
Operating Systems Boot

Process
Salman Memon 2K12/IT/109

University of Sindh Jamshoro

Boot Process in a nutshell

Execute code from a well-known location.

i.e. ROM-BIOS Chip.

Execute first-stage boot loader from MBR.

Execute second-stage boot loader.

Load the kernel.

Load the first user space program.

Stage 1: BIOS

 BIOS - Basic Input/Output System.

 Boot firmware designed to run at start up.

 POST (Power-On Self-Test)

• Identifies, tests, and initializes system devices

 Run-time services

• Initial configuration

• Selects which device to boot from

 Loads the MBR (Master Boot Record) to RAM.

POST (Power-On Self-Test)

 One of the first processes that a computer undergoes when booting.

 POST tests the computer to ensure that it is working as it is supposed to.

 POST can detect some errors with the processor, motherboard, RAM and other

memory, as well as the video card.

 Most BIOS chips use a system of beep codes to indicate the POST status to the

user and each BIOS chipset uses a different code.

 The IBM PC BIOS code standard, for example, uses one short beep to indicate

a successful POST and two short beeps to indicate a POST error.

Stage 2: MBR (Master Boot Record)

After the POST the BIOS wants to boot up an operating system, which
must be found somewhere: hard drives, CD-ROM drives, floppy disks, etc.

The actual order in which the BIOS seeks a boot device is called Boot-
sequence and is user configurable.

If there is no suitable boot device the BIOS halts with a complaint like
“Non-System Disk or Disk Error.”

The master boot record is always located at cylinder 0, head 0, and
sector 0, the first sector on the disk

The BIOS now reads the first 512-byte sector (sector zero) of the hard
disk. This is called the Master Boot Record.

Stage 2: MBR (Master Boot Record)

Boot Code: The specific code in the MBR could be a Windows
MBR loader, or a code from Linux loaders such as LILO or GRUB.
It is also called primary boot-loader or first-stage boot-loader.

Partition table: Describes how the disk has been divided up (so
you can run multiple operating systems or have separate
volumes in the same disk). Traditionally Microsoft MBR code
takes a look at the partition table, finds the (only) partition
marked as active, loads the boot sector for that partition, and
runs that code.

Stage 3: VBR (Volume Boot Record)

Once the BIOS transfers control to the start of the MBR that was loaded

into memory, the MBR code scans through its partition table and loads

the Volume Boot Record for that partition.

The Volume Boot Record is the first sector of a partition, as opposed to

the first sector for the whole disk.

The first block of the VBR identifies the partition type and size and

contains an Instruction Program Loader that contains code to load

additional blocks that comprise the second stage boot loader.

On Windows NT-derived systems (e.g., Windows 2008, Windows 2012,

Windows 7, Windows 8), the IPL loads a program called NTLDR, which

then loads the operating system.

Beyond Windows

Under GRUB, the MBR typically contains GRUB Stage 1.

The Stage 1 boot loader loads GRUB Stage 2.

The Stage 2 loader presents the user with a choice of

operating systems to boot and allows the user to specify any

additional boot parameters for those systems (e.g., force

maximum memory, enable debugging). It then reads in the

selected operating system kernel and transfers control to it.

The second-stage boot loader

comparison

In GRUB this is GRUB Stage 2, and in Windows NT this is NTLDR.

If step 2 fails in Windows you’d get a message like “NTLDR is missing”.

The stage 2 code then reads a boot configuration file (e.g., grub.conf in GRUB,

boot.ini in Windows).

It then presents boot choices to the user or simply goes ahead in a single-boot

system.

The Linux second-stage boot loader

“GRUB”

The Windows second-stage boot loader

“Windows Boot Manager”

MBR

BIOS

Bootloader

Active

Partition

KERNEL

1. The PC is turned on & the

BIOS initializes the

hardware.

3. The BIOS calls

code stored in the

MBR at start of

disk 0.

2. The MBR loads code

from the bootsector of

the active partition

3. The Bootsector

loads and runs the

bootloader from its

file system.

4. The Bootloader loads

the KERNEL image into

RAM and executes it.

5. The KERNEL mounts the

filesystem, initializes the

drivers, & starts all basic

processes & services.

