This tutorial should not be the first activation tutorial that you read. This tutorial assumes that you have already read one or more of the three introductory activation tutorials:
In the case of a UnicastRemoteObject
, it is easy to pass command-line arguments to the implementation class, because the server
program that received those arguments is always running during the
lifetime of the remote object implementation. For activatable objects,
however, the setup class may exit immediately after registering the
activation descriptor with the RMI daemon and registering the stub with
the rmiregistry
.
The MarshalledObject
class provides a flexible
mechanism for passing persistence or initialization data through the
ActivationDesc
, registered with rmid
, rather
than hard-coding values into the implementation's class file.
Note: For the remainder of this tutorial, the terms
"activatable object implementation", "activatable object," and
"implementation" may be used interchangeably to refer to the class,
examples.activation.MyPersistentClass
, which
implements a remote interface and is activatable.
In this tutorial the setup class,
examples.activation.Setup4
, does two new things:
java.util.Properties
object to
pass the location of the java.security.properties
file to the constructor of an
ActivationGroupDescriptor
, which in turn, gets
passed to the constructor of the ActivationDesc.
MarshalledObject
, that it passes
to the ActivationDesc
constructor, to store a
java.io.File
object that represents the location
of the persistent data storage.
In this example, if the persistentObjectStore.ser
file
exists, the activatable object implementation is initialized with the
persistent data from the file. Otherwise, if the file does not exist,
the activatable object initializes itself as though this is the first
time a client has tried to send data.
The client program, examples.activation.Client4
, passes
a vector of transaction-like data to the activatable object, and that
data is added to the implementation object's vector. Each time a client
calls the implementation (to add more transaction data), the
activatable implementation stores its state (writes the vector) out to
the file specified by the MarshalledObject
.
This tutorial is organized as follows:
Client4.java
,
the class which will invoke a method on an activatable object
YetAnotherRemoteInterface.java
, the interface that
extends java.rmi.Remote
, implemented by:
MyPersistentClass.java
, the class which is activatable
Setup4.java
,
the class which registers information about the activatable
class with the RMI registry and the RMI daemon
You may notice that while the client code is included, it is not discussed in a step-by-step manner, like the implementation and setup classes. The reason for this omission, is that the client code for activatable objects is no different than the RMI client code for accessing non-activatable remote objects. Activation is strictly a server-side implementation decision.
For all of the source code used in the activation tutorials, you may choose from these formats:
Create an interface that describes each of the methods that you
would like to call remotely. For this example, the remote interface
will be
examples.activation.YetAnotherRemoteInterface
. There are
three steps to create a remote interface:
java.rmi.Remote
Step 1:
Make the appropriate imports in your interfaceimport java.rmi.*; import java.util.Vector;Step 2:
Extend java.rmi.Remotepublic interface YetAnotherRemoteInterface extends Remote {Step 3:
Declare each of the methods that may be called remotelypublic Vector calltheServer(Vector v) throws RemoteException;
Creating the implementation class
For this example, the implementation class will be
examples.activation.MyPersistentClass
. There are five steps
to create an activatable implementation class that uses a
MarshalledObject
:
java.rmi.activation.Activatable
MarshalledObject
, to save and restore the object's
data state
Step 1:
Make the appropriate imports in the implementation classimport java.io.*; import java.rmi.*; import java.rmi.activation.*; import java.util.Vector;Step 2:
Extend your class fromjava.rmi.activation.Activatable
public class MyPersistentClass extends Activatable implements examples.activation.YetAnotherRemoteInterface {Step 3:
Declare a two-argument constructor in the implementation classIn the constructor, in addition to the normal call to the superclass's constructor, in this example the
MarshalledObject
is used to specify the file name of the persistent data store. If the file exists, it's used to initialize this object's variable, aVector
named "transactions
". If the file object doesn't exist, then the vector is manually initialized. If there is any error reading the file, then object construction fails.private Vector transactions; private File holder; public MyPersistentClass(ActivationID id, MarshalledObject data) throws RemoteException, ClassNotFoundException, java.io.IOException { // Register the object with the activation system // then export it on an anonymous port super(id, 0); // Extract the File object from the MarshalledObject that was // passed to the constructor // holder = (File)data.get(); if (holder.exists()) { // Use the MarshalledObject to restore my state // this.restoreState(); } else { transactions = new Vector(1,1); transactions.addElement("Initializing transaction vector"); } }Step 4:
Write the methods that use theMarshalledObject
, to save and restore the object's data state// If the MarshalledObject that was passed to the constructor was // a file, then use it to recover the vector of transaction data // private void restoreState() throws IOException, ClassNotFoundException { File f = holder; FileInputStream fis = new FileInputStream(f); ObjectInputStream ois = new ObjectInputStream(fis); transactions = (Vector)ois.readObject(); ois.close(); } private void saveState() { try { File f = holder; FileOutputStream fos = new FileOutputStream(f); ObjectOutputStream oos = new ObjectOutputStream(fos); oos.writeObject(getTransactions()); oos.close(); } catch (Exception e) { throw new RuntimeException("Error saving vector of data"); } }Step 5:
Implement the remote interface method(s)Add each of the vector elements passed from the client to the object instance and save the updated vector out to a file.
public Vector calltheServer(Vector v) throws RemoteException { int limit = v.size(); for (int i = 0; i < limit; i++) { transactions.addElement(v.elementAt(i)); } // Save this object's data out to file // this.saveState(); return transactions; }
The job of the "setup" class is to create all the information
necessary for the activatable class, without necessarily creating an
instance of the remote object. For this example, the setup class will
be examples.activation.Setup4
.
The setup class passes information about the activatable class to
rmid
, registers a remote reference (an instance of the
activatable class's stub class) and an identifier (name) with the
rmiregistry
, and then the setup class may exit. There are
seven steps to create a setup class:
SecurityManager
ActivationGroup
instance
ActivationDesc
instance
rmid
rmiregistry
Step 1:
Make the appropriate imports in the setup classimport java.io.File; import java.rmi.*; import java.rmi.activation.*; import java.util.Properties;Step 2:
Install aSecurityManager
System.setSecurityManager(new RMISecurityManager());Step 3:
Create anActivationGroup
instanceNote: In this example, for simplicity, we will use a policy file that gives global permission to anyone from anywhere. Do not use this policy file in a production environment. For more information on how to properly open up permissions using a
java.security.policy
file, please refer to to the following documents:
Default Policy Implementation and Policy File Syntax
In the setup application, the job of the activation group descriptor is to provide all the information that
rmid
will require to contact the appropriate existing JavaTM virtual machine* (JVM) or spawn a new JVM for the activatable object.Note: In order to run this code on your system, you'll need to change the policy file location to be the absolute path to where you've installed the example policy file that came with the source code.
// Because of the Java 2 security model, a security policy should // be specified for the ActivationGroup VM. The first argument // to the Properties put method, inherited from Hashtable, is // the key and the second is the value // Properties props = new Properties(); props.put("java.security.policy", "/home/rmi_tutorial/activation/policy"); ActivationGroupDesc.CommandEnvironment ace = null; ActivationGroupDesc exampleGroup = new ActivationGroupDesc(props, ace); // Once the ActivationGroupDesc has been created, register it // with the activation system to obtain its ID // ActivationGroupID agi = ActivationGroup.getSystem().registerGroup(exampleGroup);Step 4:
Create anActivationDesc
instanceIn the setup application, the job of the activation descriptor is to provide all the information that
rmid
will require to create a new instance of the implementation class.Note: In order to run this code on your system, you'll need to change the file URL location to be the location of the directory on your system, where you've installed the example source code.
// Don't forget the trailing slash at the end of the URL // or your classes won't be found // String location = "file:/home/rmi_tutorial/activation/"; // Pass the file that we want to persist to as the Marshalled // object MarshalledObject data = new MarshalledObject (new File( "/home/rmi_tutorial/activation/persistentObjectStore.ser")); // The location argument to the ActivationDesc constructor will be used // to uniquely identify this class; it's location is relative to the // URL-formatted String, location. // ActivationDesc desc = new ActivationDesc (agi, "examples.activation.ActivatableImplementation", location, data);Step 5:
Declare an instance of your remote interface and register the activation descriptor withrmid
YetAnotherRemoteInterface yari = (YetAnotherRemoteInterface)Activatable.register(desc); System.out.println("Got the stub for MyPersistentClass");Step 6:
Bind the stub, that was returned by theActivatable.register
method, to a name in thermiregistry
Naming.rebind("MyPersistentClass", yari); System.out.println("Exported MyPersistentClass");Step 7:
Quit the setup applicationSystem.exit(0);
There are six steps to compile and run the code:
rmic
on the implementation class
rmiregistry
rmid
Step 1:
Compile the remote interface, implementation, client and setup classes% javac -d . YetAnotherRemoteInterface.java % javac -d . MyPersistentClass.java % javac -d . Client4.java % javac -d . Setup4.javaStep 2:
Runrmic
on the implementation class% rmic -d . examples.activation.MyPersistentClass
% rmiregistry &
Note: Before you start the rmiregistry, you must make sure that the shell or window in which you will run the
registry
, either has no CLASSPATH set or has a CLASSPATH that does not include the path to any classes that you want downloaded to your client, including the stubs for your remote object implementation classes.If you start the
rmiregistry
, and it can find your stub classes in its CLASSPATH, it will ignore the server'sjava.rmi.server.codebase
property, and as a result, your client(s) will not be able to download the stub code for your remote object.Step 4:
Start the activation daemon,rmid
% rmid -J-Djava.security.policy=rmid.policy &Wherermid.policy
is the name of the security policy file forrmid
.Note: By default,
rmid
now requires a security policy file, that is used to verify whether or not the information in eachActivationGroupDescriptor
is allowed to be used to launch a JVM for an activation group. For complete details, please refer to thermid
man page for the Solaris operating environment and thermid
man page for the Microsoft Windows platform.Run the setup, setting the codebase property to be the location of the implementation stubs. There are four things that need to go on the same command line:
There should be one space just after the word "
- The "
java
" command- A property name=value pair that specifies the location of the security policy file
- A property to specify where the stub code lives (no spaces from the "-D" all the way though the last "/")
- The fully-qualified package name of the setup program.
java
", one between the two properties, and a third one just before the word "examples
" (which is very hard to see when you view this as text, in a browser, or on paper).
% java -Djava.security.policy=/home/rmi_tutorial/activation/policy -Djava.rmi.server.codebase=file:/home/rmi_tutorial/activation/ examples.activation.Setup4
The codebase property will be resolved to a URL, so it must have the form of "
http://aHost/somesource/"
or "file:/myDirectory/location/
" or, due to the requirements of some operating systems, "file:///myDirectory/location/
" (three slashes after the "file:
").While a
file:
URL is sometimes easier to use for running example code, using thefile:
URL will mean that the only clients that will be able to access the server are those that can access the same files system as the server (either by virtue of running on the same machine as the server or by using a shared filesystem, such as NFS). If you wish to use an HTTP server, but don't have one available to you, please feel free to download our HTTP server.Please note that each of these sample URL strings has a trailing "/". The trailing slash is a requirement for the URL set by the
java.rmi.server.codebase
property, so the implementation can resolve (find) your class definition(s) properly. For more information on setting thejava.rmi.server.codebase
property from the command line, please take a look at our tutorial on dynamic code downloading using thejava.rmi.server.codebase
property.If you forget the trailing slash on the property, or if the class files can't be located at the source (they aren't really being made available for download) or if you misspell the property name, you'll get thrown a
java.lang.ClassNotFoundException
. This exception will be thrown when you try to bind your remote object to thermiregistry
, or when the first client attempts to access that object's stub. If the latter case occurs, you have another problem as well because thermiregistry
was finding the stubs in its CLASSPATH.The server output should look like this:
Got the stub for MyPersistentClass Exported MyPersistentClassStep 6:
Run the clientThe argument to the client program is the hostname of the implementation server, in this case, "
vector
".% java -Djava.security.policy=/home/rmi_tutorial/activation/policy examples.activation.Client4 vectorThe first time that the client is run against this implementation, the output should look like this:
Got a remote reference to the class MyPersistentClass Called the remote method Result: Initializing transaction vector Deposited money Withdrew money Transferred money from Savings Check cleared Point-of-sale charge at grocery storeThe second time that the client is run against this implementation, the output will include five additional "transactions", so it should look like this:Got a remote reference to the class MyPersistentClass Called the remote method Result: Initializing transaction vector Deposited money Withdrew money Transferred money from Savings Check cleared Point-of-sale charge at grocery store Deposited money Withdrew money Transferred money from Savings Check cleared Point-of-sale charge at grocery storeAdditionally, you should see the size of thepersistentObjectStore.ser
file increase, with each subsequent client call. *As used on this web site, the terms "Java virtual machine" or "JVM" mean a virtual machine for the Java platform.
Copyright © 1999 Sun Microsystems, Inc. All Rights Reserved.
Please send comments to: rmi-comments@java.sun.com