causes a mem_address_not_aligned exception if the effective address is

not doubleword aligned.

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)

sth regrd, [address] (synonyms: stuh, stsh)

stw regrd, [address] (synonyms: st, stuw, stsw)

stx regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions

mem_address_not_aligned (all except STB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.63 Store Integer into Alternate Space

Format (3)

Opcode op3 Operation

STBAPASI 01 0101 Store Byte into Alternate Space

STHAPASI 01 0110 Store Halfword into Alternate Space

STWAPASI 01 0100 Store Word into Alternate Space

STXAPASI 01 1110 Store Extended Word into Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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Description

The store integer into alternate space instructions copy the whole extended (64-bit) integer,

the less significant word, the least significant halfword, or the least significant byte of r[rd]
into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be

used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access

is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective address

for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1]+sign_ext(simm13)”

if i = 1.

A successful store (notably, store extended) instruction operates atomically.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword

aligned. STWA causes a mem_address_not_aligned exception if the effective address is not

word aligned. STXA causes a mem_address_not_aligned exception if the effective address is

not doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Compatibility Note – The SPARC V8 STA instruction is renamed STWA in SPARC V9.

Exceptions

privileged_action
mem_address_not_aligned (all except STBA)

data_access_exception
data_access_error
fast_data_access_MMU_miss

Assembly Language Syntax

stba regrd, [regaddr] imm_asi (synonyms: stuba, stsba)

stha regrd, [regaddr] imm_asi (synonyms: stuha, stsha)

stwa regrd, [regaddr] imm_asi (synonyms: sta, stuwa, stswa)

stxa regrd, [regaddr] imm_asi

stba regrd, [reg_plus_imm] %asi (synonyms: stuba, stsba)

stha regrd, [reg_plus_imm] %asi (synonyms: stuha, stsha)

stwa regrd, [reg_plus_imm] %asi (synonyms: sta, stuwa, stswa)

stxa regrd, [reg_plus_imm] %asi
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fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.64 Subtract

Format (3)

Description

These instructions compute “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1, and write the difference into r[rd].

SUBC and SUBCcc (“subtract with carry”) also subtract the CCR register’s 32-bit carry

(icc.c) bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or

“r[rs1] –sign_ext(simm13) – icc.c,” and write the difference into r[rd].

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 00 1100 Subtract with Carry

SUBCcc 01 1100 Subtract with Carry and modify cc’s

Assembly Language Syntax

sub regrs1, reg_or_imm, regrd

subcc regrs1, reg_or_imm, regrd

subc regrs1, reg_or_imm, regrd

subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A

32-bit overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands

differs and bit 31 (the sign) of the difference differs from r[rs1]<31>. A 64-bit overflow

(CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs and bit 63

(the sign) of the difference differs from r[rs1]<63>.

Programming Note – A SUBcc with rd = 0 can be used to effect a signed or unsigned

integer comparison.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit

condition codes’ carry bit (CCR.xcc.c).

Exceptions

None

A.65 Tagged Add

Format (3)

Opcode op3 Operation

TADDcc 10 0000 Tagged Add and modify cc’s

Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition

generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and

the sum of bit 31 is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to one; if

TADDcc does not cause a tag overflow, CCR.icc.v is set to zero.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set only, based on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Exceptions

None

A.66 Tagged Subtract

Format (3)

Opcode op3 Operation

TSUBcc 10 0001 Tagged Subtract and modify cc’s

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

This instruction computes “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the

subtraction generates 32-bit arithmetic overflow; that is, the operands have different values in

bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31

of r[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to one; if

TSUBcc does not cause a tag overflow, CCR.icc.v is set to zero.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). The CCR.xcc.v setting is based

only on the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Exceptions

None

Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd
A-594 UltraSPARC III Cu User’s Manual • January 2004



A.67 Trap on Integer Condition Codes (Tcc)

Format (4)

Opcode op3 cond Operation icc Test

TA 11 1010 1000 Trap Always 1

TN 11 1010 0000 Trap Never 0

TNE 11 1010 1001 Trap on Not Equal not Z

TE 11 1010 0001 Trap on Equal Z

TG 11 1010 1010 Trap on Greater not (Z or (N xor V))

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V)

TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)

TL 11 1010 0011 Trap on Less N xor V

TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)

TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)

TCC 11 1010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C

TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C

TPOS 11 1010 1110 Trap on Positive or zero not N

TNEG 11 1010 0110 Trap on Negative N

TVC 11 1010 1111 Trap on Overflow Clear not V

TVS 11 1010 0111 Trap on Overflow Set V

cc1 cc0 Condition Codes

00 icc

01 —

10 xcc

11 —

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1 cc0

11 10

10 cond op3 rs1 i=1 —— cc1 cc0 sw_trap_#
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Description

The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according

to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE and

no higher-priority exceptions or interrupt requests are pending, then a trap_instruction
exception is generated. If FALSE, a trap_instruction exception does not occur and the

instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of

“r[rs1] + r[rs2]” if i = 0, or the least significant seven bits of

“r[rs1] + sw_trap_#” if i = 1.

When i = 1, bits 7 through 10 are reserved and should be supplied as zeroes by software.

When i = 0, bits 5 through 10 are reserved, the most significant 57 bits of

“r[rs1] + r[rs2]” are unused, and both should be supplied as zeroes by software.

Description (Effect on Privileged State)

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. As

described in Chapter 12 “Traps and Trap Handling” the trap is taken, and the processor

performs the normal trap entry procedure.

Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: tnz)

te i_or_x_cc, software_trap_number (synonym: tz)

tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: tgeu)

tcs i_or_x_cc, software_trap_number (synonym: tlu)

tpos i_or_x_cc, software_trap_number

tneg i_or_x_cc, software_trap_number

tvc i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number
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Programming Note – Tcc can be used to implement breakpointing, tracing, and calls to

supervisor software. It can also be used for runtime checks, such as out-of-range array

indexes, integer overflow, and so on.

Compatibility Note – Tcc is upward compatible with the SPARC V8 Ticc instruction,

with one qualification: a Ticc with i = 1 and simm13 < 0 may execute differently on a

SPARC V9 processor. Use of the i = 1 form of Ticc is believed to be rare in SPARC V8

software, and simm13 < 0 is probably not used at all; therefore, it is believed in practice,

that full software compatibility will be achieved.

Exceptions

trap_instruction
illegal_instruction (cc1 cc0 = 012 or 112, or reserved fields nonzero)

A.68 Write Privileged Register

Format (3)

Opcode op3 Operation

WRPRP 11 0010 Write Privileged Register

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Appendix A Instruction Definitions A-597



rd Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15–31 Reserved

Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate
A-598 UltraSPARC III Cu User’s Manual • January 2004



Description

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the specified

privileged state register. Note: The operation is an exclusive OR.

The rd field in the instruction determines the privileged register that is written. There are at

least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A

write to one of these registers sets the register indexed by the current value in the trap level

register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)

causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other machine

state.

Programming Note – A WRPR of TL can be used to read the values of TPC, TNPC, and

TSTATE for any trap level; however, take care that traps do not occur while the TL register

is modified.

The WRPR instruction is a non-delayed write instruction. The instruction immediately

following the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions with rd in the range 15–31 are reserved for future versions of the

architecture; executing a WRPR instruction with rd in that range causes an illegal_instruction
exception.

Implementation Note – Some WRPR instructions could serialize the processor in some

implementations.

Exceptions

privileged_opcode
illegal_instruction ((rd = 15–31) or ((rd ≤ 3) and (TL = 0)))
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A.69 Write State Register

Format (3)

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register; deprecated (see Section A.70.18, “Write Y

Register”).

— 11 0000 1 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

WRCCR 11 0000 2 Write Condition Codes Register

WRASI 11 0000 3 Write Graphics Status Register

— 11 0000 4, 5 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

WRFPRS 11 0000 6 Write Floating-Point Registers Status Register

— 11 0000 7–14 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

— 11 0000 15 Software-initiated reset (see Section A.59,

“Software-Initiated Reset”).

WRASR 11 0000 16–31 Write non-SPARC V9 ASRs

WRPCRPPCR 16 Write Performance Control Registers (PCR)

WRPICPPIC 17 Write Performance Instrumentation Counters (PIC)

WRDCRP 18 Write Dispatch Control Register (DCR)

WRGSR 19 Write Graphic Status Register (GSR)

WRSOFTINT_SETP 20 Set bits of per-processor Soft Interrupt Register

WRSOFTINT_CLRP 21 Clear bits of per-processor Soft Interrupt Register

WRSOFTINTP 22 Write per-processor Soft Interrupt Register

WRTICK_CMPRP 23 Write Tick Compare Register

WRSTICKP 24 Write System TICK Register

WRSTICK_CMPRP 25 Write System TICK Compare Register

— 26–31 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

These instructions store the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the specified state

register. Note: The operation is an exclusive OR.

WRASR writes a value to the ancillary state register (ASR) indicated by rd. The operation

performed to generate the value written may be rd dependent or implementation dependent

(see below). A WRASR instruction is indicated by op = 2, rd = ≥ 16, and op3 = 3016.

The WRASR opcode for rd = 15, rs1 = 0, and i = 1 is used for the software-initiated

reset (SIR) instruction (see Section A.59, “Software-Initiated Reset”).

The WRCCR, WRFPRS, and WRASI instructions are not delayed-write instructions. The

instruction immediately following a WRCCR, WRFPRS, or WRASIR observes the new value of

the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the

FPRS register.

WRGSR causes a fp_disabled trap if PSTATE.PEF = 0 or FPRS.FEF = 0.

WRPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

WRPCR causes a privileged_opcode exception due to access privilege violation.

Implementation Note – Ancillary state registers may include, for example, timer,

counter, diagnostic, self-test, and trap-control registers.

Assembly Language Syntax

wr regrs1, reg_or_imm, %ccr

wr regrs1, reg_or_imm, %asi

wr regrs1, reg_or_imm, %fprs

wr regrs1, reg_or_imm, %pcr

wr regrs1, reg_or_imm, %pic

wr regrs1, reg_or_imm, %dcr

wr regrs1, reg_or_imm, %gsr

wr regrs1, reg_or_imm, %set_softint

wr regrs1, reg_or_imm, %clear_softint

wr regrs1, reg_or_imm, %softint

wr regrs1, reg_or_imm, %tick_cmpr

wr regrs1, reg_or_imm, %sys_tick

wr regrs1, reg_or_imm, %sys_tick_cmpr
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Compatibility Note – The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR instructions

do not exist in SPARC V9 because the IER, PSR, TBR, and WIM registers do not exist in

SPARC V9.

Implementation Note – Some WRASR instructions could serialize the processor in some

implementations.

Exceptions

software_initiated_reset (rd = 15, rs1 = 0, and i = 1 only)

privileged_opcode (WRDCR, WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT,

WRTICK_CMPR, WRSTICK, WRSTICK_CMPR,

and WRPCR)

illegal_instruction (WRASR with rd = 1, 4, 5, 7–14, 26–31;

WRASR with rd = 15 and rs1 ≠ 0 or i ≠ 1)

privileged_action (WRPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1)

fp_disabled (WRGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
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A.70 Deprecated Instructions

The following instructions are deprecated; they are provided only for compatibility with

previous versions of the architecture. They should not be used in new SPARC V9 software.

For each deprecated instruction, we recommend the instruction to be used instead. Please see

TABLE A-2 for the page number at which you can find a description of the preferred

instruction.

A.70.1 Branch on Floating-Point Condition Codes (FBfcc)

The FBfcc instructions are deprecated. Use the FBPfcc instructions instead.

Opcode cond Operation fcc Test

FBAD 1000 Branch Always 1

FBND 0000 Branch Never 0

FBUD 0111 Branch on Unordered U

FBGD 0110 Branch on Greater G

FBUGD 0101 Branch on Unordered or Greater G or U

FBLD 0100 Branch on Less L

FBULD 0011 Branch on Unordered or Less L or U

FBLGD 0010 Branch on Less or Greater L or G

FBNED 0001 Branch on Not Equal L or G or U

FBED 1001 Branch on Equal E

FBUED 1010 Branch on Unordered or Equal E or U

FBGED 1011 Branch on Greater or Equal E or G

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U

FBLED 1101 Branch on Less or Equal E or L

FBULED 1110 Branch on Unordered or Less or Equal E or L or U

FBOD 1111 Branch on Ordered E or L or G
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Format (2)

Programming Note – To set the annul bit for FBfcc instructions, append “,a” to the

opcode mnemonic. For example, use “fbl,a label.” In the preceding table, braces around

“,a” signify that “,a” is optional.

Description

Unconditional and Fcc branches are described below:

• Unconditional branches (FBA, FBN) — If its annul field is zero, an FBN (Branch Never)

instruction acts like a NOP. If its annul field is one, the following (delay) instruction is

annulled (not executed) when the FBN is executed. In neither case does a transfer of

control take place.

Assembly Language Syntax

fba{,a} label

fbn{,a} label

fbu{,a} label

fbg{,a} label

fbug{,a} label

fbl{,a} label

fbul{,a} label

fblg{,a} label

fbne{,a} label (synonym: fbnz)

fbe{,a} label (synonym: fbz)

fbue{,a} label

fbge{,a} label

fbuge{,a} label

fble{,a} label

fbule{,a} label

fbo{,a} label

31 24 02530 29 28 22 21

cond00 a 110 disp22
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FBA (Branch Always) causes a PC-relative, delayed control transfer to the address

“PC + (4 × sign_ext(disp22)),” regardless of the value of the floating-point

condition code bits. If the annul field of the branch instruction is one, the delay instruction

is annulled (not executed). If the annul field is zero, the delay instruction is executed.

• Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN)

evaluate floating-point condition code zero (fcc0) according to the cond field of the

instruction. Such evaluation produces either a TRUE or FALSE result. If TRUE, the branch

is taken, that is, the instruction causes a PC-relative, delayed control transfer to the

address “PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the

value of the annul field. If a conditional branch is not taken and the annul (a) field is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on

unconditional branches.

Compatibility Note – Unlike SPARC V8, SPARC V9 does not require an instruction

between a floating-point compare operation and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc instruction

is not executed and instead generates a fp_disabled exception.

Exceptions

fp_disabled

A.70.2 Branch on Integer Condition Codes (Bicc)

Use the BPcc instructions in place of Bicc instructions.
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Format (2)

Opcode cond Operation icc Test

BAD 1000 Branch Always 1

BND 0000 Branch Never 0

BNED 1001 Branch on Not Equal not Z

BED 0001 Branch on Equal Z

BGD 1010 Branch on Greater not (Z or (N xor V))

BLED 0010 Branch on Less or Equal Z or (N xor V)

BGED 1011 Branch on Greater or Equal not (N xor V)

BLD 0011 Branch on Less N xor V

BGUD 1100 Branch on Greater Unsigned not (C or Z)

BLEUD 0100 Branch on Less or Equal Unsigned C or Z

BCCD 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C

BCSD 0101 Branch on Carry Set (Less Than, Unsigned) C

BPOSD 1110 Branch on Positive not N

BNEGD 0110 Branch on Negative N

BVCD 1111 Branch on Overflow Clear not V

BVSD 0111 Branch on Overflow Set V

31 24 02530 29 28 22 21

00 a cond 010 disp22
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Programming Note – To set the annul bit for Bicc instructions, append “,a” to the

opcode mnemonic. For example, use “bgu,a label.” In the preceding table, braces signify

that the “,a” is optional.

Description

Unconditional branches and icc-conditional branches are described below:

• Unconditional branches (BA, BN) — If its annul field is zero, a BN (Branch Never)

instruction is treated as a NOP. If its annul field is one, the following (delay) instruction is

annulled (not executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the

address “PC + (4 × sign_ext(disp22)).” If the annul field of the branch instruction is

one, the delay instruction is annulled (not executed). If the annul field is zero, the delay

instruction is executed.

• Icc-conditional branches — Conditional Bicc instructions (all except BA and BN)

evaluate the 32-bit integer condition codes (icc), according to the cond field of the

instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken, that

is, the instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonym: bnz)

be{,a} label (synonym: bz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bcc{,a} label (synonym: bgeu)

bcs{,a} label (synonym: blu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label
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If a conditional branch is taken, the delay instruction is always executed regardless of the

value of the annul field. If a conditional branch is not taken and the annul (a) field is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on

unconditional branches.

Exceptions

None

A.70.3 Divide (64-bit/32-bit)

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated. Use the UDIVX and

SDIVX instructions instead.

Format (3)

Opcode op3 Operation

UDIVD 00 1110 Unsigned Integer Divide

SDIVD 00 1111 Signed Integer Divide

UDIVcc
D

01 1110 Unsigned Integer Divide and modify cc’s

SDIVcc
D

01 1111 Signed Integer Divide and modify cc’s

Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd

sdiv regrs1, reg_or_imm, regrd

udivcc regrs1, reg_or_imm, regrd

sdivcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
A-608 UltraSPARC III Cu User’s Manual • January 2004



Description

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0,

they compute “(Y r[rs1]<31:0>) ÷ r[rs2]<31:0>.” Otherwise (that is, if i = 1), the

divide instructions compute “(Y r[rs1]<31:0>) ÷ (sign_ext(simm13)<31:0>).” In

either case, if overflow does not occur, the less significant 32 bits of the integer quotient are

sign-extended or zero-extended to 64 bits and are written into r[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide

operation.

Unsigned Divide

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend

(Y r[rs1]<31:0>) and an unsigned integer word divisor r[rs2<31:0>] or

(sign_ext(simm13)<31:0>) and computes an unsigned integer word quotient (r[rd]).

Immediate values in simm13 are in the ranges 0 to 212 – 1 and 232 – 212 to 232 – 1 for

unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

In the UltraSPARC III Cu processor, LDD is implemented in hardware.

Programming Note – The rational quotient is the infinitely precise result quotient. It

includes both the integer part and the fractional part of the result. For example, the rational

quotient of 11/4 = 2.75 (integer part = 2, fractional part = .75).

The result of an unsigned divide instruction can overflow the less significant 32 bits of the

destination register r[rd] under certain conditions. When overflow occurs, the largest

appropriate unsigned integer is returned as the quotient in r[rd]. The condition under

which overflow occurs and the value returned in r[rd] under this condition are specified in

TABLE A-16.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into

register r[rd].

TABLE A-16 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 232 232 − 1

(0000 0000 FFFF FFFF16)
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UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits

as shown in the following table. Note that negative (N) and zero (Z) are set according to the

value of r[rd] after it has been set to reflect overflow, if any.

Signed Divide

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend

(Y lower 32 bits of r[rs1]) and a signed integer word divisor (lower 32 bits of r[rs2]
or lower 32 bits of sign_ext(simm13)) and computes a signed integer word quotient

(r[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the

rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register

r[rd] under certain conditions. When overflow occurs, the largest appropriate signed

integer is returned as the quotient in r[rd]. The conditions under which overflow occurs

and the value returned in r[rd] under those conditions are specified in TABLE A-17.

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into

register r[rd].

Bit UDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-16)

icc.C Zero

xcc.N Set if r[rd]<63> =1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

TABLE A-17 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 231 231 −1

(0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231

(FFFF FFFF 8000 000016)
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SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits

as shown in the following table. Note that negative (N) and zero (Z) are set according to the

value of r[rd] after it has been set to reflect overflow, if any.

Exceptions

division_by_zero

A.70.4 Load Floating-Point Status Register

The LDFSR instruction is deprecated. Use the LDXFSR instruction instead.

Format (3)

Bit SDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-17)

icc.C Zero

xcc.N Set if r[rd]<63]> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

Opcode op3 rd Operation

LDFSRD 10 0001 0 Load Floating-Point State Register Lower

Assembly Language Syntax

ld [address], %fsr

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Description

The load floating-point state register lower instruction (LDFSR) waits for all FPop

instructions that have not finished execution to complete and then loads a word from memory

into the less significant 32 bits of the FSR. The upper 32 bits of FSR are unaffected by

LDFSR.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not

word aligned.

Compatibility Note – SPARC V9 supports two different instructions to load the FSR: the

SPARC V8 LDFSR instruction is defined to load only the less significant 32 bits of the FSR,

whereas LDXFSR allows SPARC V9 programs to load all 64 bits of the FSR.

Exceptions

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.5 Load Integer Doubleword

The LDD instruction is deprecated; it is provided only for compatibility with previous

versions of the architecture. It should not be used in new SPARC V9 software. Use the LDX
instruction instead.

Please refer to Section A.27 “Load Integer” for the current load integer instructions.

Opcode op3 Operation

LDDD 00 0011 Load doubleword
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Format (3)

Description

The load doubleword integer instruction (LDD) copies a doubleword from memory into an

r register pair. The word at the effective memory address is copied into the even r register.

The word at the effective memory address + 4 is copied into the following odd numbered

r register. The upper 32 bits of both the even numbered and odd numbered r registers are

zero-filled.

Notes – A load doubleword with rd = 0 modifies only r[1]. The least significant bit of

the rd field in an LDD instruction is unused and should be set to zero by software. An

attempt to execute a load doubleword instruction that refers to a misaligned (odd numbered)

destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDD instruction behaves as if it is composed of two

32-bit loads, each of which is byte swapped independently before being written into each

destination register.

Load integer doubleword instructions access the primary address space (ASI = 8016). The

effective address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)”

if i = 1.

A successful load doubleword instruction operates atomically.

Assembly Language Syntax

ldd [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Programming Note – LDD is provided for compatibility with SPARC V8. It may execute

slowly on SPARC V9 machines because of data path and register-access difficulties.

Exceptions

illegal_instruction (LDD with odd rd)

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.6 Load Integer Doubleword from Alternate Space

The LDDA instruction is deprecated. Use the LDXA instruction in its place.

Please refer to Section A.28 “Load Integer from Alternate Space” for current load integer

from alternate space instructions.

Format (3)

Opcode op3 Operation

LDDAD, PASI 01 0011 Load Doubleword from Alternate Space

Assembly Language Syntax

ldda [regaddr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
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Description

The load doubleword integer from alternate space instruction (LDDA) copies a doubleword

from memory into an r register pair. The word at the effective memory address is copied into

the even r register. The word at the effective memory address + 4 is copied into the

following odd numbered r register. The upper 32 bits of both the even numbered and odd

numbered r registers are zero-filled.

Notes – A load doubleword with rd = 0 modifies only r[1]. The least significant bit of

the rd field in an LDDA instruction is unused and should be set to zero by software. An

attempt to execute a load doubleword instruction that refers to a misaligned (odd numbered)

destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDDA instruction behaves as if it is composed of

two 32-bit loads, each of which is byte-swapped independently before being written into

each destination register.

The load integer doubleword from alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register

if i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load doubleword instruction operates atomically.

LDDA causes a mem_address_not_aligned exception if the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

In the UltraSPARC III Cu processor, LDDA is implemented in hardware.

LDDA with ASI=2416 or 2C16 is defined to be a Load Quadword Atomic instruction. See

Section A.29 “Load Quadword, Atomic (VIS I)” for details.

Programming Note – LDDA is provided for compatibility with SPARC V8. It may

execute slowly on SPARC V9 machines because of data path and register-access difficulties.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access

in order to preserve atomicity.

Exceptions

privileged_action
illegal_instruction (LDDA with odd rd)

mem_address_not_aligned
Appendix A Instruction Definitions A-615



data_access_exception
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.7 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated. Use the MULX
instruction instead.

Format (3)

Description

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.

They compute “r[rs1]<31:0> × r[rs2]<31:0>” if i = 0, or

“r[rs1]<31:0> × sign_ext(simm13)<31:0>” if i = 1. They write the 32 most

significant bits of the product into the Y register and all 64 bits of the product into r[rd].

Opcode op3 Operation

UMULD 00 1010 Unsigned Integer Multiply

SMULD 00 1011 Signed Integer Multiply

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s

SMULccD 01 1011 Signed Integer Multiply and modify cc’s

Assembly Language Syntax

umul regrs1, reg_or_imm, regrd

smul regrs1, reg_or_imm, regrd

umulcc regrs1, reg_or_imm, regrd

smulcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word operands

and compute an unsigned integer doubleword product. Signed multiply instructions (SMUL,

SMULcc) operate on signed integer word operands and compute a signed integer doubleword

product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the

integer condition code bits, icc and xcc, as shown in TABLE A-18. Note: 32-bit negative

(icc.N) and zero (icc.Z) condition codes are set according to the less significant word of

the product, not according to the full 64-bit result.

Programming Note – 32-bit overflow after UMUL/UMULcc is indicated by Y ≠ 0.

Thirty-two bit overflow after SMUL/SMULcc is indicated by Y ≠ (r[rd] >> 31),

where “>>” indicates 32-bit arithmetic right-shift.

Exceptions

None

A.70.8 Multiply Step

The MULScc instruction is deprecated. Use the MULX instruction instead.

TABLE A-18 UMULcc / SMULcc Condition Code Settings

Bit UMULcc / SMULcc

icc.N Set if product<31> = 1

icc.Z Set if product<31:0>= 0

icc.V 0

icc.C 0

xcc.N Set if product<63> = 1

xcc.Z Set if product<63:0> = 0

xcc.V 0

xcc.C 0

Opcode op3 Operation

MULSccD 10 0100 Multiply Step and modify cc’s
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Format (3)

Description

MULScc treats the less significant 32 bits of both r[rs1] and the Y register as a single

64-bit, right-shiftable doubleword register. The least significant bit of r[rs1] is treated as if

it were adjacent to bit 31 of the Y register. The MULScc instruction adds, based on the least

significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r[rs1] contains

the most significant bits of the product, and r[rs2] contains the multiplicand. Upon

completion of the multiplication, the Y register contains the least significant bits of the

product.

Note: A standard MULScc instruction has rs1 = rd.

MULScc operates as follows:

1. The multiplicand is r[rs2] if i = 0, or sign_ext(simm13) if i = 1.

2. A 32-bit value is computed by shifting r[rs1] right by one bit with

“CCR.icc.n xor CCR.icc.v” replacing bit 31 of r[rs1]. (This is the proper sign for

the previous partial product).

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are

added. If the least significant bit of Y = 0, then zero is added to the shifted value from

step (2).

4. The sum from step (3) is written into r[rd]. The upper 32 bits of r[rd] are undefined.

The integer condition codes are updated according to the addition performed in step (3).

The values of the extended condition codes are undefined.

5. The Y register is shifted right by one bit, with the least significant bit of the unshifted

r[rs1] replacing bit 31of Y.

Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Exceptions

None

A.70.9 Read Y Register

The RDY instruction from the Read State Register instructions (Section A.50 “Read State

Register”) is deprecated. We recommend that all instructions that reference the Y register be

avoided.

Format (3)

Description

This instruction reads the Y register into r[rd].

Exceptions

None

A.70.10 Store Barrier

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register

Assembly Language Syntax

rd %y, regrd

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
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Format (3)

Description

The store barrier instruction (STBAR) forces all store and atomic load-store operations issued

by a processor prior to the STBAR to complete their effects on memory before any store or

atomic load-store operations issued by that processor subsequent to the STBAR are executed

by memory.

Note: The encoding of STBAR is identical to that of the RDASR instruction except that

rs1 = 15 and rd = 0, and it is identical to that of the MEMBAR instruction except that bit 13

(i) = 0.

Compatibility Note – STBAR is identical in function to a MEMBAR instruction with

mmask = 816. STBAR is retained for compatibility with SPARC V8.

Implementation Note – For correctness, it is sufficient for a processor to stop issuing

new store and atomic load-store operations when an STBAR is encountered and to resume

after all stores have completed and are observed in memory by all processors. More efficient

implementations may take advantage of the fact that the processor is allowed to issue store

and load-store operations after the STBAR, as long as those operations are guaranteed not to

become visible before all the earlier stores and atomic load-stores have become visible to all

processors.

Exceptions

None

Opcode op3 Operation

STBARD 10 1000 Store Barrier

Assembly Language Syntax

stbar

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

A-620 UltraSPARC III Cu User’s Manual • January 2004



A.70.11 Store Floating-Point Status Register Lower

The STFSR instruction is deprecated. Use the STXFSR instruction instead.

Format (3)

Description

The store floating-point state register lower instruction (STFSR) waits for any currently

executing FPop instructions to complete, and then it writes the less significant 32 bits of the

FSR into memory.

Compatibility Note – SPARC V9 needs two store-FSR instructions, since the SPARC V8

STFSR instruction is defined to store only 32 bits of the FSR into memory. STXFSR allows

SPARC V9 programs to store all 64 bits of the FSR.

STFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the store

will not cause a precise trap.

The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not

word aligned.

Opcode op3 rd Operation

STFSRD 10 0101 0 Store Floating-Point State Register Lower

Assembly Language Syntax

st %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Exceptions

illegal_instruction (op3 = 2516 and rd = 2–31)

fp_disabled
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.12 Store Integer Doubleword

The STD instruction is deprecated. Use the STX instruction instead.

Format (3)

Description

The store doubleword integer instruction (STD) copies two words from an r register pair into

memory. The least significant 32 bits of the even numbered r register are written into

memory at the effective address, and the least significant 32 bits of the following odd

numbered r register are written into memory at the “effective address + 4.” The least

significant bit of the rd field of a store doubleword instruction is unused and should always

be set to zero by software. An attempt to execute a store doubleword instruction that refers to

a misaligned (odd numbered) rd causes an illegal_instruction exception.

Opcode op3 Operation

STDD 00 0111 Store Doubleword

Assembly Language Syntax

std regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STD causes a mem_address_not_aligned exception if the effective address is not doubleword

aligned.

In the UltraSPARC III Cu processor, STD is implemented in hardware.

Programming Note – STD is provided for compatibility with SPARC V8. It may execute

slowly on SPARC V9 machines because of data path and register-access difficulties.

Therefore, programmers should avoid using STD.

If STD is emulated in software, STX should be used to preserve atomicity.

With respect to little-endian memory, a STD instruction behaves as if it is composed of two

32-bit stores, each of which is byte-swapped independently before being written into each

destination memory word.

Exceptions

illegal_instruction (STD with odd rd)

mem_address_not_aligned (all except STB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.13 Store Integer Doubleword into Alternate Space

The STDA instruction is deprecated. Instead, use the STXA instruction.

Opcode op3 Operation

STDAD, PASI 01 0111 Store Doubleword into Alternate Space
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Format (3)

Description

The store doubleword integer instruction (STDA) copies two words from an r register pair

into memory. The least significant 32 bits of the even numbered r register are written into

memory at the effective address, and the least significant 32 bits of the following odd

numbered r register are written into memory at the “effective address + 4.” The least

significant bit of the rd field of a store doubleword instruction is unused and should always

be set to zero by software. An attempt to execute a store doubleword instruction that refers to

a misaligned (odd numbered) rd causes an illegal_instruction exception.

Store integer doubleword to alternate space instructions contain the address space identifier

(ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1.

The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The

effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1]+sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STDA causes a mem_address_not_aligned exception if the effective address is not

doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

In the UltraSPARC III Cu processor, STDA is implemented in hardware.

Assembly Language Syntax

stda regrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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Programming Note – STDA is provided for compatibility with SPARC V8. It may

execute slowly on SPARC V9 machines because of data path and register-access difficulties.

Therefore, programmers should avoid using STDA.

Exceptions

illegal_instruction (STDA with odd rd)

privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.14 Swap Register with Memory

The SWAP instruction is deprecated. Use the CASA or CASXA instruction in its place.

Format (3)

Opcode op3 Operation

SWAPD 00 1111 Swap Register with Memory

Assembly Language Syntax

swap [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
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Description

SWAP exchanges the less significant 32 bits of r[rd] with the contents of the word at the

addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is

performed atomically, that is, without allowing intervening interrupts or deferred traps. In a

multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,

LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword

simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1. This instruction causes a

mem_address_not_aligned exception if the effective address is not word aligned.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are implementation dependent.

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for

information on the presence of hardware support for these instructions in the various

SPARC V9 implementations.

Exceptions

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.15 Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated. Use the CASXA instruction instead.

Opcode op3 Operation

SWAPAD, PASI 01 1111 Swap register with Alternate Space Memory
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Format (3)

Description

SWAPA exchanges the less significant 32 bits of r[rd] with the contents of the word at the

addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is

performed atomically, that is, without allowing intervening interrupts or deferred traps. In a

multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,

LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword

simultaneously are guaranteed to execute them in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in

the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7

of the ASI is zero; otherwise, it is not privileged. The effective address for this instruction is

“r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective address is not

word aligned. It causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are implementation dependent.

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for

information on the presence of hardware support for this instruction in the various

SPARC V9 implementations.

Assembly Language Syntax

swapa [regaddr] imm_asi, regrd

swapa [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
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Exceptions

mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.16 Tagged Add and Trap on Overflow

The TADDccTV instruction is deprecated. Use the TADDcc followed by BPVS instruction

(with instructions to save the pre-TADDcc integer condition codes if necessary).

Format (3)

Description

This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero or if the

addition generates 32-bit arithmetic overflow (that is, both operands have the same value in

bit 31 and the sum of bit 31 is different).

Opcode op3 Operation

TADDccTVD 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Assembly Language Syntax

taddcctv regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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If TADDccTV causes a tag overflow, a tag_overflow exception is generated and r[rd] and

the integer condition codes remain unchanged. If a TADDccTV does not cause a tag overflow,

the sum is written into r[rd] and the integer condition codes are updated. CCR.icc.v is

set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set, based only on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Compatibility Note – TADDccTV traps based on the 32-bit overflow condition, just as in

SPARC V8. Although the tagged add instructions set the 64-bit condition codes CCR.xcc,

there is no form of the instruction that traps the 64-bit overflow condition.

Exceptions

tag_overflow

A.70.17 Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated. Use the TSUBcc instruction followed by BPVS
(with instructions to save the pre-TSUBcc integer condition codes if necessary).

Format (3)

Opcode op3 Operation

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflow

Assembly Language Syntax

tsubcctv regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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Description

This instruction computes “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction

generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the

32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of r[rs1].

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and r[rd]
and the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag

overflow condition, the difference is written into r[rd] and the integer condition codes are

updated. CCR.icc.v is set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set, based only on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Compatibility Note – TSUBccTV traps are based on the 32-bit overflow condition, just

as in SPARC V8. Although the tagged-subtract instructions set the 64-bit condition codes

CCR.xcc, there is no form of the instruction that traps on 64-bit overflow.

Exceptions

tag_overflow

A.70.18 Write Y Register

The WRY instruction is deprecated. It is recommended that all instructions that reference the

Y register be avoided.

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register

— 11 0000 1–31 See Section A.69 “Write State Register”
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Format (3)

Description

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the Y register.

Note – The operation is an exclusive OR.

The WRY instruction is not a delayed-write instruction. The instruction immediately

following a WRY observes the new value of the Y register.

Exceptions

None

Assembly Language Syntax

wr regrs1, reg_or_imm,%y

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
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APPENDIX B

Assembly Language Syntax

This appendix supports Appendix A “Instruction Definitions.” Each instruction description in

Appendix A includes a table that describes the suggested assembly language format for that

instruction. This appendix describes the notation used in those assembly language syntax

descriptions and lists some synthetic instructions provided by the SPARC V9 assemblers for

the convenience of assembly language programmers.

The appendix contains these sections:

• Notation Used

• Syntax Design

• Synthetic Instructions

B.1 Notation Used

The notations defined here are also used in the assembly language syntax descriptions in

Appendix A “Instruction Definitions.”

Items in typewriter font are literals to be written exactly as they appear. Items in italic
font are metasymbols that are to be replaced by numeric or symbolic values in actual

SPARC V9 assembly language code. For example, “imm_asi” would be replaced by a

number in the range 0 to 255 (the value of the imm_asi bits in the binary instruction) or by a

symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated

binary instruction. For example, regrs2 is a reg (register name) whose binary value will be

placed in the rs2 field of the resulting instruction.
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B.1.1 Register Names

See The SPARC Architecture Manual, Version 9 regarding notational conventions for register

names.

B.1.2 Special Symbol Names

Certain special symbols appear in the syntax table in typewriter font. They must be

written exactly as they are shown, including the leading percent sign (%). See The SPARC
Architecture Manual, Version 9 regarding special symbol names.

Additional UltraSPARC III Cu symbol names and the registers or operators to which they

refer are as follows:

%ccr Condition Codes Register

%clear_softint Soft Interrupt Register (clear selected bits)

%dcr Dispatch Control Register

%fprs Floating-Point Registers State Register

%gsr Graphics Status Register

%pcr Performance Control Register

%pic Performance Instrumentation Counters

%set_softint Soft Interrupt Register (set selected bits)

%softint Soft Interrupt Register

%sys_tick System Timer (TICK) Register

%sys_tick_cmpr System TImer (STICK) Compare Register

%tba Trap Base Address Register

%tick_cmpr Timer (TICK) Compare Register

The following special symbol names are unary operators that perform the functions

described:

%uhi Extracts bits 63:42 (high 22 bits of upper word) of its operand

%ulo or %hm Extracts bits 41:32 (low-order 10 bits of upper word) of its operand

%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of its

operand

%lo Extracts bits 9:0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font. They

must be written exactly as they are shown, including the leading sharp sign (#). The value

names and the values to which they refer are listed in TABLE B-1.
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TABLE B-1 Value Names and Values (1 of 2)

Name Value Description

#n_reads 0016 for PREFETCH instruction, Strong version = 1416

#one_read 0116 for PREFETCH instruction, Strong version = 1516

#n_writes 0216 for PREFETCH instruction, Strong version = 1616

#one_write 0316 for PREFETCH instruction, Strong version = 1716

#page 0416 for PREFETCH instruction

#Sync 4016 for MEMBAR instruction cmask field

#MemIssue 2016 for MEMBAR instruction cmask field

#Lookaside 1016 for MEMBAR instruction cmask field

#StoreStore) 0816 for MEMBAR instruction cmask field

#LoadStore 0416 for MEMBAR instruction cmask field

#StoreLoad 0216 for MEMBAR instruction cmask field

#LoadLoad 0116 for MEMBAR instruction cmask field

#ASI_AIUP 1016 ASI_AS_IF_USER_PRIMARY

#ASI_AIUS 1116 ASI_AS_IF_USER_SECONDARY

#n_reads_strong 1416 Strong version for PREFETCH instruction (0016)

#one_read_strong 1516 Strong version for PREFETCH instruction (0116)

#n_writes_strong 1616 Strong version for PREFETCH instruction (0216)

#one_write_strong 1716 Strong version for PREFETCH instruction (0316)

#ASI_AIUP_L 1816 ASI_AS_IF_USER_PRIMARY_LITTLE

#ASI_AIUS_L 1916 ASI_AS_IF_USER_SECONDARY_LITTLE

#ASI_PHYS_USE_EC_L 1C16 ASI_PHYS_USE_EC_LITTLE

#ASI_PHYS_BYPASS_EC_WITH_EBIT_L 1D16 ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

#ASI_NUCLEUS_QUAD_LDD_L 2C16 ASI_NUCLEUS_QUAD_LDD_LITTLE

#ASI_MONDO_SEND_CTRL 4816 ASI_INTR_DISPATCH_STATUS

#ASI_MONDO_RECEIVE_CTRL 4916 ASI_INTR_RECEIVE

#ASI_AFSR 4C16 ASI_ASYNC_FAULT_STATUS

#ASI_AFAR 4D16 ASI_ASYNC_FAULT_ADDR

#ASI_BLK_AIUP 7016 ASI_BLOCK_AS_IF_USER_PRIMARY

#ASI_BLK_AIUS 7116 ASI_BLOCK_AS_IF_USER_SECONDARY

#ASI_BLK_AIUPL 7816 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

#ASI_BLK_AIUSL 7916 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

#ASI_P 8016 ASI_PRIMARY

#ASI_S 8116 ASI_SECONDARY

#ASI_PNF 8216 ASI_PRIMARY_NOFAULT
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The full names of the ASIs, listed in the Description column of TABLE B-1 can also be

defined.

#ASI_SNF 8316 ASI_SECONDARY_NOFAULT

#ASI_P_L 8816 ASI_PRIMARY_LITTLE

#ASI_S_L 8916 ASI_SECONDARY_LITTLE

#ASI_PNF_L 8A16 ASI_PRIMARY_NOFAULT_LITTLE

#ASI_SNF_L 8B16 ASI_SECONDARY_NOFAULT_LITTLE

#ASI_PST8_P C016 ASI_PST8_PRIMARY

#ASI_PST8_S C116 ASI_PST8_SECONDARY

#ASI_PST16_P C216 ASI_PST16_PRIMARY

#ASI_PST16_S C316 ASI_PST16_SECONDARY

#ASI_PST32_P C416 ASI_PST32_PRIMARY

#ASI_PST32_S C516 ASI_PST32_SECONDARY

#ASI_PST8_PL C816 ASI_PST8_PRIMARY_LITTLE

#ASI_PST8_SL C916 ASI_PST8_SECONDARY_LITTLE

#ASI_PST16_PL CA6 ASI_PST16_PRIMARY_LITTLE

#ASI_PST16_SL CB16 ASI_PST16_SECONDARY_LITTLE

#ASI_PST32_PL CC16 ASI_PST32_PRIMARY_LITTLE

#ASI_PST32_SL CD16 ASI_PST32_SECONDARY_LITTLE

#ASI_FL8_P D016 ASI_FL8_PRIMARY

#ASI_FL8_S D116 ASI_FL8_SECONDARY

#ASI_FL16_P D216 ASI_FL16_PRIMARY

#ASI_FL16_S D316 ASI_FL16_SECONDARY

#ASI_FL8_PL D816 ASI_FL8_PRIMARY_LITTLE

#ASI_FL8_SL D916 ASI_FL8_SECONDARY_LITTLE

#ASI_FL16_PL DA16 ASI_FL16_PRIMARY_LITTLE

#ASI_FL16_SL DB16 ASI_FL16_SECONDARY_LITTLE

#ASI_BLK_COMMIT_P E016 ASI_BLOCK_COMMIT_PRIMARY

#ASI_BLK_COMMIT_S E116 ASI_BLOCK_COMMIT_SECONDARY

#ASI_BLK_P F016 ASI_BLOCK_PRIMARY

#ASI_BLK_S F116 ASI_BLOCK_SECONDARY

#ASI_BLK_PL F816 ASI_BLOCK_PRIMARY_LITTLE

#ASI_BLK_SL F916 ASI_BLOCK_SECONDARY_LITTLE

TABLE B-1 Value Names and Values (2 of 2)

Name Value Description
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B.1.3 Values

See The SPARC Architecture Manual, Version 9 regarding notational conventions for values.

B.1.4 Labels

See The SPARC Architecture Manual, Version 9 regarding notational conventions for labels.

B.1.5 Other Operand Syntax

See The SPARC Architecture Manual, Version 9 regarding notational conventions for general

operand syntax. Additional operand syntax is listed below.

membar_mask

Operand syntax is as follows:

const7 — A constant that can be represented in 7 bits. Typically, this is an expression

involving the logical OR of some combination of #Lookaside, #MemIssue, #Sync,

#StoreStore, #LoadStore, #StoreLoad, and #LoadLoad.

prefetch_fcn (Prefetch Function)

Operand syntax is summarized in the TABLE B-2.

TABLE B-2 Prefetch Function Values

Prefetch Function Value
(Decimal) Operand

0 #n_reads (Strong version = 20)

1 #one_read (Strong version = 21)

2 #n_writes (Strong version = 22)

3 #one_write (Strong version = 23)

4 #page

5 − 15 Reserved and Traps

16 P-cache Invalidate

17-19 NOP

20 #n_reads_strong (Strong version of 0)

21 #one_read_strong (Strong version of 1)
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B.1.6 Comments

See The SPARC Architecture Manual, Version 9 regarding notational conventions for

comments.

B.2 Syntax Design

See The SPARC Architecture Manual, Version 9 regarding syntax design.

B.3 Synthetic Instructions

See The SPARC Architecture Manual, Version 9 regarding synthetic instructions.

22 #n_writes_strong (Strong version of 2)

23 #one_write_strong (Strong version of 3)

24 − 31 NOP

TABLE B-2 Prefetch Function Values (Continued)

Prefetch Function Value
(Decimal) Operand
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A
a field of instructions 177, 470, 473, 474, 477, 604, 607

A pipeline stage 42, 45

A0 pipeline stage 43

A1 pipeline stage 43

accesses

cacheable 211

I/O 220

noncacheable 211

nonfaulting ASIs 217

real memory space 210

restricted ASI 210

with side effects 210, 211, 220

accrued exception (aexc) field of FSR register 126, 129,

325

ADD instruction 454

ADDC instruction 454

ADDcc instruction 454, 580

ADDCcc instruction 454

address

64-bit virtual data watchpoint 136

aliasing 225, 247

illegal address alliasing 230

physical address data watchpoint 137

space identifier (ASI) 210

space size, differences from UltraSPARC-I 9

virtual address

data watchpoint 136

watchpoint priority 136

virtual passed to physical 133

virtual-to-physical translation 210

address mask (AM) field of PSTATE register 116

address space identifier (ASI)

accessing MMU registers 277

affected by watchpoint traps 136

appended to memory address 143, 180

bit 7 setting for privileged_action exception 587

bypass 189

definition xliii

explicit values 142

imm_asi instruction field 178

implicit values 142

load floating-point instructions 503

load from TLB Data Access register 281, 300

load from TLB Data In register 281, 300

load from TLB Tag Read register 280, 300

load integer doubleword instructions 613

load integer instructions 507

operations 276, 298

with prefetch instructions 561

restricted 275

restriction indicator 98

unrestricted 189

address space identifier (ASI) register

for load/store alternate instructions 98

and imm_asi instruction field 142

and LDDA instruction 615

and LDSTUBA instruction 513

load floating-point from alternate space instructions

505

load integer from alternate space instructions 509

with prefetch instructions 562

restoring saved state 480

saving state 315

and STDA instruction 624

store floating-point into alternate space instructions

587

store integer to alternate space instructions 590

and SWAPA instruction 627

and TSTATE Register 110

and write state register instructions 601

addressing conventions 141, 180

ADDX instruction (SPARC V8) 455

ADDXcc instruction (SPARC V8) 455

aexc field of FSR 409

AFAR

extension 10

state after reset 442

AFSR

changes to 10

state after reset 442

alias

address 225

boundary 230

floating-point registers 87

ALIGNADDRESS instruction 455

ALIGNADDRESS_LITTLE instruction 455

aligning branch targets 389

alignment

data (load/store) 141, 141

doubleword 141, 141

extended-word 141

halfword 141, 141

instructions 141, 141

integer registers 613, 615

memory 347

quadword 141, 141

word 141, 141
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alternate address space 561

alternate global registers 82

alternate globals enable (AG) field of PSTATE register

82, 114

alternate space instructions 98

ancillary state registers (ASRs) 96–??

access 100

number 96

possible registers included 570, 601

writing to 601

AND instruction 517

ANDcc instruction 517

ANDN instruction 517

ANDNcc instruction 517

annul bit

in branch instructions 470

in conditional branches 605

in control transfer instruction 99

annulled branches 470

annulled slot 391

application program xliii, 132

Architectural Register File (ARF) 52

architecture, meaning for SPARC V9 xl

ARF (Architectural Register File) 52

arithmetic overflow 97

ARRAY16 instruction 457

ARRAY32 instruction 457

ARRAY8 instruction 457

ASI

_BLK_COMMIT_PRIMARY 231

_BLK_COMMIT_SECONDARY 231

_NUCLEUS_QUAD_LDD_S 510

atomic access 217

load from TLB Data Access register 293

nonfaulting 217

registers, differences from UltraSPARC-I 9

registers, removed in UltraSPARC-III 10

registers, state after reset 439

restricted 210

UltraSPARC III internal 221

ASI_AFAR 196

ASI_AFSR 196

ASI_AIUP 193

ASI_AIUPL 194

ASI_AIUS 194

ASI_AIUSL 194

ASI_AS_IF_USER_PRIMARY 193, 217

ASI_AS_IF_USER_PRIMARY_LITTLE 194, 217

ASI_AS_IF_USER_SECONDARY 194, 217

ASI_AS_IF_USER_SECONDARY_LITTLE 194, 217

ASI_ASYNC_FAULT_ADDR 196

ASI_ASYNC_FAULT_STATUS 196

ASI_ATOMIC_QUAD_LDD_PHYS 195

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE 199, 203

ASI_BARRIER_SYNCH 203

ASI_BARRIER_SYNCH_P 199

ASI_BLK_AIUP 199

ASI_BLK_AIUPL 200

ASI_BLK_AIUS 199

ASI_BLK_AIUSL 200

ASI_BLK_COMMIT_P 203

ASI_BLK_COMMIT_S 203

ASI_BLK_P 204

ASI_BLK_PL 204

ASI_BLK_S 204

ASI_BLK_SL 204

ASI_BLOCK_AS_IF_USER_PRIMARY 199

ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 200

ASI_BLOCK_AS_IF_USER_SECONDARY 199

ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

200

ASI_BLOCK_COMMIT_PRIMARY 203

ASI_BLOCK_COMMIT_SECONDARY 203

ASI_BLOCK_PRIMARY 204

ASI_BLOCK_PRIMARY_LITTLE 204

ASI_BLOCK_SECONDARY 204

ASI_BLOCK_SECONDARY_LITTLE 204

ASI_DCACHE_DATA 195

ASI_DCACHE_INVALIDATE 195

ASI_DCACHE_SNOOP_TAG 195

ASI_DCACHE_TAG 195

ASI_DCACHE_UTAG 195

ASI_DCU_CONTROL_REGISTER 132, 195

ASI_DCUCR 195

ASI_DEVICE_ID+SERIAL_ID 197

ASI_DMMU_DEMAP 199

ASI_DMMU_PA_WATCHPOINT_REG 198

ASI_DMMU_SFAR 198

ASI_DMMU_SFSR 198

ASI_DMMU_TAG_ACCESS 198

ASI_DMMU_TAG_TARGET_REG 198

ASI_DMMU_TSB_64KB_PTR_REG 198

ASI_DMMU_TSB_8KB_PTR_REG 198

ASI_DMMU_TSB_BASE 198

ASI_DMMU_TSB_DIRECT_PTR_REG 198

ASI_DMMU_TSB_NEXT_REG 198

ASI_DMMU_TSB_PEXT_REG 198

ASI_DMMU_TSB_SEXT_REG 198
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ASI_DMMU_VA_WATCHPOINT_REG 198

ASI_DTLB_DATA_ACCESS_REG 199

ASI_DTLB_DATA_IN_REG 198

ASI_DTLB_TAG_READ_REG 199

ASI_FL16_P 203

ASI_FL16_PL 203

ASI_FL16_PRIMARY 203

ASI_FL16_PRIMARY_LITTLE 203

ASI_FL16_S 203

ASI_FL16_SECONDARY 203

ASI_FL16_SECONDARY_LITTLE 203

ASI_FL16_SL 203

ASI_FL8_P 203

ASI_FL8_PL 203

ASI_FL8_PRIMARY 203

ASI_FL8_PRIMARY_LITTLE 203

ASI_FL8_S 203

ASI_FL8_SECONDARY 203

ASI_FL8_SECONDARY_LITTLE 203

ASI_FL8_SL 203

ASI_IIU_INST_TRAP 199, 203

ASI_IMMU_DEMAP 197

ASI_IMMU_SFSR 196

ASI_IMMU_TAG_TARGET 196

ASI_IMMU_TSB_64KB_PTR_REG 197

ASI_INTR_DATA0_R 201

ASI_INTR_DATA0_W 200

ASI_INTR_DATA1_R 201

ASI_INTR_DATA1_W 200

ASI_INTR_DATA2_R 201

ASI_INTR_DATA2_W 200

ASI_INTR_DATA3_R 201

ASI_INTR_DATA3_W 200

ASI_INTR_DATA4_R 201

ASI_INTR_DATA4_W 200

ASI_INTR_DATA5_R 201

ASI_INTR_DATA5_W 200

ASI_INTR_DATA6_R 201

ASI_INTR_DATA6_W 200

ASI_INTR_DATA7_R 201

ASI_INTR_DATA7_W 200

ASI_INTR_DISPATCH_STATUS 352, 355, 356

ASI_INTR_DISPATCH_STATUS.BUSY bit 352

ASI_INTR_DISPATCH_STATUS.NACK bit 352

ASI_INTR_DISPATCH_W 200, 355

ASI_INTR_RECEIVE 196, 353, 357

ASI_INTR_W 352, 354

ASI_ITLB_DATA_ACCESS_REG 197

ASI_ITLB_DATA_IN_REG 197

ASI_ITLB_TAG_READ_REG 197

ASI_MONDO_RECEIVE_CTRL 196

ASI_MONDO_SEND_CTRL 196

ASI_N 193

ASI_NL 193

ASI_NUCLEUS 193, 217, 261, 262

ASI_NUCLEUS_LITTLE 193, 217, 262

ASI_NUCLEUS_QUAD_LDD 206

ASI_NUCLEUS_QUAD_LDD_L 194

ASI_NUCLEUS_QUAD_LDD_LITTLE 194, 206

ASI_P 201

ASI_PCACHE_DATA 194

ASI_PCACHE_SNOOP_TAG 195

ASI_PCACHE_STATUS_DATA 194

ASI_PCACHE_TAG 195

ASI_PHYS_BYPASS_EC_WITH_EBIT 194, 205, 263

ASI_PHYS_BYPASS_EC_WITH_EBIT_L 194

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE 194,

205

ASI_PHYS_USE_EC 3, 194, 205, 217, 228

ASI_PHYS_USE_EC_L 194

ASI_PHYS_USE_EC_LITTLE 3, 194, 205, 217

ASI_PL 201

ASI_PNF 201

ASI_PNFL 201

ASI_PRIMARY 142, 201, 217, 261

ASI_PRIMARY_* 262

ASI_PRIMARY_CONTEXT_REG 198

ASI_PRIMARY_LITTLE 115, 201, 217, 261, 262

ASI_PRIMARY_NO_FAULT 201, 218, 288, 307

ASI_PRIMARY_NO_FAULT_LITTLE 201, 218, 288,

307

ASI_PST16_P 202, 540

ASI_PST16_PL 202, 540

ASI_PST16_PRIMARY 202

ASI_PST16_PRIMARY_LITTLE 202

ASI_PST16_S 202, 540

ASI_PST16_SECONDARY 202

ASI_PST16_SECONDARY_LITTLE 202

ASI_PST16_SL 540

ASI_PST32_P 202, 540

ASI_PST32_PL 202, 540

ASI_PST32_PRIMARY 202

ASI_PST32_PRIMARY_LITTLE 202

ASI_PST32_S 202, 540

ASI_PST32_SECONDARY 202

ASI_PST32_SECONDARY_LITTLE 202

ASI_PST32_SL 202, 540

ASI_PST8_P 202, 540
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ASI_PST8_PL 202, 540

ASI_PST8_PRIMARY 202

ASI_PST8_PRIMARY_LITTLE 202

ASI_PST8_S 202, 540

ASI_PST8_SECONDARY 202

ASI_PST8_SECONDARY_LITTLE 202

ASI_PST8_SL 202, 540

ASI_S 201

ASI_SDB_INTR 354, 356

ASI_SDB_INTR_R 353

ASI_SECONDARY 201, 217

ASI_SECONDARY_CONTEXT_REG 198

ASI_SECONDARY_LITTLE 201, 217

ASI_SECONDARY_NO_FAULT 201, 218, 288, 307

ASI_SECONDARY_NO_FAULT_LITTLE 202, 218,

288, 307

ASI_SL 201

ASI_SNF 201

ASI_SNFL 202

ASI_SRAM_TEST_INIT 195

ASI_WCACHE_DATA 195

ASI_WCACHE_SNOOP_TAG 195

ASI_WCACHE_TAG 195

ASI_WCACHE_VALID_BITS 195

ASRs

differences from UltraSPARC-I 10

grouping rules 52

assembler, synthetic instructions 638–??

async_data_error exception 504, 510, 512, 615

atomic

load quadword 510

memory operations 510, 511

store doubleword instruction 623, 624

store instructions 588, 590

atomic instructions

compare and swap 217

LDSTUB 217

mutual exclusion support 216

and store queue 222

SWAP 216

use with ASIs 217

atomic load-store instructions 478

compare and swap 477

load-store unsigned byte 512, 626, 627

load-store unsigned byte to alternate space 513

swap r register with alternate space memory 626

swap r register with memory 478, 625

B
B pipeline stage 43

BA instruction 606, 607

BCC instruction 606

BCS instruction 606

BE instruction 606

BG instruction 606

BGE instruction 606

BGU instruction 606

Bicc instructions 98, 99, 605

big-endian

swapping in partial store instructions 541

big-endian byte order 115, 140, 141, 180

bit vector concatenation xli

bit vectors, concatenation 255

BLE instruction 606

BLEU instruction 606

block

load and store instructions

compliance across UltraSPARC platforms 521

data size (granularity) 219

external cache allocation 228

load instruction 219

E-cache allocation 228

grouping 53

ordering 464

and prefetch cache 401

and store queue 223

load instructions 87, 231, 460

operations and memory model 464

overlapping stores 464

store instruction

data size (granularity) 219

E-cache allocation 228

grouping 53

ordering 464

and PDIST 51

use in loops 464

store instructions 87, 460

store with commit 7

use in loops 464

block load instructions 191

block store instructions 191

BMASK instruction 468

and BSHUFFLE instruction 469

and MS pipeline 469

grouping rules 51

BN instruction 606, 607

BNE instruction 606
644 UltraSPARC III Cu User’s Manual • January 2004



BNEG instruction 606

bootbus address

mapping 3

unallowed memory operations 3

booting code 228

BPA instruction 474

BPCC instruction 474

BPcc instructions 98, 99, 177, 178, 474

BPCS instruction 474

BPE instruction 474

BPG instruction 474

BPGE instruction 474

BPGU instruction 474

BPL instruction 474

BPLE instruction 474

BPLEU instruction 474

BPN instruction 474

BPNE instruction 474

BPNEG instruction 474

BPOS instruction 606

BPPOS instruction 474

BPr instructions 99, 177, 178, 469

BPVC instruction 474

BPVS instruction 474

BR pipeline 43

branch

annulled 470

delayed 180

elimination 145, 146

fcc-conditional 473, 605

icc-conditional 607

prediction bit 470

target alignment 389

unconditional 473, 475, 604, 607

branch if contents of integer register match condition

instructions 469

branch instructions, conditional 45

branch on floating-point condition codes instructions 603

branch on floating-point condition codes with prediction

instructions 471

branch on integer condition codes instructions, See Bicc
instructions

branch prediction

in B pipeline stage 43

mispredict signal 45

statistics for taken/untaken 370

Branch Predictor (BP) 42

break-after, definition 47

break-before, definition 47

BRGEZ instruction 469

BRGZ instruction 469

BRLEZ instruction 469

BRLZ instruction 469

BRNZ instruction 469

BRZ instruction 469

BSHUFFLE instruction 468

and BMASK instruction 469

fully pipelined 469

grouping rules 51

bubble, vs. helper 52

bubbles 370

BUSY/NACK pairs 356

BVC instruction 606

BVS instruction 606

byte

addressing 182

data format 65

order 140, 141, 180

order, big-endian 115, 140

order, implicit 115

order, little-endian 115, 140

byte mask

grouping 469

instruction 4

byte ordering 541

C
C pipeline stage 45, 46

cache

coherency protocol 211

differences from UltraSPARC-I 6

external 227

flushing 229

level 1 225

level 2 226, 227

organization 225

write 227

cacheable accesses

indication 211

properties 211

caching, TSB 252

CALL instruction

description 476

destination register 99

displacement 159

does not change CWP 86
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and JMPL instruction 502

writing address into r[15] 82

CAM Diagnostic Register format 293

CANRESTORE register 119, 440

CANSAVE register 118, 440

carry (C) bit of condition fields of CCR 97

CAS(X)A instruction 217

CASA instruction 146, 477, 512, 513, 626, 627

CASXA instruction 146, 477, 512, 513, 626, 627

catastrophic_error exception 316, 346

cc0 field of instructions 177, 473, 474, 486, 533

cc1 field of instructions 177, 473, 474, 486, 533

cc2 field of instructions 177, 533

CCR register 439

CCR, See condition codes (CCR) register

cexc field of FSR 409

clean register window 120, 348, 572

clean windows (CLEANWIN) register 119, 119, 566,

598

clean_window exception 119, 323, 326, 348, 573, 574

CLEANWIN register 440

CLEAR_SOFTINT pseudo-register 358

clock-tick register (TICK) 106, 107, 347, 566, 598

code

kernel 358

nucleus 358

coherence

domain 211

unit of 211

compare and swap instructions 477

comparison instruction 148, 592

complex calculations, fixed data format 76

compliance

SPARC V9 264

concatenation of bit vectors xli

cond field of instructions 177, 473, 474, 526, 533, 604,

607

condition code register 439

condition codes 479

adding 593

extended integer (Xcc) 98

floating-point 605

icc field 97

integer 96

results of integer operation (icc) 98

subtracting 592, 594

trapping on 596

xcc field 97

condition codes (CCR) register 96, 110, 315, 454, 480,

601, 618

conditional branch instructions 45

conditional branches 473, 605, 607

conditional move instructions

grouping rules 53

const22 field of instructions 500

constants, generating 577

Context field of the D-TLB Tag Access Register 280, 299

context register

determination of 261

Nucleus 278

Primary 278

Secondary 278

control and status registers 96

control-transfer instructions (CTIs) 158, 480

conventions

font xl

notational xli

conversion

between floating-point formats instructions 489

floating-point to integer instructions 488

integer to floating-point instructions 491

planar to packed 559

CTI couple 392

CTI queue 43

current exception (cexc) field of FSR register 126, 128,

129, 129, 131, 151, 348

current window pointer (CWP) register

and CALL/JMPL instructions 86

and clean windows 120

definition xliv

and FLUSHW instruction 500

function 118

incremented/decremented 84, 573

and overlapping windows 84

range of values 119

reading CWP with RDPR instruction 566

and RESTORE instruction 158, 573

restored during DONE or RETRY 480

and SAVE instruction 158, 573

saved during a trap 315

and TSTATE Register 110

writing CWP with WRPR instruction 598

current_little_endian (CLE) field of PSTATE register

115, 115

CWP register 439

cycles accumulated, count 369
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D
D pipeline stage 46, 370

d16hi field of instructions 177, 470

d16lo field of instructions 177, 470

data

formats

byte 65

doubleword 65

extended word 65

halfword 65

quadword 65

tagged word 65

word 65

types

floating-point 65

signed integer 65

unsigned integer 65

width 65

watchpoint

behavior 136

exception 541

physical address 137

register format 137

virtual address 137

data alignment 394

Data Cache 225

flush 230

data cache

and RED_state 435

and block load/store 463

flushing 7

Data Cache Unit Control Register, See DCUCR

data_access_error exception 346, 467, 479, 504, 508,

511, 512, 514, 541, 582, 585, 587, 589, 590, 614,

622, 623, 625

data_access_exception exception 114, 251, 258, 259,

260, 264, 277, 288, 307, 349, 355, 356, 479, 504,

506, 512, 514, 585, 587, 589, 590, 623, 625, 626, 628

data_access_exception exception 191, 206, 211, 217, 218,

220

data_access_MMU_miss exception 259, 260

data_access_protection exception 259, 260, 287, 306,

467, 508, 510, 511, 541, 582, 614, 616

DB_PA field of PA Data Watchpoint register 137

DC_wr 373

DC_wr_miss 374

D-cache

hit rate 394

line 394

logical organization illustrated 393

misses 394

organization 393

sub-block 394

timing 394

DCR

branch and return control 101

changes to 10

fields

BPE (branch prediction enable) 101

MS (multiscalar dispatch enable) 102

RPE (return address prediction enable) 101

SI (single issue disable) 101

IFPOE field 102

instruction dispatch control 101

layout 100

state after reset 441

DCTI 43

DCU

control register 435

DCUCR

CP (cacheability) field 228, 263

CV (cacheability) field 264

DC (data cache enable) field 134

DM (DMMU enable) field 133

IC (I-cache enable) field 221

IC (instruction cache enable) field 134

IMI (IMMU enable) field 133

PM (PA data watchpoint mask) field 134

PR/PW (PA watchpoint enable) fields 135

RED_state 263

SPE (software prefetch enable) field 399

state after reset 441

VM (VA data watchpoint mask) field 135

VR/VW (VA data watchpoint enable) fields 135

watchpoint byte masks/enable bits 136

deferred trap

occurrence 321

queue, floating-point (FQ) 566

software actions 322

vs. disrupting trap 322

delay instruction 99, 158, 470, 473, 476, 480, 571, 605

delay slot

and instruction fetch 389

delayed branch 180

delayed control transfer 99, 470

delayed control-transfer instruction (DCTI) 43

demap operation and output 291, 309

deprecated instructions
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BA 606

BCC 606

BCS 606

BE 606

BG 606

BGE 606

BGU 606

Bicc 605

BLE 606

BLEU 606

BN 606

BNE 606

BNEG 606

BPOS 606

BVC 606

BVS 606

FBA 603

FBE 603

FBG 603

FBGE 603

FBL 603

FBLE 603

FBLG 603

FBN 603

FBNE 603

FBO 603

FBU 603

FBUE 603

FBUGE 603

FBUL 603

FBULE 603

LDD 612

LDDA 614

LDFSR 611

MULScc 96, 617

RDY 96, 568, 619

SDIV 96, 608

SDIVcc 96, 608

SMUL 96, 616

SMULcc 96, 616

STD 622

STDA 623

STFSR 621

SWAP 625

SWAPA 626

TSUBccTV 628, 629

UDIV 96, 608

UDIVcc 96, 608

UMUL 96, 616

UMULcc 96, 616

WRY 96, 600, 630

Direct Pointer Register 287, 306

disp19 field of instructions 178, 473, 474

disp22 field of instructions 178, 604, 607

disp30 field of instructions 178, 476

Dispatch_rs_mispred 371

Dispatch0_2nd_br 371

Dispatch0_br_target 371

displacement flush 231

disrupting traps 322, 323

divide instructions 537, 608

divide-by-zero mask (DZM) bit of TEM field of FSR

register 128

division_by_zero exception 148, 346, 538

division-by-zero accrued (dza) bit of aexc field of FSR

register 131

division-by-zero current (dzc) bit of cexc field of FSR

register 131

D-MMU

and RED_state 435

context # upon a trap 280, 299

context register usage 262

determining ASI value and endianness 261

Direct Pointer register 286, 305

disabled 264

disabled, effect on D-cache 264

Enable bit 263

enable bits 263

memory operation summary 274

Nucleus Context Register 278

pointer logic pseudocode 257

Registers:Primary, Secondary, Nucleus 278

Secondary Context Register 278

virtual address translation 246

DONE instruction 98, 114, 315, 317, 347, 479

after internal store to ASI 221

and BST 463

exiting RED_state 30

grouping rules 53

restoring AG, IG, MG bits 113

target address 159

when TSTATE uninitialized 31, 437

doublet xliv

doubleword

addressing 183

alignment 141

data format 65

definition xliv
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in memory 84

D-SFAR

defined 289

description 277

D-SFAR register

exception address (64-bit) 116, 117

state after reset 442

update after trap 261

D-SFSR

and ASI operations 277

bit description 287, 306

FTYPE field upon data_access_exception 346

D-SFSR register

CT (context) field 280, 299

state after reset 442

update after trap 261

D-TLB

access 45

state after reset 443

DVMA 436

E
E pipeline stage 44

EC_ic_miss 375

EC_misses 375

ECC

error correction 349

protection, on external cache 11

ECC_error exception 349

Edge instructions 4

EDGE16 instruction 480

EDGE16L instruction 480

EDGE16LN instruction 480

EDGE16N instruction 480

EDGE32 instruction 480

EDGE32L instruction 480

EDGE32LN instruction 480

EDGE32N instruction 480

EDGE8 instruction 480

EDGE8L instruction 480

EDGE8LN instruction 480

EDGE8N instruction 480

Edgencc instruction 4

emulating multiple unsigned condition codes 146

enable floating-point (FEF) field of FPRS register 99,

116, 150, 324, 346, 473, 503, 505, 585, 587, 605

enable floating-point (PEF) field of PSTATE register 99,

116, 150, 324, 346, 473, 503, 505, 585, 587, 605

enable RED_state field (RED) of PSTATE register 317

Energy Star

compliance with 5

Error Enable Register

NCEEN field 221

state after reset 442

error_state 316, 317, 319, 320, 334, 335, 336, 337, 338,

344

error_state, and watchdog reset 32, 437

errors

handling differences from UltraSPARC-I 11

exceptions

async_data_error 504, 510, 512, 615

catastrophic_error 316, 346

causing traps 315

clean_window 119, 323, 326, 348, 573, 574

data_access_error 346, 467, 479, 504, 508, 511, 512,

514, 541, 582, 585, 587, 589, 590, 614, 622, 623,

625

data_access_exception 479, 504, 506, 512, 514, 585,

587, 589, 590, 623, 625, 626, 628

data_access_protection 467, 508, 510, 511, 541, 582,

614, 616

definition 315

division_by_zero 148, 346, 538

fill_n_normal 324, 346, 572, 574

fill_n_other 324, 572, 574

fp_disabled 99, 150, 323, 346, 473, 485, 489, 491,

492, 494, 496, 503, 504, 505, 506, 529, 531, 535,

585, 587, 605, 612, 622

fp_exception_ieee_754 123, 129, 130, 131, 325, 348,

485, 489, 491, 492, 496

fp_exception_other 89, 179, 348, 485, 487, 489, 491,

492, 494, 496, 497, 531

illegal_instruction 84, 109, 179, 346, 471, 476, 480,

501, 504, 535, 537, 560, 567, 568, 569, 575, 585,

587, 597, 599, 613, 614, 615, 622, 623, 624, 625

instruction_access_error 323

instruction_access_exception 323, 347

LDDF_mem_address_not_aligned 141, 323, 349,

503, 505, 506

mem_address_not_aligned 141, 347, 479, 502, 503,

504, 506, 507, 508, 509, 510, 571, 572, 585, 587,

589, 590, 614, 615, 622, 623, 625, 626, 628

privileged_action 98, 142, 323, 347, 479, 505, 506,

509, 510, 514, 570, 587, 590, 615, 624, 625, 628

privileged_instruction (SPARC V8) 348

privileged_opcode 323, 347, 480, 568, 575, 599
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spill_n_normal 323, 348, 500, 574

spill_n_other 323, 348, 500, 574

STDF_mem_address_not_aligned 141, 323, 349, 585,

587

tag_overflow 148, 348, 593, 594, 628, 629, 630

trap_instruction 323, 348, 596, 597

window_fill 120, 571

window_spill 120

execute_state 316, 334, 336, 337, 338

extended word addressing 183

extended word data format 65

External Cache 227

flush 230

Tag Access Address Format 268

external cache

and block load/store 463

bypassing by instruction fetches 228

description 227, 228

diagnostics accesses 231

error correction 11

flushing 7

invalidating a line 231

PIPT 227

update 210

externally_initiated_reset (XIR) 317, 318, 319, 323, 339,

342, 348

F
F pipeline stage 42

f registers 325

FABSd instruction 493

FABSq instruction 493

FABSs instruction 493

FADD instruction 485

FADDd instruction 483

FADDq instruction 483

FADDs instruction 483

FALIGNADDR instruction

grouping rules 51

FALIGNDATA instruction 455

grouping rules 51

FAND instruction 514

FANDNOT1 instruction 515

FANDNOT1S instruction 515

FANDNOT2 instruction 515

FANDNOT2S instruction 515

FANDS instruction 515

fast_data_access_MMU_miss exception 114, 258, 259,

260, 289

fast_data_access_MMU_miss exception 253

fast_data_access_protection exception 114, 251, 258,

259, 260

fast_instruction_access_MMU_miss exception 114, 258,

259, 307, 308

fast_instruction_access_MMU_miss exception 253

fast_instruction_MMU_miss exception 289, 307

FBA instruction 603, 605

FBE instruction 603

FBfcc instructions 99, 123, 150, 346, 603, 605

FBG instruction 603

FBGE instruction 603

FBL instruction 603

FBLE instruction 603

FBLG instruction 603

FBN instruction 603, 604

FBNE instruction 603

FBO instruction 603

FBPA instruction 471, 473

FBPcc instructions 178

FBPE instruction 471

FBPfcc instructions 99, 123, 150, 177, 178, 471, 605

FBPG instruction 471

FBPGE instruction 471

FBPL instruction 471

FBPLE instruction 471

FBPLG instruction 471

FBPN instruction 471, 473

FBPNE instruction 471

FBPO instruction 471

FBPU instruction 471

FBPUE instruction 471

FBPUG instruction 471

FBPUGE instruction 471

FBPUL instruction 471

FBPULE instruction 471

FBU instruction 603

FBUE instruction 603

FBUG instruction 603

FBUGE instruction 603

FBUL instruction 603

FBULE instruction 603

fcc-conditional branches 473, 605

FCMP* instructions 123, 486

FCMPd instruction 486

FCMPE* instructions 123, 486

FCMPEd instruction 486
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FCMPEQ instruction 551

FCMPEq instruction 486

FCMPEQ16 instruction 550

FCMPEQ32 instruction 550

FCMPEs instruction 486

FCMPG instruction 551

FCMPGT16 instruction 550

FCMPGT32 instruction 550

FCMPL instruction 551

FCMPLE16 instruction 550

FCMPLE32 instruction 550

FCMPNE instruction 551

FCMPNE16 instruction 550

FCMPNE32 instruction 550

FCMPq instruction 486

FCMPs instruction 486

fcn field of instructions 480

FDIVd instruction 494

FDIVq instruction 494

FDIVs instruction 494

FdMULq instruction 494

FdTOi instruction 5, 488, 489

FdTOq instruction 489

FdTOs instruction 489

FdTOx instruction 5, 488, 489

FEXPAND instruction 155, 553, 558

FEXPAND instruction, pixel formatting 554

FEXPAND operation 558

FFA (f.p./Graphics ALU) pipeline 43

FFA pipeline 385

FGA pipeline xlv, 469

FGM (F.p./Graphics multiply) pipeline 43

FGM pipeline xlv, 385

fill register window 84, 158, 346, 573, 575

fill_n_normal exception 324, 346, 346, 572, 574

fill_n_other exception 324, 346, 572, 574

FiTOd instruction 491

FiTOq instruction 491

FiTOs instruction 5, 491, 492

fixed-point scaling 545

floating point

divide/square root 51

grouping rules ??–51

latencies 50

operation statistics 385

register file access 45

store instructions 51

subnormal value generation 124

floating point complex calculations 76

floating-point add and subtract instructions 483

floating-point compare instructions 123, 486, 486

floating-point condition code bits 605

floating-point condition codes (fcc) fields of FSR register

123, 126, 325, 473, 487, 605

floating-point data type 65

floating-point deferred-trap queue (FQ) 566

floating-point exception 125

floating-point move instructions 493

floating-point multiply and divide instructions 494

floating-point operate (FPop) instructions 125, 129, 150,

178, 346, 348, 612

floating-point registers 89

floating-point registers state (FPRS) register 99, 569, 601

floating-point square root instructions 496

floating-point state (FSR) register 122, 129, 132, 585,

612, 621

floating-point trap type (ftt) field of FSR register 129

floating-point trap type (ftt) field of FSR register 122,

125, 129, 151, 348, 585, 621

floating-point trap types

IEEE_754_exception 126, 126, 129, 132, 325, 348

invalid_fp_register 89, 126, 494, 497

numeric values 125

sequence_error 126

unfinished_FPop 126, 126, 132, 485, 496

unimplemented_FPop 126, 132, 485, 487, 489, 491,

492, 496, 529, 531

floating-point traps

precise 568

FLUSH instruction 497

after internal store 221

differences from UltraSPARC-I 5

grouping rule 53

I-cache 7

memory ordering control 213

self-modifying code 499

flush register windows instruction 499

flushing

data cache 7

differences from UltraSPARC-I 7

displacement 231

external cache 228

instruction cache 7

prefetch cache 7

TLB 8

write cache 7, 228

FLUSHW instruction 157, 348, 499

FLUSHW instruction, grouping rule 52
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FMOVA instruction 524

FMOVcc instruction 524

FMOVcc instructions 98, 123, 144, 177, 178, 524, 528,

529, 535

grouping rules 54

FMOVCS instruction 524

FMOVd instruction 493

FMOVDcc instruction 526

FMOVE instruction 524

FMOVFA instruction 525

FMOVFE instruction 525

FMOVFG instruction 525

FMOVFGE instruction 525

FMOVFL instruction 525

FMOVFLE instruction 525

FMOVFLG instruction 525

FMOVFN instruction 525

FMOVFNE instruction 525

FMOVFO instruction 525

FMOVFU instruction 525

FMOVFUE instruction 525

FMOVFUG instruction 525

FMOVFUGE instruction 525

FMOVFUL instruction 525

FMOVFULE instruction 525

FMOVG instruction 524

FMOVGE instruction 524

FMOVGU instruction 524

FMOVL instruction 524

FMOVLE instruction 524

FMOVLEU instruction 524

FMOVN instruction 524

FMOVNE instruction 524

FMOVNEG instruction 524

FMOVPOS instruction 524

FMOVq instruction 493

FMOVQcc instruction 526

FMOVr instructions 178, 529

FMOVRGEZ instruction 529

FMOVRGZ instruction 529

FMOVRLEZ instruction 529

FMOVRLZ instruction 529

FMOVRNZ instruction 529

FMOVRZ instruction 529

FMOVs instruction 493

FMOVScc instruction 526

FMOVVC instruction 524

FMOVVS instruction 524

FMUL8SUx16 instruction 543, 546

FMUL8ULx16 instruction 543, 547

FMUL8x16 instruction 156, 543, 545

FMUL8x16AL instruction 543, 546

FMUL8x16AU instruction 543, 545

FMULd instruction 494

FMULD8SUx16 instruction 543, 548

FMULD8ULx16 instruction 543, 549

FMULq instruction 494

FMULs instruction 494

FNAND instruction 515

FNANDS instruction 515

FNEGd instruction 493

FNEGq instruction 493

FNEGs instruction 493

FNOR instruction 514

FNORS instruction 514

FNOT1 instruction 514

FNOT1S instruction 514

FNOT2 instruction 514

FNOT2S instruction 514

FONE instruction 514

FONES instruction 514

FOR instruction 514

formats, instruction 175

FORNOT1 instruction 515

FORNOT1S instruction 515

FORNOT2 instruction 515

FORNOT2S instruction 515

FORS instruction 514

fp_disabled exception 99, 102, 150, 323, 346, 473, 485,

489, 491, 492, 494, 496, 503, 504, 505, 506, 529,

531, 535, 582, 585, 587, 605, 612, 622

fp_exception exception 129

fp_exception_ieee_754 "invalid" exception 489

fp_exception_ieee_754 exception 102, 103, 123, 129,

130, 131, 325, 348, 485, 489, 491, 492, 496

fp_exception_other exception 89, 102, 103, 124, 127,

151, 179, 346, 348, 485, 487, 489, 491, 492, 494,

496, 497, 531

fp_exception_other exception 409, 420, 421, 428

FPACK instructions 155–??, 553–558

FPACK, performance usage 554

FPACK16 instruction 155, 553, 554

FPACK16 operation 555

FPACK32 instruction 553, 556

FPACK32 operation 556

FPACKFIX instruction 553, 557

FPACKFIX operation 558

FPADD16 instruction 542
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FPADD16S instruction 542

FPADD32 instruction 542

FPADD32S instruction 542

FPMERGE instruction 553, 559

FPMERGE instruction, back-to-back execution 554

FPRS register

description 99

FEF field 102, 601

state after reset 440

FPSUB16 instruction 542

FPSUB16S instruction 542

FPSUB32 instruction 542

FPSUB32S instruction 542

FqTOd instruction 489

FqTOi instruction 488

FqTOs instruction 489

FqTOx instruction 488

FsMULd instruction 494

FSQRTd instruction 496

FSQRTq instruction 496

FSQRTs instruction 496

FSR

aexc field 409

cexc field 409

ftt field 124

nonstandard floating-point operation 124

NS field 124

= 1 124

=0 485

=1 485

RD field 4

state after reset 440

FSRC1 instruction 514

FSRC1S instruction 514

FSRC2 instruction 514

FSRC2S instruction 514

FsTOd instruction 489

FsTOi instruction 5, 488, 489

FsTOq instruction 489

FsTOx instruction 5, 488, 489

FSUB instruction 485

FSUBd instruction 483

FSUBq instruction 483

FSUBs instruction 483

FXNOR instruction 515

FXNORS instruction 515

FXOR instruction 515

FXORS instruction 515

FxTOd instruction 5, 491, 492

FxTOq instruction 491

FxTOs instruction 5, 491, 492

FZERO instruction 514

FZEROS instruction 514

G
generating constants 577

global registers

interrupt 114

trap 114

global registers 80, 82, 82

global visibility 212

graphics data format

fixed 16-bit 76

grouping rules 47–51

BMASK and BSHUFFLE 469

SIAM instruction 576

GSR

byte mask instruction 4

fields

ALIGN 104

IM (interval mode) field 103

IRND (rounding) 103

MASK 103

SCALE 104

mask, setting before BSHUFFLE 469

new fields 10

state after reset 441

write instruction latency 51

H
halfword

addressing 182

alignment 141

data format 65

halt 334

hardware

interlocking mechanism 521

table walking 258

traps 327

helper

cycle 49

execution order 49

generation 49

in pipelines 49
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I
i field of instructions 178, 454, 497, 499, 501, 503, 505,

507, 509, 512, 513, 518, 533, 536, 538, 560, 569,

571, 609, 611, 613, 614, 616, 618, 619

I pipeline stage 43

I/D

MMU Demap Operation 278

MMU TLB Tag Access Registers 279

MMU TSB Pointer register 286, 305

I/D Translation Storage Buffer Register

differences from UltraSPARC-I 8

I/D TSB Tag Target registers 277

I/O

access 220, 222

memory 210

memory-mapped 211

noncacheable address 217

IC_miss 373

IC_miss_cancelled 373

I-cache

miss processing 390

organization 388

organization illustrated 388

utilization 392

icc field of CCR register 96, 98, 454, 476, 518, 534, 592,

593, 596, 607, 610, 611, 617, 618

icc-conditional branches 607

IE, Invert Endianness bit 249

IEEE Std 754-1985 xlv, 124, 126, 131, 132, 151

IEEE_754_exception floating-point trap type xlv, 126,

126, 129, 132, 325, 348

IER register (SPARC V8) 602

IIU

branch prediction statistics 370

stall counts 370

illegal address aliasing 230

illegal_instruction exception 84, 109, 179, 346, 447, 471,

476, 480, 501, 504, 535, 537, 560, 567, 568, 569,

575, 585, 587, 597, 599, 613, 614, 615, 622, 623,

624, 625

illegal_instruction exception 191, 347, 562

ILLTRAP instruction 346, 500

images

band interleaved 76

band sequential 76

imm_asi field of instructions 142, 178, 477, 503, 505,

507, 509, 512, 513, 611, 613, 614

imm22 field of instructions 178

I-MMU

bypassing E-cache 228

context register usage 262

disabled 220, 263

Enable bit 133, 263

enable bits 263

and instruction prefetching 220

memory operation summary 298

Registers: Primary, Seconday, Nucleus 278

virtual address translation 294

IMPDEP2A instruction 346

IMPDEP2B instruction 346

implementation

dependency xxxviii

implementation note xlii

implementation number (impl) field of VER register 121
implicit

ASI 142

byte order 115

in registers 80, 84, 572

inexact accrued (nxa) bit of aexc field of FSR register 132

inexact current (nxc) bit of cexc field of FSR register 132

inexact mask (NXM) bit of TEM field of FSR register 128

inexact quotient 609, 610

initiated xlvi

instruction

breakpoint, trap priorities 347

buffer 390, 394

bypass 50

conditional branch 45

dependency check 48

dispatching properties 54

Edge 4

Edgencc 4

execution order 48

explicit synchronization 464

grouping rules 47–51

latency 48, 54

multicycle, blocking 48

number completed 369

prefetch 30, 220

SIAM 4

window-saving 52

with helpers 53

writing integer register 49

Instruction Cache 226

physically indexed

physically tagged 226

instruction cache

consistency 7
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disabled in RED_state 435

effect of mode change 226

flushing 7

reference counts 373

instruction fields

a 177, 470, 474, 477, 604, 607

cc0 177, 473, 474, 486, 533

cc1 177, 473, 474, 486, 533

cc2 177, 533

cond 177, 473, 474, 526, 533, 604, 607

const22 500

d16hi 177, 470

d16lo 177, 470

definition xlvi

disp19 178, 473, 474

disp22 178, 604, 607

disp30 178, 476

fcn 480

i 178, 454, 497, 499, 501, 503, 505, 507, 509, 512,

513, 518, 533, 536, 538, 560, 569, 571, 609, 611,

613, 614, 616, 618, 619

imm_asi 142, 178, 477, 503, 505, 507, 509, 611, 613,

614

imm22 178

mmask 178, 620

op3 178, 454, 477, 480, 497, 499, 501, 503, 505, 507,

509, 512, 513, 518, 538, 566, 569, 571, 609, 611,

613, 614, 616, 618, 619

opf 178, 484, 486, 488, 490, 492, 493, 495, 496

opf_cc 178, 526

opf_low 178, 526, 530

p 178, 470, 473, 474

rcond 178, 470, 530, 536

rd 178, 454, 477, 484, 488, 490, 492, 493, 495, 496,

501, 503, 505, 507, 509, 512, 513, 518, 526, 530,

533, 536, 538, 560, 566, 569, 609, 611, 613, 614,

616, 618, 619

reserved 447

rs1 178, 454, 470, 477, 484, 486, 495, 497, 501, 503,

505, 507, 509, 512, 513, 518, 530, 536, 538, 566,

569, 571, 609, 611, 613, 614, 616, 618, 619

rs2 178, 454, 477, 484, 486, 488, 490, 492, 493, 495,

496, 497, 501, 503, 505, 507, 509, 512, 513, 518,

526, 530, 533, 536, 538, 560, 571, 609, 611, 613,

614, 616, 618

shcnt32 178

shcnt64 178

simm10 178, 536

simm11 178, 533

simm13 179, 454, 497, 501, 503, 505, 507, 508, 512,

513, 518, 538, 560, 571, 609, 611, 613, 614, 616,

618

sw_trap# 179

x 179

instruction queue, state after reset 442

instruction set architecture (ISA) xlvi

instruction TLB 8

Instruction Translation Lookaside Buffer (iTLB)

misses 391

instruction_access_error exception 323

instruction_access_error exception 30

instruction_access_exception (ISA) exception 323

instruction_access_exception exception 114, 251, 258,

259, 307, 308, 347

instruction_access_exception exception 263

instruction_access_MMU_miss exception 259

INSTRUCTION_TRAP register 441

instructions

alignment 141, 141, 456

array addressing 154, 457

atomic 478

atomic load-store 477, 478, 512, 513, 625, 626

block load and store 461

branch if contents of integer register match condition

469

branch on floating-point condition codes 603

branch on floating-point condition codes with

prediction 471

branch on integer condition codes 605

causing illegal instruction 501

compare and swap 477

comparison 148, 592

control-transfer (CTIs) 158, 480

convert between floating-point formats 489

convert floating-point to integer 488

convert integer to floating-point 491

count of number of bits 560

divide 537, 608

DONE 113, 479

edge handling 155, 481

floating-point add and subtract 483

floating-point compare 123, 486, 486

floating-point move 493

floating-point multiply and divide 494

floating-point operate (FPop) 125, 129, 150, 612

floating-point square root 496

flush instruction memory 497

flush register windows 499
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formats 175

generate software-initiated reset 583

jump and link 159, 501

load floating-point 611

load floating-point from alternate space 504

load integer 506, 612

load integer from alternate space 508, 614

load quadword 510

load-store unsigned byte 478, 512, 626, 627

load-store unsigned byte to alternate space 513

logical 517

logical operate 516

move floating-point register if condition is true 524

move floating-point register if contents of integer

register satisfy condition 529

move integer register if contents of integer register

satisfies condition 536

multiply 537, 616, 616

ordering MEMBAR 157

partial store 541

partitioned add/subtract 155, 543

partitioned multiply 544

permuting bytes specified by GSR.MASK 468

pixel compare 156, 551

pixel component distance 552

pixel formatting (PACK) 155, 553

prefetch data 560

read privileged register 566

read state register 568, 619

register window management 157

reserved 179

reserved fields 447

RETRY 113, 479

RETURN vs. RESTORE 571

sequencing MEMBAR 157

set high bits of low word 577

set interval arithmetic mode 576

setting GSR.MASK field 154, 468

shift 147, 578

shift count 579

short floating-point load/store 581

shut down to enter power-down mode 582

software-initiated reset 583

store 588

store floating point 584

store floating-point into alternate space 586, 586

store integer 588

store integer into alternate space 590

subtract 591, 591

swap r register with alternate space memory 626

swap r register with memory 625

tagged addition 593

tagged arithmetic 147

tagged subtraction 594

timing 447

trap on condition codes 596

trap on integer condition codes 595

unimplemented 179

write privileged register 597

writing privileged register 599

integer register file access 44

integer unit (IU)

condition codes 98

interrupt

differences from UltraSPARC-I 9

enable (IE) field of PSTATE register 117, 322, 324,

347

on floating-point instructions 102

global registers 114

level 117

request xlvi, 315

trap 353

vector dispatch 352

vector dispatch register 355

vector dispatch status register 356

vector receive 353

vector receive register 357

Interrupt Vector Dispatch Register 355

Interrupt Vector Dispatch Status Register 356

interrupt_vector exception 102

interrupt_vector trap 114

interrupt_vector_trap exception 349

interval arithmetic

support 4

INTR_DISPATCH register 442

INTR_RECEIVE register 442

invalid accrued (nva) bit of aexc field of FSR register 131

invalid current (nvc) bit of cexc field of FSR register 131

invalid mask (NVM) bit of TEM field of FSR register 128

invalid_exception exception 489

invalid_fp_register floating-point trap type 89, 126, 494,

497

invalidation

prefetch cache 562

I-SFSR

and ASI operations 277

bit description 287, 306

NF field always 0 306
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issued xlvii

italic font, in assembly language syntax 633

ITID field of Interrupt Vector Dispatch register 352, 355

I-TLB

state after reset 443

J
JMPL instruction 30, 45, 261, 436

computing target address 159

description 501

destination register 99

does not change CWP 86

mem_address_not_alligned exception 347

reexecuting trapped instruction 571

jump and link (JMPL) instruction 159, 501

K
kernel code 358

L
latency

BMASK and BSHUFFLE 469

floating-point operations 50

FPADD instruction 543

partitioned multiply 544

LD instruction (SPARC V8) 507

LDD instruction 222, 506, 612

LDDA instruction 84, 206, 508, 510, 614

LDDF instruction 141, 349, 502, 611

LDDF_mem_address_not_aligned exception 141, 323,

349, 506

LDDFA instruction 141, 191, 460, 504, 541, 580

LDF instruction 502, 611

LDFA instruction 504

LDFSR instruction 53, 123, 125, 223, 347, 611

LDQF instruction 179, 502, 611

LDQFA instruction 504

LDSB instruction 222, 506, 612

LDSBA instruction 508, 614

LDSH instruction 222, 506, 612

LDSHA instruction 508, 614

LDSTUB instruction 143, 217, 512, 513

LDSTUBA instruction 512, 513

LDSW instruction 222, 506, 612

LDSWA instruction 508, 614

LDUB instruction 506, 612

LDUBA instruction 508, 614

LDUH instruction 506, 612

LDUHA instruction 508, 614

LDUW instruction 506, 612

LDUWA instruction 508, 614

LDX instruction 506, 612

LDXA instruction 508, 614

LDXFSR instruction 122, 123, 125, 223, 347, 502, 611

leaf subroutine 392

level 2 cache 227

level-1 cache 225

flushing 229

little-endian

ordering in partial store instructions 541

little-endian byte order xlvii, 115, 140

load floating-point from alternate space instructions 504

load floating-point instructions 611

load instructions xlvii

load instructions, getting data from store queue 222

load integer from alternate space instructions 508, 614

load integer instructions 506, 612

load quadword atomic 206, 510

load recirculation 224

LoadLoad MEMBAR relationship 520

LoadLoad predefined constant 637

loads

from alternate space 98, 142

load-store alignment 141, 141

load-store instructions 143

compare and swap 477

definition xlvii

and fast_data_access_protection exception 349

load-store unsigned byte 478, 512, 626, 627

load-store unsigned byte to alternate space 513

swap r register with alternate space memory 626

swap r register with memory 478, 625

LoadStore MEMBAR relationship 520

LoadStore predefined constant 637

local registers 80, 84, 573

logical instructions 517

Lookaside MEMBAR relationship 520

Lookaside predefined constant 637

lower registers dirty (DL) field of FPRS register 100
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M
M pipeline stage 45

machine state

after reset 438

in RED_state 438

mask number (mask) field of VER register 121

maximum trap levels (MAXTL) field of VER register

122

MAXTL 117, 317, 319, 336, 337, 338, 435, 583

may (keyword) xlvii

MCU 31, 436

Mem_Addr_CTL register 442

Mem_Addr_Dec register 442

mem_address_not_aligned exception 141, 258, 259, 260,

277, 287, 306, 347, 479, 502, 503, 504, 506, 507,

508, 509, 510, 571, 572, 582, 585, 587, 589, 590,

614, 615, 622, 623, 625, 626, 628

mem_address_not_aligned exception 191, 192, 206, 261

mem_address_not_aligned trap 394

Mem_Timing_CSR register 442

MEMBAR

#LoadLoad 212, 520, 637

#LoadStore 212, 520, 637

#LoadStore and block store 464

#Lookaside 210

#MemIssue 210, 521

#StoreLoad 520, 637

and BLD 464

and BST 464

for strong ordering 521

#StoreStore 499, 520, 637

and BST 464

code example 212

#Sync 231, 277, 290, 308

after BST 463

after internal ASI store 221

BLD and BST 463

E-cache flushing 7

semantics 214

for strong ordering 521

instruction 157, 178, 354, 498, 519, 569, 620

explicit synchronization 212

grouping rules 53

memory ordering 213

side-effect accesses 220

single group 53

QUAD_LDD requirement 523

rules for interlock implementation 521

UltraSPARC-III specifics 521

membar_mask 637

MemIssue MEMBAR relationship 520

MemIssue predefined constant 637

memory

access instructions 143

bank, access counts 378

cached 210

current model, indication 210

global visibility of memory accesses 212

location 210

models

and block operations 464

ordering and block store 464

partial store order (PSO) 209, 464

relaxed memory order (RMO) 464

strongly ordered 222, 521

total store order (TSO) 209

total store order (TSO)TSO 464

noncacheable, scratch 228

ordering 212

subsystem, differences from UltraSPARC-I 6

synchronization 213

Memory Management Unit (MMU) 245

memory_model (MM) field of PSTATE register 115

memory-mapped I/O 211

merge buffer 222

mispredict signal 45

mmask field of instructions 178, 620

MMU ??–293

accessing registers 277

behavior during reset 263

bypass 294

D Synchronous Fault Address Register 277

D TSB Secondary Extension Registers 277

demap 290, 308

all 290, 308

context 290, 292, 308, 310

operation syntax 290, 309

page 290, 291, 308, 310

disable 263

global registers 114, 258

I/D Synchronous Fault Status Registers 277, 287, 306

I/D TLB Data Access Registers 278

I/D TLB Data In Registers 278

I/D TLB Tag Access register 277

I/D TLB Tag Read Register 278

I/D TSB 64K Pointer Registers 278

I/D TSB 8K Pointer Registers 277

I/D TSB Extension Registers 285, 305
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I/D TSB Nucleus Extension Register 277

I/D TSB Primary Extension Register 277

I/D TSB register 277

I/D TSB Registers 284, 303

page sizes 245

Physical Watchpoint Address 277

Primary Context Register 277

Secondary Context Register 277

SPARC V9 compliance 264

Synchronous Fault Address Registers 289

Synchronous Fault Status Register

fault types 289, 307

Tag Target Registers 283, 303

TLB Diagnostic Access Address 292, 310

Virtual Watchpoint Address 277

mode

privileged 109

user 98

MOVA instruction 531

MOVCC instruction 531

MOVcc instructions 98, 123, 144, 177, 178, 528, 529,

535

grouping rules 54

MOVCS instruction 531

move floating-point register if condition is true 524

move floating-point register if contents of integer register

satisfy condition 529

MOVE instruction 531

move integer register if contents of integer register

satisfies condition instructions 536

MOVFA instruction 532

MOVFE instruction 532

MOVFG instruction 532

MOVFGE instruction 532

MOVFL instruction 532

MOVFLE instruction 532

MOVFLG instruction 532

MOVFN instruction 532

MOVFNE instruction 532

MOVFO instruction 532

MOVFU instruction 532

MOVFUE instruction 532

MOVFUG instruction 532

MOVFUGE instruction 532

MOVFUL instruction 532

MOVFULE instruction 532

MOVG instruction 531

MOVGE instruction 531

MOVGU instruction 531

MOVL instruction 531

MOVLE instruction 531

MOVLEU instruction 531

MOVN instruction 531

MOVNE instruction 531

MOVNEG instruction 531

MOVPOS instruction 531

MOVR instructions

grouping rules 54

MOVr instructions 178, 536

MOVRGEZ instruction 536

MOVRGZ instruction 536

MOVRLEZ instruction 536

MOVRLZ instruction 536

MOVRNZ instruction 536

MOVRZ instruction 536

MOVVC instruction 531

MOVVS instruction 531

MS pipeline

description 43

E-stage bypass 48

instruction requirements 4

integer instruction execution 44

and W-stage 46

multiple unsigned condition codes, emulating 146

multiply instructions 537, 616, 616

multiprocessor synchronization instructions 478, 626,

627

multiprocessor system 498, 626, 627

MULX instruction 537

must (keyword) xlviii

mutual exclusion, atomic instructions 216

M-way set-associative TSB 251

N
NaN (not-a-number)

converting floating-point to integer 489

quiet 487

signalling 123, 487, 490

negative (N) bit of condition fields of CCR 97

next program counter (nPC) 99, 110, 180, 480, 539

nonallocating cache 393

noncacheable

accesses 211

I/O address 217

instruction prefetch 30, 221

store compression 222
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store compression, differences from UltraSPARC-I 10

store merging enable 133

nonfaulting

ASIs and atomic accesses 217

load

and TLB miss 218

behavior 218

use by optimizer 218

nonfaulting load xlviii, 250, 289

nonleaf routine 502

nonprivileged

mode xliii, 125

software 99

nonprivileged trap (NPT) field of TICK register 570

nonstandard floating-point operation 124

NOP instruction 473, 538, 596, 604, 607

normal traps 316, 326, 335, 335, 337, 337, 338, 339

note

implementation xlii

programming xlii

nPC register 438

nPC register, See next program counter (nPC)

NS field of FSR 124

Nucleus code 358

Nucleus Context Register 278

NWINDOWS 83, 84, 573

O
op3 field of instructions 178, 454, 477, 480, 497, 499,

501, 503, 505, 507, 509, 512, 513, 518, 538, 566,

569, 571, 609, 611, 613, 614, 616, 618, 619

opcode

definition xlix

opf field of instructions 178, 484, 486, 488, 490, 492,

493, 495, 496

opf_cc field of instructions 178, 526

opf_low field of instructions 178, 526, 530

OR instruction 517

ORcc instruction 517

ordering

block load 464

block store 464

ordering MEMBAR instructions 157

ORN instruction 517

ORNcc instruction 517

other windows (OTHERWIN) register 119, 500, 566,

573, 598

OTHERWIN register 440

out register #7 82

out registers 84, 572

overflow (V) bit of condition fields of CCR 97, 147

overflow accrued (ofa) bit of aexc field of FSR register

131

overflow current (ofc) bit of cexc field of FSR register 131

overflow mask (OFM) bit of TEM field of FSR register

128

P
p field of instructions 178, 470, 473, 474

PA Data Watchpoint Register

DB_PA field 137

format 137

PA_watchpoint exception 136, 349

PA_WATCHPOINT register 441

packed-to-planar conversion 155, 559

partial store instruction 51

partial store instructions 540

partitioned multiply instructions 544

PC register 438

PC register, See program counter (PC)

PC, Instr_cnt 369

PC_1st_rd 374

PC_2nd_rd 374

PC_counter_inv 374

PC_hard_hit 374

PC_MS_misses 374

PC_soft_hit 374

PCR

access 364, 365

extension 10

fields

PRIV 365

ST(system trace enable) field 365

SU (select upper bits of PIC) field 365

UT (user trace enable) field 365

function

Cycle_cnt 369

DC_hit 373

Dispatch0_2nd_br 371

Dispatch0_br_target 371

Dispatch0_IC_miss 370

Dispatch0_mispred 371

EC_ref 375

EC_snoop_inv 375
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EC_snoop_wb 375

EC_wb 375

EC_write_hit_clean 375

IC_ref 373

SI_snoops 384

ST field 369

state after reset 441

UT field 369

PDIST instruction 552

PDIST, instruction latency 51

performance hints

FPACK usage 554

FPADD usage 543

logical operate instructions 516

partitioned multiply usage 544

physical address

data watchpoint 137

Physical Indexed Caches 226

Physical Tagged Caches 226

PIC register

and PCR 364

access 364, 365

event logging 366

PIC0 Events 385

PIC1 Events 385

PICL field 367

SL selection bit field encoding 385

state after reset 441

PIL register 439

pipeline

A0 43, 44

A1 43

BR 43

conditional moves 53

dependencies 44

FFA 43, 385

FGA xlv, 469

FGM xlv, 43, 385

MS 4, 43, 44, 46

stages

A 42, 45

B 43

C 45, 46

D 46, 370

E 44

F 42

I 43

M 45

mnemonics 38

R 44, 372

T 46

W 46

stalls, causes 370

PIPT cache

E-cache 7

I-cache 7

level 2 caches 227

W-cache 6

pixel instructions

comparison 156, 551

component distance 552

formatting 155, 553

planar-to-packed conversion 559

POK pin 31, 436

POPC instruction 179, 559

power failure 323, 342

power_on_reset (POR) 317, 319, 339

power-on reset (POR) 107, 108

system reset when Reset pin activated 31, 437

precise floating-point traps 568

precise trap

conditions for 321

software actions 321

vs. disrupting trap 322

predefined constants

LoadLoad 637

lookaside 637

MemIssue 637

StoreLoad 637

StoreStore 637

Sync 637

predict bit 470

prefetch

differences from UltraSPARC-I 4

instruction, noncacheable 30

instructions 220

invalidate prefetched line 4

noncacheable data 562

Prefetch Cache

physically indexed

physically tagged 227

prefetch cache

characteristics 6

corrupted by block load 401

flushing 7

invalidation 402, 562

valid bits 31, 436

prefetch data instruction 560
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PREFETCH instruction 164, 560

descriptions 218

execution 400

external cache allocation 228

P-cache/E-cache 399

types 399, 562

prefetch_fcn 637

PREFETCHA instruction 560

Primary Context Register 278

priority

traps 324, 331

VA vs. PA_watchpoint 136

privileged

mode 109

registers 109

software 84, 116, 125, 142, 326, 499

privileged (PRIV) field of PSTATE register 117, 347,

478, 505, 514, 570, 587, 590, 624, 627

privileged mode (PRIV) field of PSTATE register 117

privileged registers 52

privileged_action exception 98, 142, 258, 259, 260, 275,

323, 347, 355, 356, 357, 479, 505, 506, 509, 510,

514, 570, 587, 590, 615, 624, 625, 628

privileged_action exception 189, 210, 217, 363, 364, 366

PIC access 365

privileged_instruction exception (SPARC V8) 348

privileged_opcode exception 323, 347, 358, 480, 568,

575, 599

privileged_opcode exception 347

processor

front end components 387

halt 334

state diagram 316

processor interrupt level (PIL) register 117, 322, 324,

347, 358, 566, 598

processor pipeline

address stage 42

branch target computation stage 43

cache stage 45

done stage 46

execute stage 44

fetch stage 42

instruction issue 43

register stage 44

trap stage 46

processor state (PSTATE) register 83, 110, 112, 115, 315,

317, 480, 566, 598

processor states

error_state 317, 320, 334, 335, 336, 337, 338, 344

execute_state 334, 336, 337, 338

RED_state 317, 319, 326, 334, 335, 336, 337, 338,

339, 341, 344

program counter (PC) 99, 109, 180, 315, 477, 480, 501,

539

programming note xlii

PSO memory model 209, 212, 213, 220

PSR register (SPARC V8) 602

PSTATE

AM field 116, 117, 185

global register selection encodings 113

IE field 102, 103, 358

IG field 113, 114, 354

illegal_instruction exception 347

MG field 113, 114

MM field 210

PEF field 601

PRIV field xlviii, xlix, 210, 217, 251, 260

RED field 102

clearing DCUCR 435

exiting RED_state 30, 221, 436

explicitly set 435

register 114

state after reset 439

WRPR instruction and BST 463

Q
Quad FPop instructions 179

quad load instruction 222, 523

quadword

addressing 183

alignment 141

data format 65

definition l

queue

instruction, state after reset 442

store, state after reset 442

quiet NaN (not-a-number) 123, 427, 487

R
R pipeline stage 44

r register

#15 82

categories 81

alignment 613, 615
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rational quotient 609

R-A-W

Bypass Enable bit in DCUCR 133

bypassing algorithm 222

bypassing data from store queue 133

detection algorithm 224

rcond field of instructions 178, 470, 530, 536

RD field of FSR register 4

rd field of instructions 178, 454, 477, 484, 488, 490, 492,

493, 495, 496, 501, 503, 505, 507, 509, 512, 513,

518, 526, 530, 533, 536, 538, 560, 566, 569, 609,

611, 613, 614, 616, 618, 619

RDASI instruction 568, 568, 619

RDASR instruction 100, 347, 364, 365, 568, 568, 619,

620

dispatching 52

forcing bubbles before 52

RDCCR instruction 56, 568, 568, 619

RDDCR instruction 568

RDFPRS instruction 568, 568, 619

RDGSR instruction 568

RDPC instruction 99, 568, 568, 619

RDPCR instruction 568

RDPIC instruction 365, 568

RDPR FQ instruction 179

RDPR instruction 109, 113, 118, 120, 347, 566, 570

dispatching 52

forcing bubbles before 52

RDSOFTINT instruction 568

RDSTICK instruction 568

RDSTICK_CMPR instruction 568

RDTICK instruction 568, 568, 570, 619

RDTICK_CMPR instruction 568

RDY instruction 96

Re_DC_miss counter 372

Re_EC_miss counter 372

Re_FPU_bypass counter 372

Re_PC_miss counter 372

Re_RAW_miss counter 372

read privileged register (RDPR) instruction 566

read state register instructions 568, 619

real memory 210

recirculation instrumentation 372

RED_state 263, 264, 316, 317, 319, 326, 334, 335, 336,

337, 338, 339, 341, 344

exiting 221

MMU behavior 263

restricted environment 319

trap vector 32, 318, 438

RED_state (RED) field of PSTATE register 115, 317

RED_state trap table 326

reference MMU 633

register

access

floating-point 45

integer 44

Floating-Point Status (FSR) 124

global trap 114

PSTATE 114

SOFTINT 10

STICK 10

values after reset 438

register window management instructions 157

register windows 84

clean 120, 348

fill 84, 158, 346, 573, 575

spill 84, 158, 348, 573, 575

registers

accessing MMU registers 277

address space identifier (ASI) 315, 480, 505, 509,

513, 562, 587, 590, 601, 615, 624, 627

alternate global 82

ancillary state registers (ASRs) 96, 100

ASI 98, 110

CANRESTORE 119

CANSAVE 118

clean windows (CLEANWIN) 119, 119, 566, 598

CLEAR_SOFTINT 358

clock-tick (TICK) 347

condition codes register (CCR) 110, 315, 454, 480,

601, 618

control and status 96

current window pointer (CWP) 84, 110, 118, 119,

120, 315, 480, 500, 566, 573, 598

dispatch control register (DCR) 100

f (floating point) 325

floating-point 89

floating-point registers state (FPRS) 99, 569, 601

floating-point state (FSR) 122, 129, 132, 612, 621

global 80, 82, 82

IER (SPARC V8) 602

in 80, 84, 572

Interrupt Vector Dispatch register 355

Interrupt Vector Dispatch Status register 356

Interrupt Vector Receive register 357

local 80, 84, 573

MMU Tag Target 283, 303

other windows (OTHERWIN) 119, 500, 566, 573,
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598

out 84, 572

out #7 82

PC 99

performance control (PCR) 364

privileged 109

processor interrupt level (PIL) 117, 566, 598

processor state (PSTATE) 83, 110, 112, 115, 315,

317, 480, 566, 598

PSR (SPARC V8) 602

r 81

r register #15 82

restorable windows (CANRESTORE) 84, 119, 120,

566, 573, 575, 598

savable windows (CANSAVE) 84, 118, 119, 500,

566, 573, 575, 598

SET_SOFTINT 358

SOFTINT 358

TBR (SPARC V8) 602

TICK 106, 107, 566, 598

TICK_COMPARE 107

trap base address (TBA) 111, 315, 325, 566, 598

trap level (TL) 109, 112, 117, 117, 120, 122, 315,

480, 566, 567, 575, 583, 598, 599

trap next program counter (TNPC) 110, 566, 598

Trap Program Counter 308

trap program counter (TPC) 566, 568, 598

trap state (TSTATE) 110, 113, 480, 566, 598

trap type (TT) 110, 112, 120, 326, 343, 566, 596, 598

update 289, 308

version register (VER) 120, 566

WIM (SPARC V8) 602

window state (WSTATE) 118, 120, 500, 566, 573,

598

Y 96, 96, 609, 616, 618, 631

reserved

fields in instructions 447

instructions 179

reset

externally_initiated_reset (XIR) 317, 318, 319, 323,

339, 342, 348

global 263

power_on_reset (POR) 317, 319, 339, 347, 347

power-on 107, 108

processing 317

PSTATE.RED 435

register values after reset 438

request 317, 347, 348

reset trap 107, 108, 322, 323

software Initiated Reset (SIR) 436

software_initiated_reset (SIR) 317, 319, 323, 334,

343, 348

system 31, 437

watchdog_reset (WDR) 339, 342, 349

Reset pin 31, 437

restorable windows (CANRESTORE) register 84, 119,

120, 566, 573, 575, 598

RESTORE instruction 572–574

actions 158

and current window 85

decrementing CWP register 84

fill trap 346

followed by SAVE instruction 86

managing register windows 157

operation 572

performance trade-off 573

and restorable windows (CANRESTORE) register

119

restoring register window 573

SPARC V9 vs. SPARC V8 119

RESTORED instruction 158, 574, 574, 574

use by privileged software 157

RESTORED instruction, single group 52

restricted address space identifier 142

restricted ASI 189, 210, 275

RETRY instruction 98, 103, 114, 159, 315, 317, 322,

347, 479

after internal store to ASI 221

and BST 463

exiting RED_state 30, 436

grouping rules 53

restoring AG, IG, MG bits 113

use with IFPOE 103

when TSTATE uninitialized 31, 437

Return Address Stack (RAS) 392

RETURN instruction 45, 261, 570–572

computing target address 159

destination register 99

fill trap 346

mem_address_not_aligned exception 347

operation 570

reexecuting trapped instruction 571

Rfr_CSR register 442

RMO memory model 209, 212, 213, 220, 464

rounding

behavior in GSR 103

for floating-point results 124

in signed division 610
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rounding direction (RD) field of FSR register 124, 484,

488, 490, 492, 495, 497

routine, nonleaf 502

rs1 field of instructions 178, 454, 470, 477, 484, 486,

495, 497, 501, 503, 505, 507, 509, 512, 513, 518,

530, 536, 538, 566, 569, 571, 609, 611, 613, 614,

616, 618, 619

rs2 field of instructions 178, 454, 477, 484, 486, 488,

490, 492, 493, 495, 496, 497, 501, 503, 505, 507,

509, 518, 526, 530, 533, 536, 538, 560, 609, 611,

613, 614, 616, 618

R-stage stall counts 372

Rstall_FP_use counter 372

Rstall_IU_use counter 372

Rstall_storeQ counter 372

RSTVaddr 32, 318, 326, 438

S
savable windows (CANSAVE) register 84, 118, 119, 500,

566, 573, 575, 598

SAVE instruction 572–574

actions 158

after RESTORE instruction 571

clean_window exception 348

and current window 85

decrementing CWP register 84

leaf procedure 502

and local/out registers of register window 86

managing register windows 157

no clean window available 120

number of usable windows 119

operation 572

performance trade-off 573

and savable windows (CANSAVE) register 118

SPARC V9 vs. SPARC V8 119

spill trap 348

SAVED instruction 157, 158, 574, 574, 574

SAVED instruction, single group 52

Scalable Processor Architecture see  SPARC

scaling of the coefficient 545

SDIV instruction 96, 608

SDIVcc instruction 96, 608

SDIVX instruction 537

Secondary Context Register 278

self-modifying code 498

sequence_error floating-point trap type 126, 348

sequencing MEMBAR instructions 157

Set Interval Arithmetic Mode (SIAM) instruction 4

SET_SOFTINT pseudo-register 358

SETCC instruction, grouping 49

SETHI instruction 147, 148, 178, 539, 577, 577

SFAR Fault Address field 289

SFSR

bit description 287, 306

extensions 8

FT field 8

extension: I/D TLB miss 8

FT = 10 218

FT = 2 211, 218, 220

FT = 4 217

FT = 8 217, 218

NF field 8

state after reset 442

update policy 289, 308

shall (keyword) li

shcnt32 field of instructions 178

shcnt64 field of instructions 178

shift count encodings 579

shift instructions 147, 148, 578

short floating-point load and store instructions 191, 580

short floating-point load instruction 223

should (keyword) li

SHUTDOWN instruction 582

differences from UltraSPARC-I 5

SIAM instruction 575

grouping rules 51

interval arithmetic support 4

rounding 576

setting GSR fields 576

side effect

accesses 211, 220

and block load 464

instruction placement 220

instruction prefetching 220

visible 211

SIGM instruction 435

signalling NaN (not-a-number) 123, 487, 490

signed integer data type 65

sign-extended 64-bit constant 179

simm10 field of instructions 178, 536

simm11 field of instructions 178, 533

simm13 field of instructions 179, 454, 497, 501, 503,

505, 507, 509, 512, 513, 518, 538, 560, 571, 609,

611, 613, 614, 616, 618

single-instruction group 48, 49, 51, 52, 53, 56

SIR instruction 32, 323, 343, 348, 438, 583, 601
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grouping rule 53

SLL instruction 578, 578

SLLX instruction 578, 578

SMUL instruction 96, 616

SMULcc instruction 96, 616

snooping

snoop counts 384

SOFTINT register 10, 358, 440

software interrupt (SOFTINT) register

clearing 358

in code sequence for Interrupt Receive 353

scheduling interrupt vectors 358

setting 358

software prefetch 399

software statistics, counters 384

software translation table 246

software trap 326, 327, 327, 596

software_initiated_reset (SIR) 32, 317, 319, 323, 334,

339, 343, 348, 438, 583

Software-Initiated Reset (SIR) 53, 436

SPARC xxxvii

Architecture Manual, Version 9 xxxvii

brief history xxxvii

International, address of xxxviii

V9, architecture xxxvii

SPARC V8 compatibility

ADDC/ADDCcc renamed 455

current window pointer (CWP) register differences

119

delay instruction 159

delay instruction fetch 162

executing delayed conditional branch 162

existing nonprivileged SPARC V8 software 83

instruction between FBfcc /FBPfcc 473

LD, LDUW instructions 507

level 15 interrupt 118

read state register instructions 570

STA instruction renamed 590

STBAR instruction 521, 620

STD instruction 623

STDA instruction 625

STFSR instruction 621

tagged add instructions 629

tagged subtract instructions 630

Ticc instruction 597

UNIMP instruction renamed 501

window_overflow exception superseded 348

window_underflow exception superseded 346

write state register instructions 602

SPARC V9

compliance xlix, 264

special traps 316, 326

speculative load 211

spill register window 84, 158, 348, 573, 575

spill windows 573

spill_n_normal exception 348, 500, 574

spill_n_other exception 348, 500, 574

SRA instruction 578, 578

SRAM

changes 9

new diagnostic registers 9

SRAX instruction 578, 578

SRL instruction 578, 578

SRLX instruction 578, 578

SSM mode

globally visible memory access 212

stable storage 231

stack frame 573

stalls

counted 370

pipeline 370

R Stage counts 372

STB instruction 588

STBA instruction 589

STBAR instruction 213, 521, 569

STDA instruction 84

STDF instruction 141, 349, 584

STDF_mem_address_not_aligned exception 141, 323,

349, 585, 587

STDFA instruction 141, 191, 460, 540, 580, 586, 586

STF instruction 584

STFA instruction 586

STFSR instruction 122, 123, 125, 347

STH instruction 588

STHA instruction 589

STICK register 10, 440, 568

STICK_COMPARE register 108, 440, 568

STICK_INT 358

store

buffer

merging 220

compression 211, 222

instructions, giving data to a load 223

noncacheable, coalescing 222

queue

R-stage stall count 372

state after reset 442

store buffer 394
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store floating-point into alternate space instructions 586

store instructions lii, 349

StoreLoad MEMBAR relationship 520

StoreLoad predefined constant 637

stores to alternate space 98, 142

StoreStore MEMBAR relationship 520

StoreStore predefined constant 637

STQF instruction 179, 584

STQFA instruction 586, 586

strongly ordered memory model 222, 521

STW instruction 588

STWA instruction 589

STX instruction 588

STXA instruction 589

STXFSR instruction 122, 123, 125, 347, 584

SUB instruction 591, 591

SUBC instruction 591, 591

SUBcc instruction 148, 591, 591

SUBCcc instruction 591, 591

subtract instructions 591

supervisor software 83, 126, 142, 315, 334, 343

supervisor-mode trap handler 326

SW_count_0 384

SW_count_1 384

sw_trap# field of instructions 179

SWAP instruction 217, 512, 513, 625

swap r register with alternate space memory instructions

626

swap r register with memory instructions 478, 625

SWAPA instruction 512, 513, 626

Sync MEMBAR relationship 520

Sync predefined constant 637

Synchronous Fault Address Register (SFAR) 289

Synchronous Fault Status Register (SFSR)

fault types 289, 307

register bits 287, 306

synthetic instructions in assembler 638–??

system interface

registers 10

statistics, counters 384

system interface unit (SIU) instructions 45

system software 348, 498

system timer interrupt, STICK_INT 358

T
T pipeline stage 46

TA instruction 595

TADDcc instruction 147, 592

TADDccTV instruction 148, 348

Tag Access Register 253, 279, 280, 298, 299

tag overflow 147

tag_overflow exception 148, 348, 593, 594, 628, 629,

630

tagged arithmetic instructions 147

tagged word data format 65

tagged words 65

TBA register 439

TBR register (SPARC V8) 602

TCC instruction 595

Tcc instructions 98, 177, 179, 315, 326, 327, 347, 348,

595

TCS instruction 595

TE instruction 595

TG instruction 595

TGE instruction 595

TGU instruction 595

Ticc instruction 5

Ticc instruction (SPARC V8) 597

TICK register

state after reset 440

TICK_COMPARE register 107, 440

TICK_INT 358

timer interrupt, TICK_INT 358

timing of instructions 447

TL instruction 595

TL register 439, 599

TLB

and 3-dimensional arrays 459

and RED_state 263

CAM Diagnostic Register 292, 310

data access 45

Data Access register 8, 281, 300, 301

Data In register 253, 281, 301

data in register 281, 281, 300, 301

Diagnostic Register 8

differences from UltraSPARC-I 8

D-TLB state after reset 443

flushing 8

hit lii

instruction 259

I-TLB state after reset 443

miss

fast handling 258

handler 247, 253

MMU behavior 247

reloading TLB 251
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miss and nonfaulting load 218

miss counts 373

miss handler 253

miss/refill sequence 253

missing entry 253

required conditions 258

specialized miss handler code 264

Tag Access Registers 279, 298

TLE instruction 595

TLEU instruction 595

TN instruction 595

TNE instruction 595

TNEG instruction 595

TNPC register 321, 439

total store order (TSO) memory model 115

TPC register 439

TPOS instruction 595

Translation

Storage Buffer (TSB) 251, 284, 285, 303, 304

Table Entry (TTE) 248, 259

Translation Table Entry, See TTE
trap

See also exceptions and traps

atomic accesses 217

atomic instructions 217

definition 315

ECC_error 349

fp_disabled

GSR access 601

fp_disabled 102

fp_exception_ieee_754 102

fp_exception_other 102, 124

level 117

TL = MAXTL 435

TL = MAXTL - 1 435

model 323

noncacheable accesses 211

priority 324, 331

processing 334

stack 113, 336, 337, 338

VA_/PA_watchpoint 136

vector, RED_state 318

trap base address (TBA) register 111, 315, 325, 566, 598

trap categories

deferred 322

disrupting 322, 322, 323

precise 322

reset 323

trap enable mask (TEM) field of FSR register 128, 128,

129, 324, 325, 348

trap globals 114

trap handler 480

ECC errors 349

supervisor-mode 326

user 126, 425

trap level (TL) register 109, 112, 117, 117, 120, 122,

315, 480, 566, 567, 575, 583, 598, 599

trap next program counter (TNPC) register 110, 566, 598

trap on integer condition codes instructions 595

trap program counter (TPC) register 308, 566, 568, 598

trap state (TSTATE) register 110, 113, 480, 566, 598

trap type (TT) register 110, 112, 120, 326, 343, 566, 596,

598

trap_instruction (ISA) exception 323, 348, 596, 597

trap_little_endian (TLE) field of PSTATE register 115,

115

traps

See also exceptions and trap

deferred 321

disrupting 321

hardware 327

normal 316, 326, 335, 335, 337, 337, 338, 339

precise 321

reset 321, 322, 323, 334

software 327, 596

software_initiated_reset (SIR) 339

special 316, 326

window fill 326

window spill 326

TSB 391

cacheability 252

caching 252

demap operation 291, 309

Direct Pointer registers 286, 305

Extension Register 277, 285, 304

Extension Registers

new additions 8

TSB_Hash field 286, 305

I/D Translation Storage Buffer Register 284, 303

indexing support 251

miss handler 253

organization 252

pointer logic 256

pointer logic hardware 256

Pointer register 287, 306

register, computing 64-Kbyte pointer 251

required conditions 258

SB_Size field 255
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split 255

Tag Target Register 255

Tag Target register 283, 303

TSO memory model 209, 210, 211, 213, 220

TSTATE register

initializing 31, 437

PEF field 102

state after reset 440

TSUBcc instruction 147, 593

TSUBccTV instruction 148, 348

TT register 439

TTE

CP (cacheability) field 211, 217

CP field 250

CV (cacheability) field 211, 217

CV field 250

Diag field 249

E field 210, 211, 218, 220, 250

entry, locking in TSB 250

format 8

G field 248, 251

L field 250

NFO field 218, 249

P field 251

PA field 249

Size field 249

Soft2 field 249

V field 248

VA_tag field 248

W field 251

TVC instruction 595

TVS instruction 595

typewriter font, in assembly language syntax 633

U
UART 211

UDIV instruction 96, 608

UDIVcc instruction 96, 608

UDIVX instruction 537

UltraSPARC-I 3, 521

UltraSPARC-II 3, 521

UMUL instruction 96, 616

UMULcc instruction 96, 616

unconditional branches 473, 475, 604, 607

underflow accrued (ufa) bit of aexc field of FSR register

131

underflow current (ufc) bit of cexc field of FSR register

131

underflow mask (UFM) bit of TEM field of FSR register

128, 131, 424, 425

unfinished_FPop exception 124

unfinished_FPop exception 5, 428, 489, 491, 492

unfinished_FPop floating-point trap type 126, 126, 132,

496

UNIMP instruction (SPARC V8) 501

unimplemented instructions 179

unimplemented_FPop floating-point trap type 126, 128,

132, 485, 487, 489, 491, 492, 496, 529, 531

unsigned integer data type 65

upper registers dirty (DU) field of FPRS register 100

user

mode 98

trap handler 126, 425

V
VA Data Watchpoint Register

DB_VA field 136

VA_watchpoint exception 136, 349

VA_WATCHPOINT register 441

VER

register 440

version register (VER) 120, 566

VIPT cache

D-cache 6

virtual address 210

data watchpoint 136

virtual address 0 218

Virtual Indexed, Physical Tagged Caches 225

virtual-indexed

physical-tagged (VIPT) cache 225

virtually indexed, physically tagged (VIPT) 393

virtual-to-physical address translation 210

VIS extensions

byte mask 4

byte shuffle 4

differences from UltraSPARC-I 4

edge variants 4

VIS instruction execution 45

Visual Instruction Set (VIS) 103

W
W pipeline stage 46
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watchdog_reset (WDR) 32, 320, 339, 342, 349, 437

watchpoint

and RED_state 435

watchpoints

data registers 136

PA/VA watchpoint traps 260

trap 259

WC_miss 374

WC_scrubbed 374

WC_snoop_cb 374

WC_wb_wo_read 374

WIM register (SPARC V8) 602

window changing 52

window fill trap handler 157

window overflow 84

window spill trap handler 157

window state (WSTATE) register

description 120

overview 118

reading WSTATE with RDPR instruction 566

spill exception 500

spill trap 573

writing WSTATE with WRPR instruction 598

window underflow 84

window, clean 572

window_fill exception 120, 326, 571

window_spill exception 120, 326

word

addressing 183

alignment 141

data format 65

Working Register File (WRF) 52

WRASI instruction 600

WRASR instruction 100, 347, 364, 365, 600

forcing bubbles after 52

grouping rule 52

WRDCR instruction 600

WRGSR instruction 600

WRPCR instruction 600

WRPIC instruction 600

WRSOFTINT instruction 600

WRSOFTINT_CLR instruction 600

WRSOFTINT_SET instruction 600

WRSTICK instruction 600

WRSTICK_CMPR instruction 600

WRTICK_CMP instruction 600

WRCCR instruction 98, 600

WRF (Working Register File) 52

WRFPRS instruction 600

WRGSR instruction 51

WRIER instruction (SPARC V8) 602

Write Cache 227

write cache

characteristics 6

description 227, 228

diagnostic accesses 195

flushing 7, 228

miss counts 374

write privileged register instruction 597

write-through cache 393

WRPIC instruction 365

WRPR instruction 106, 113, 118, 318, 347, 597, 597

forcing bubbles after 52

grouping rule 52

to PSTATE and BST 463

WRPSR instruction (SPARC V8) 602

WRTBR instruction (SPARC V8) 602

WRWIM instruction (SPARC V8) 602

WRY instruction 96, 600

WSTATE register 440

X
x field of instructions 179

xcc field of CCR register 98, 454, 476, 518, 534, 592,

593, 610, 611, 617, 618

XNOR instruction 517

XNORcc instruction 517

XOR instruction 517

XORcc instruction 517

Y
Y register 96, 96, 439, 609, 616, 618, 631

Z
zero (Z) bit of condition fields of CCR 97

zero virtual address 218
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